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Abstract
The penetration of the magnetic field in a rotating inhomogeneous plasma is investigated with direct numerical
simulations. The main focus of this work is to test the linear, singular-layer models when diamagnetic and finite
Larmor radius effects are included. Our results confirm the existing analytical prediction when the plasma velocity
at the resonant surface is outside the drift band, which is the band bounded by the electric drift velocity and the
electron diamagnetic velocity. In the drift band, however, a revision of the theory is required. In this regime of
velocity, the magnetic island radiates drift waves which can affect the dynamics of the system. Our results show that
the penetration of the magnetic field occurs more easily than predicted by the theoretical models, which commonly
neglect drift wave radiation effects.

PACS numbers: 52.35.Ky, 52.35.Vd

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The understanding of the physical mechanisms underlying the
penetration of an external magnetic field in a plasma is of
great interest in magnetic fusion research. Indeed, this topic
is closely related to several major issues in tokamak stability
and control. For example, uncontrolled deviation from the
desired toroidal symmetry of the magnetic field B (i.e. due
to coil misalignment) may force reconnection and generation
of a magnetic island around a resonant surface in an otherwise
stable configuration [1, 2]. It is well known that the presence of
a large size magnetic island can hinder the proper confinement
of the plasma and even lead to disruptions [3, 4]. On the
other hand, externally applied magnetic fields can be used to
control harmful instabilities. In particular, they are known to
mitigate or even suppress edge localized modes [5]. A widely
accepted model for the suppression attributes it to magnetic
stochasticity resulting from the overlapping of a large number
of small islands at the plasma edge (ergodic divertor) [5–7].

In the last 15 years, several authors have tackled the
problem with both analytical and numerical tools, starting with
the pioneering work by Fitzpatrick and Hender [1]. Reference
[2] provides a detailed analysis of the behaviour of an external
perturbation with wave vector k, which resonates inside the
plasma at the flux surface such that k · B = 0. One of

the results obtained by Fitzpatrick in a simple single fluid
approximation is that a sufficiently fast rotation of the plasma
can efficiently shield the external perturbation. However, if the
plasma rotation is reduced below a threshold and the strength
of perturbation is sufficiently large, the system undergoes a
sudden transition, and a full size magnetic island can grow at
the resonant surface. Such transition is not reversible, since
to return to the shielded state it is necessary to increase the
rotation well above the previous critical value. The hysteretic
cycle governing this process eventually disappears for small
perturbation amplitudes [2, 10]. Early numerical simulations
by Parker [8, 9] support this picture and were confirmed by
later and more extensive ones [11].

More recently, some two fluids effects that are thought
to be important in relevant high temperature tokamak
regimes, such as diamagnetic and semicollisional effects,
were introduced in the theory [12, 13]. The scaling of the
penetration threshold predicted by the theory in [12, 13],
however, disagrees with experimental observations [14].
Finally, numerical simulations of the linear two-fluid model in
cylindrical geometry were performed by Kikuchi et al in [15]
and in its non-linear version by Yu et al in [16].

The main aim of this paper is to investigate two fluid
effects on the penetration of the external perturbation with
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direct numerical simulations. Our fluid model evolves three
fields (magnetic flux, ψ , vorticity, U and density n), is valid
for low-β large aspect ratio plasmas and employs a 2D slab
geometry. The external perturbation and the plasma rotation
are imposed through the boundary conditions. Although this
model is very simple, and does not capture the complicated
geometry of a tokamak, it allows the investigation of the basic
physical processes involved in the penetration of the magnetic
field and it serves as a testbed for the theoretical models.

Our numerical results show good agreement with the
theories described in [12, 13] when the plasma rotation velocity
at the resonant surface, v, is outside the drift band, i.e.
v < 0 or v > v∗. Here v∗ = −(cT /eBzn)(dn/dx) is
the electron diamagnetic velocity (c is the speed of light,
T is the electron temperature, e is the electron charge, Bz

is the confining magnetic field and n is the electron density).
The ion diamagnetic velocity is zero as a consequence of
the assumption that the ions are cold. Furthermore, we have
assumed that the externally applied magnetic field is stationary
in the laboratory frame of reference. Inside the drift band
(0 < v < v∗), by contrast, our numerical results differ from
those of [12, 13]. In particular, they predict a substantially
lower threshold for the penetration of the external perturbation.
We attribute this discrepancy to the presence of drift waves
excited by the magnetic island [17].

2. Model

Our investigation is carried out in a 2D slab configuration, for
low-β plasmas with a strong magnetic field Bz in the ignorable
direction, ez. We assume constant electron temperature and
cold ions. With these approximations, the magnetic field and
the plasma E × B velocity can be written as

B = Bzez + ez × ∇#, (1)

v = cB−1
z ez × ∇$, (2)

where # is the magnetic flux and $ is the plasma (ion) stream
function.

The fluid model that we analyse is a reduced version of that
obtained by Hazeltine et al in [18]. The normalized equations
are

∂U

∂t
+ [ϕ, U ] = [J,ψ] + µ∇2U, (3)

∂ψ

∂t
+ [ϕ,ψ] = [n,ψ] − η(J − Jeq), (4)

∂n

∂t
+ [ϕ, n] = ρ2[J,ψ] + D∇2n. (5)

Equation (3) is the curl of the plasma (ion) momentum balance
projected along the confining magnetic field direction and
evolves the normalized plasma vorticity, U = ∇2ϕ (ϕ is the
normalized stream function). Equation (4) is Ohm’s law for the
normalized magnetic flux, ψ , obtained taking the projection of
the electron momentum balance along the magnetic field (and
neglecting electron inertia). Lastly, (5) is the conservation
equation for the normalized plasma density, n (without loss of
generality, we assume that n is the plasma density minus its
value at the reconnecting surface). The system is closed by
Ampere’s law, J = −∇2ψ where J is the normalized parallel
current density.

In our convention, all the transverse lengths are
normalized (along x) with respect to L, a typical equilibrium
length scale, and all the velocities to vA = (Bzε)/

√
4πminc,

the transverse Alfvén velocity in CGS units. Here nc is a
typical density, mi is the ion mass and ε = Lx/Ly is the
slab aspect ratio, evaluated with the numerical box sizes in
the ‘radial’ and ‘poloidal’ directions, x, y. Consequently,
the transverse Alfvén time is: τA = L/vA. For a detailed
discussion of the normalizations see [19].

The operator [A, B] = ∂xA∂yB − ∂xB∂yA is the Poisson
bracket of two generic scalar fields A and B. Note that
[ϕ, . . .] = v · ∇ · · · represents the E × B advection and
[. . . ,ψ] = B/Bz · ∇ · · · is the parallel gradient, ∇‖. In
(5) ρ = ρs/L, ρs = cs/, with cs =

√
T/mi the ion

sound speed calculated with the electron temperature and , =
eBz/mic measures the ion gyrofrequency. The model includes
several (normalized) dissipative effects such as the electrical
resistivity, η, the particle diffusivity, D, the perpendicular ion
viscosity, µ, and the parallel viscosity.

We can construct a class of equilibrium solutions of the
unforced (ψerr = 0) system (3)–(5) by taking

ψeq = ψeq(x), (6)

ϕeq = −v0x, (7)

neq = −v∗x, (8)

where the generic equilibrium magnetic flux is such that
−∇2ψeq = Jeq(x), and (7) implies: Ueq = 0. It can be
easily verified that the relations above satisfy (3)–(5). The
equilibrium ‘poloidal’ velocity does not have any shear or
curvature. The parameter v0 represents the average velocity
of the plasma with respect to the laboratory. The stability
of solutions (6)–(8) with respect to the tearing mode [20]
depends on the equilibrium current density profile and on
the wave number of the instability. In this work we take
ψeq = ln[cosh(x)], which allows analytic evaluations of the
stability parameter for the tearing mode, -′

mode (the unforced
mode occurs spontaneously if -′

mode > 0).
The boundary conditions of (3)–(5) in the y direction

are periodic, while those at x = ±Lx/2 deserve a special
discussion. Indeed, the external magnetic perturbation and the
plasma rotation are imposed through the boundary conditions
at the edge of the numerical box. In particular, the resonant
external perturbation is introduced in the problem by fixing

ψ(±Lx/2, y) = ψeq(±Lx/2) + ψerr cos(2πy/Ly), (9)

where ψerr measures the strength of the perturbation.
Furthermore, we assume that far from the resonant surface
(in particular on the edge of the numerical box) the other
scalar fields depend only on the magnetic flux: [f,ψ] = 0,
where f (x, y) represents ϕ, n, U or J . As a consequence, the
remaining boundary conditions must be cast in the following
form:

∂f

∂y
(±Lx/2, y) = ∂ψ

∂y
(±Lx/2, y)

f ′(±Lx/2, y)

ψ ′(±Lx/2, y)
, (10)

where a prime represents derivation with respect to x. We
remark that without this choice of boundary conditions, the
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formation of the island would produce significant currents
at the edge of the numerical box, thus introducing unwanted
physics in the problem and polluting the results. Integrating
(10) over y, we have

ϕ(±Lx/2, y) = ∓v0Lx/2

+ψerr
ϕ′(±Lx/2, y)

ψ ′
eq(±Lx/2)

cos(2πy/Ly), (11)

n(±Lx/2, y) = ∓v∗Lx/2

+ψerr
n′(±Lx/2, y)

ψ ′
eq(±Lx/2)

cos(2πy/Ly), (12)

J (±Lx/2, y) = Jeq(±Lx/2)

+ψerr
J ′

eq(±Lx/2)

ψ ′
eq(±Lx/2)

cos(2πy/Ly), (13)

U(±Lx/2, y) = 0, (14)

where it is assumed that the derivative of both the magnetic
flux and of the current density can be approximated by
their equilibrium values. These boundary conditions are
implemented in the code by replacing in (11) and (12) the value
of ϕ′(±Lx/2, y) and n′(±Lx/2, y) calculated at the previous
time step. They have proved to be very efficient in cancelling
spurious currents at x = ±Lx/2.

Equations (3)–(5), Ampere’s law and the relation for the
vorticity, with the boundary conditions (9) and (11)–(14) form
the model that we have investigated. It is clear now that the
external perturbation and the plasma rotation can be fixed by
adjusting ψerr in (9) and v0 in (11). Note that, in general,
fixing v0 does not set the ‘poloidal’ velocity of the plasma
at the edge of the integration domain, but only its average
value in the range −Lx/2 ! x ! Lx/2. Furthermore,
relation (14) approximates the condition v′

y(±Lx/2, y) =
−∂2

xϕ(±Lx/2, y) ∼= 0, corresponding to the constraint that
the momentum flux vanishes at the edge of the integration
domain. We remark that this boundary condition does not
exclude the presence of a constant external force acting on the
whole plasma, which would be absent only if v′′

y (±Lx/2, y) =
U ′(±Lx/2, y) = 0 (see (27)). Nevertheless, if the presence of
such force (which could be physically modelled, for example,
by unbalanced neutral beam injection (NBI)) is properly taken
into account, it does not affect the validity of our results.

We complete this section by reviewing the linear version
of (3)–(5), which will be used in the following. We assume the
equilibrium specified in (6)–(8) and an eikonal dependence
of the saturated (∂/∂t = 0) perturbation. The linearized
equations are

ϕ̃′′ − k2ϕ̃ −
ψ

′2
eq

−i(η/k)vy + ρ2ψ
′2
eq

(
1 − v∗

vy

)
ϕ̃

− i(µ/k)

vy

(ϕ̃IV − 2k2ϕ̃′′ + k4ϕ̃) =
ψ ′2

eq

−i(η/k)vy + ρ2ψ
′2
eq

×
[

i(η/k)

ψ ′
eq

J ′
eq

ψ ′
eq

+
vy

ψ ′
eq

(
1 − v∗

vy

)]

ψ̃, (15)

ψ̃ ′′ −
[

k2 −
J ′

eq

ψ ′
eq

]

ψ̃ = − vy

ψ ′
eq

(ϕ̃′′ − k2ϕ̃)

+
i(µ/k)

ψ ′
eq

(ϕ̃IV − 2k2ϕ̃′′ + k4ϕ̃), (16)

ñ = ϕ̃ +
vy

ψ ′
eq

(
1 − v∗

vy

)
ψ̃ − i(η/k)

ψ ′
eq

(ψ ′′ − k2ψ), (17)

where k = 2πm0/Ly is the wave number of the perturbation,
m0 is an integer and vy = (2π)−1

∮
d(ky)vy is the average

poloidal velocity (vy
∼= v close to the rational surface). In

the derivation of (15) we have assumed negligible diffusion,
which is a consistent approximation if Dk/v * ρ2k2.

3. Theory of external perturbation penetration

In the standard approach, when the resistivity is small, the
plasma response to a static external magnetic perturbation is
governed by ideal MHD everywhere but in a narrow layer
around the resonant surface where the equilibrium magnetic
field is perpendicular to the perturbation wave vector, i.e.
ψ ′

eq = 0. For the considered equilibrium, the resonant surface
lies at x = 0. The problem is naturally split, so that is
possible to identify an ideal ‘outer’ solution and a dissipative
‘inner’ solution, where the inner layer effects are investigated
in a simplified geometry. To complete the procedure, the two
solutions are matched over the region where they are both valid
(overlapping region).

Generally, we can write the magnetic flux as

ψ(x, y, t) = ψeq(x) +
∑

m0>0

ψ̂k(x) cos(ky + θk(x))

= ψeq(x) +
∑

m0>0

(ψ̃k(x)eiky + ψ̃∗
k (x)e−iky). (18)

with θk(x) = tan−1(+(ψ̃k)/,(ψ̃k)), |ψ̂k| = 2|ψ̃k|. In the
‘outer’ region plasma inertia, resistivity and viscosity can be
neglected, so that the linear version of (3) becomes (see (16))

d2ψ̃(x)

dx2
−

[

k2 −
J ′

eq(x)

ψ ′
eq(x)

]

ψ̃(x) = 0, (19)

where we have assumed m0 = 1 and dropped the subscript k.
The boundary conditions for (19) are ψ̃(±Lx/2) = w2

vac/32,
ψ̃(0) = (w2/32)e−iα . Here wvac is the width of the magnetic
island generated by the external perturbation at the resonant
surface in absence of plasma, w is the actual width when
the plasma is present and α is its phase shift with respect
to the external perturbation. We define the island width as
the distance between the two branches of the separatrix in
a cross section passing through the O-point. The relation
between the perturbed magnetic flux and the island width is
w = 4

√
|ψ̂(0)| = 4

√
2
√

|ψ̃(0)|, wvac = 4
√
ψerr. Note that

both w and α will be determined by the matching with the
‘inner’ solution. These boundary conditions are consistent
with (9) and the assumption θ(0) = −α (i.e. the phase θ goes
from 0 at the edge to −α on the resonant surface).

The linear structure of (19) allows a convenient
decomposition of the ‘outer’ solution in two contributions, one
from the unforced mode and one from the external perturbation
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Figure 1. (Colour online) Decomposition of the total eigenfunction
of the magnetic flux for ψeq = ln(cosh(x)) and k = 1.01. Solid
line: |ψ̃mode(x)|/ψ̃mode(0), dashed line |ψ̃coil(x)|/ψ̃mode(0)
for ψerr(x)/ψ̃mode(0) = 0.25.

ψ̃ = ψ̃mode + ψ̃coil. Both components satisfy (19), the former
with the boundary conditions ψ̃mode(±Lx/2) = 0, ψ̃mode(0) =
(w2/32)e−iα and the latter with ψ̃coil(±Lx/2) = w2

vac/32,
ψ̃coil(0) = 0. Figure 1 shows an example of the eigenfunctions
for ψeq = ln(cosh(x)) and k = 1.01.

The matching between the ‘inner’ and the ‘outer’ solution
is performed through the stability parameter, -, defined as
the jump of the logarithmic derivative of the fundamental (i.e.
m0 = 1) eigenfunction of the perturbed magnetic flux around
the resonant surface (see [20]):

- ≡ 1

ψ̃(0)

(
dψ̃
dx

∣∣∣∣
0+

− dψ̃
dx

∣∣∣∣
0−

)
= -′

mode +
w2

vac

w2
eiα-′

coil,

(20)

where -′
mode ≡ ψ̃−1

mode(0)(dxψ̃mode|0+ − dxψ̃mode|0−)

corresponds to the standard stability parameter of the unforced
mode and -′

coil ≡ ψ−1
err (dxψ̃coil|0+ − dxψ̃coil|0−) corresponds to

the extra drive given by the external perturbation. Note that
-′

mode and -′
coil are real numbers, while, in general, - is not.

It is useful to separate the stability parameter in the following
way:

,(-) = -′
mode +

w2
vac-

′
coil

w2
cos(α), (21)

+(-) =
w2

vac-
′
coil

w2
sin(α), (22)

where ,(-) and +(-) are, respectively, the real and imaginary
part of-. An alternative way to express the stability parameter
which involves the current density is the following:

- = − 1

2πψ̃(0)

∫ ∞

∞
dx

∮
d(ky)J e−iky, (23)

where Ampere’s law is used and localization of the current
density around the resonant surface is assumed to extend
the integration to x = ±∞. From (23) it follows that
,(-) = −16(πw2)−1

∫ ∞
∞ dx

∮
d(ky)J cos(ky − α) and

+(-) = 16(πw2)−1
∫ ∞
∞ dx

∮
d(ky)J sin(ky − α).

When solving the problem, -′
mode and-′

coil are fixed once
the equilibrium and the perturbation wave number are chosen,

wvac is varied to simulate different external forcing and the two
unknowns in (21) and (22) are

w2 =
-′

coilw
2
vac

|- − -′
mode|

, (24)

α = tan−1
( +(-)

,(-) − -′
mode

)
, (25)

Our magnetic equilibrium, with k = 1.01 (value fixed in all
our simulations), gives -′

mode = −0.286 and -′
coil = 0.945,

which implies that the analysed configuration is tearing mode
stable and magnetic reconnection is generated only by the
external forcing. When wvac = 0 the stability parameter,
- = -′

mode, is given by the outer solution and the matching
with the inner layer yields the growth rate and the rotation
frequency of the linear instability. In this work, we are
interested in the forced case wvac /= 0. If the shielding
of the plasma is sufficiently robust, we can assume that the
induced magnetic island saturates at very small amplitudes.
The problem can be therefore treated by employing linearized
stationary (∂/∂t = 0) equations. This simple approximation
is quite sufficient to investigate interesting phenomena related
to the penetration of the external perturbation, as discussed
in [2]. Within this framework, - is given by the ‘inner’ linear
layer response to the external perturbation, and can be used
in (24) and (25) to obtain w and α. A detailed treatment of
the calculation of - in the ‘inner’ linear layer, as a function of
the plasma velocity at the resonant surface, v, and of the other
plasma parameters, can be found in [2, 10, 12, 13].

The ‘inner’ solution can be calculated more easily by
solving (15) and (16) in Fourier space to eliminate higher order
derivatives. To do this, we express the transformed quantities
as f (x) =

∫ ∞
−∞ dzfzeizx . Furthermore, we approximate the

magnetic field with its local behaviour, so that ψ ′
eq

∼= x. Thus,
in (15) and (16), we can replace xf (x) with if ′

z and f ′(x) with
izfz. Then, defining δ = (η/k)1/3, Q = v/δ, Q∗ = v∗/δ,
P = µ/η, R = ρ/δ and normalizing z → zδ, after some
algebra we obtain

d
dz

(
z2

Q − Q∗ + iz2

dY

dz

)

+
z2Q(Q + iz2P)

Q − Q∗ + z2R2(Q + iz2P)
Y = 0, (26)

where Y (z) = (1 − Q∗/Q + R2z2 + iz4R2P/Q)φ̃z. In
order to properly match with the outer region, the asymptotic
behaviour of the solution of (26) must be such that Y (z →
0) ∝ [1 + -/(πz)], which provides the stability parameter.
Equation (26) is similar to the expressions obtained in [12, 13],
where the problem is solved in several analytic limits [13] or
with numerical techniques [12] (the same numerical procedure
is employed in this paper every time we refer to the solution
of (26)). Within these models, once the equilibrium is fixed,
- = -(Q, Q∗, P , R).

As (26) shows, the knowledge of the plasma velocity
at the resonant surface is required to calculate the matching
parameter. This quantity is obtained by using the
poloidal plasma momentum balance equation averaged over
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y (to eliminate the pressure term) and integrated over x around
the reconnecting surface:
∫ x+

x−

dx

∮
d(ky)

2π
(∂t + v · ∇)vy

= −
∫ x+

x−

dx

∮
d(ky)

2π
J ψ̂k sin(ky + θ)

+ µ

∫ x+

x−

dx

∮
d(ky)

2π
∂2
x vy +

∫ x+

x−

dx

∮
d(ky)

2π
Fy.

(27)

The previous equation balances all the forces acting on a
volume of plasma included between 0 ! y ! 2π and
x− ! x ! x+. The term on the left-hand side of (27) is
the plasma inertia, the second term on the right-hand side is
the viscous force and the last term is a constant homogeneous
force acting on the plasma (i.e. unbalanced NBI).

The first term on the right-hand side deserves a more
detailed comment. Indeed, it represents the electromagnetic
J × B force, and in the limit x+ → 0+, x− → 0−, which gives
the balance of the ‘inner’ layer, it reduces to

FJ×B = −k

2
-

′2
coil+(-)

|- − -′
mode|2

ψ2
err, (28)

where the definition of wvac, of +(-) in terms of J and
(24) were used. In the Fitzpatrick theory the J × B force
is localized around the resonant surface, as a consequence of
the localization of the current density. It is easily proved [2]
that outside the ‘inner’ layer this force decays rapidly away
from the resonant surface and can be considered as absent. We
remark that this is a limitation of slab and cylindrical models:
in the neoclassical theory for a torus, the neoclassical toroidal
viscosity persists outside the layer and it must be balanced by
the J × B force [21, 22].

In the theoretical calculations it is usually assumed that
the viscous force balances the magnetic force (all the other
terms in (27) are neglected), thus providing an equation for
the plasma velocity profile. In general, the viscous force
can be expressed as a function of the difference between the
plasma velocity at the edge of the integration domain and the
velocity at the resonant surface: vedge − v. In the Fitzpatrick
model, the average velocity profile in the ‘outer’ layer is given
by the condition: Fµ = µ(dvy/dx)|x+

x− = 0. Assuming a
fixed edge velocity as a boundary condition, we have that
dvy/dx|x+

x− = 4(vedge − v)/Lx . Once (26) is solved and the
dependence of - on v is found, the relation FJ×B + Fµ = 0
gives v.

The boundary conditions employed in this work make our
calculation slightly different from the standard case. Indeed,
(14) (i.e. dvy/dx(±Lx/2) = 0), together with the fact that
v /= vedge, cannot prevent the presence of a finite curvature in
the velocity profile at the edge (i.e. d2vy/dx2(±Lx/2) /= 0).
This implies a viscous force at x = ±Lx/2, which has to
be balanced by an external poloidal force. Without loss of
generality, we can include this force in our equations (i.e. the
last term in (27)) and assume it to be spatially homogeneous.
The ‘outer’ velocity profile is thus parabolic instead of linear
and straightforward algebra gives dvy/dx|x+

x− = −2LxF y/µ =
8(vedge − v)/Lx , with Fy = (2π)−1

∮
d(ky)Fy (see figure 2).
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Figure 2. (Colour online) Typical average poloidal velocity profile,
vy/vedge, for the Fitzpatrick model (dashed line) and with the
boundary conditions used in this paper (solid line). The value of v0
for the latter is plotted with a dashed–dotted line (see (7)). The width
of the ‘inner’ layer is assumed to be vanishing and v/vedge = 0.75.

To summarize, the penetration of an external perturbation
in a plasma can be determined following these steps:
(1) solution of the ‘inner’ problem (i.e. (26)) and calculation of
- as a function of an imposed arbitrary v, given all the other
physical parameters of the problem, (2) identification of the
forces acting on the magnetic island (see (27)) and evaluation
of the plasma velocity at the resonant surface, v, through the
momentum balance equation, (3) calculation of the penetrated
island width and the phase shift of the forced island (see (24)
and (25)). We remark that this procedure holds as long as
the induced saturated island width remains smaller than the
linear resistive layer. The solution of (26) and (27) shows
that, in general, when the external perturbation amplitude is
increased above a certain threshold or when the edge velocity
is reduced, the linear solution ceases to exist and the system
makes a transition from the shielded state (w * wvac and
|v| ∼| vedge|) to a completely reconnected one (w ∼ wvac and
|v| ∼| v∗| *| vedge|).

4. Numerical results and discussion

The system of equations (3)–(5) is solved with an initial
value, finite-difference, fully implicit numerical code already
employed for similar studies [23, 24]. The width of the
numerical box in the radial direction is Lx = 4 while, as
already mentioned, k = 1.01. The numerical grid has,
respectively, 128 and 64 points in the x and y direction (at this
resolution the calculation converges). In all the simulations
presented here, the following parameters are fixed: η = 10−3,
D = 5 × 10−5, µ = 2 × 10−4, ρ = 0.12 (apart from
the benchmark case discussed below) [19, 25]. The effect of
finite electron diamagnetic velocity is investigated giving to
v∗ the values [0, −0.01, −0.05, −0.075, −0.1]. The values
of the dissipative parameters are artificially large with respect
to a typical experimental case in order to reach a stationary
state within a reasonable computational time. However, they
are sufficiently small to assure scale separation between the
dissipative layer and the system size. Furthermore, their ratios
are typical of a magnetically confined plasma, so that our
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Figure 3. (Colour online) (a) Normalized force F1 and (b) shielding
factor w2/w2

vac as a function of Q = v/δ, for ρ = 0 and v∗ = 0
(solid line), ρ = 0.12 and v∗ = −0.01 (dashed line), ρ = 0.12 and
v∗ = −0.075 (dashed–dotted line). For all the curves δ ∼= 0.1.

results are in a reasonable physical regime. In particular, with
our parameters the plasma collisionality, C, ranges between
C = 0 and C = 0.48, depending on the electron diamagnetic
drift velocity and the Prandtl number is P = 0.2.

Each simulation is performed at a fixed value of ψerr

and the behaviour of the system is studied by changing v0

(which is equivalent to modifying vedge). As described in
the previous section, we expect that the plasma will be able
to shield the external perturbation only for certain ranges of
vedge. When this does not happen, the system will make a
transition to much larger reconnected flux and reduced plasma
rotation at the resonant surface. It is our purpose to identify
the critical thresholds in different regimes and to compare
their values, obtained with our direct numerical approach,
with those theoretically predicted employing the approach
used in [12, 13]. This puts to a stringent test the fundamental
prediction of the semi-analytical models.

Before describing the numerical results, it is useful to
determine the theoretical critical thresholds for some of the
cases that will be analysed numerically later in this section.
In order to do that, we first solve numerically (26), which
gives - as a function of the normalized plasma velocity Q

(once all the other parameters are fixed). We are now ready to
calculate the normalized J×B force: F1 = +(-)/|-−-′

mode|2
(compare with (28)), which has to balance (in the theoretical
models) the normalized viscous force: F2 = 16(Qedge −
Q)δ4P/(Lx-

′2
coilψ

2
err). The force F1 is plotted in figure 3(a)

as a function of Q for three cases: ρ = 0 and v∗ = 0 (solid
line), ρ = 0.12 and v∗ = −0.01 (dashed line), ρ = 0.12 and
v∗ = −0.075 (dashed–dotted line). The force F2 is linear in
Q, its slope is determined by the amplitude of the external
perturbation and it rigidly shifts horizontally by changing
Qedge. The intersection of F1 with F2 gives the theoretical
prediction for Q. Once this is obtained, we can calculate using
(24) the exact value of the shielding factor, w2/w2

vac (plotted
in figure 3(b)). We note that F1 and w2/w2

vac have a singular
behaviour around the ‘ion’ resonance at Q = 0 (i.e. when
the ions are at rest in the frame of reference of the external
perturbation) and around the ‘electron’ resonance at Q = −Q∗
(i.e. when the electrons are at rest in the frame of reference of

the external perturbation). The ‘ion’ and ‘electron’ resonances
coincide in the MHD case, while they are separated in the two
fluid model. Penetration is therefore expected around these
two values of the plasma velocity. By using the curves in
figure 3 we can identify the locus of the critical thresholds and
the area in the ψerr–vedge space where penetration is predicted
(shaded areas in figure 4).

We start the full non-linear simulations with a benchmark
case without diamagnetic effects, v∗ = 0, ρ = 0. This exercise
is useful to prove the effectiveness of the numerical approach
and to illustrate the procedures used in our investigation. In
figure 5(a) we plot the y-averaged poloidal velocity profiles,
vy , for a representative case with wvac = 0.4 (the dashed lines
represent simulations with penetrated magnetic field). For this
case, the penetration should occur when |vedge| ! 0.05, as
observed. In order to determine the critical threshold, we
have initialized our code with an edge velocity larger than
the expected value for the transition and we have gradually
reduced the vedge in successive simulations (all of which we
have carried out until they reached a fully stationary state). The
same procedure was employed for different values of wvac and
the comparison in the ψerr–vedge space between the theoretical
predictions for penetration (shaded areas) and the numerical
results (crosses for penetration and circles for shielding) is
plotted in figure 4(a). To further test the theory, it is useful
to graphically verify the momentum balance. The force F1,
obtained by solving (26) and finding-, is plotted as a function
of Q in figure 6(a) (solid line) while F2 is calculated from
the simulations and is represented by crosses for wvac = 0.56,
by circles for wvac = 0.49 and by squares for wvac = 0.4.
In figure 6(b) the theoretical and numerical shielding factor
w2/w2

vac are compared with the same meaning of the symbols.
For the benchmark case, we have an excellent agreement with
the theoretical curves.

We start now the analysis of the cases with diamagnetic
and semicollisional effects. If the ‘ion’ and ‘electron’
resonances are not sufficiently separated, the splitting results
in a broadening of the unshielded region, as observed, for
example, in figure 3(b). In particular, if v∗ is small, the
locus of the critical thresholds (shown in figure 4(b)) is no
longer symmetric with respect to vedge = 0, as one of its
branches is shifted by a factor v∗, while the other remains
almost unchanged. This result was observed and verified in our
simulations with v∗ = −0.01, for which the theoretical value
of the minimum of w/wvac is above 1 when 0 ! vedge ! −v∗.
For larger values of v∗, the theoretical calculations give more
complex results and they predict the possibility of shielded
solutions in the drift band. At the same time, the ‘ion’
resonance becomes narrower and therefore less effective, so
that for large values of the external perturbation it completely
disappears (see figure 4(c)).

A scan of the edge velocity for a case with wvac =
0.4 gives useful insight on this and other aspects of the
penetration with diamagnetic effects. We have selected this
amplitude of the external perturbation because it produces
an island that is sufficiently large to be in the non-linear
regime when the penetration occurs, but it always remains
smaller than the system size. Furthermore, it allows us to
investigate the presence of the ‘ion’ resonance. When vedge

is positive and sufficiently outside the drift band, our results
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Figure 4. (Colour online) Penetration in the ψerr–vedge space for v∗ = 0, −0.01, −0.075. In the shaded areas penetration is expected,
according to (24), (26) and (27) (with negligible inertia). The simulations with penetration of the external field are represented by crosses,
while the ones with shielding are marked by circles.
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Figure 5. (Colour online) Saturated average plasma poloidal
velocity profiles as a function of x for a case with v∗ = 0 (a) and
v∗ = −0.05 (b) for different vedge and wvac = 0.4. The solid lines
represent cases with shielding, w * wvac, the dashed lines cases
with penetration, w ∼ wvac and the dashed–dotted line is a snapshot
of a turbulent (penetrated) case. As a reference, the value of v∗ is
plotted with a thin dotted line in (b).

confirm the theoretical predictions even in the presence of a
finite diamagnetic velocity (see figures 4 and 8–10). A first
interesting result is obtained when the edge velocity is reduced
below the threshold value. As expected a large magnetic island
forms at the resonant surface, but this sudden transition is
accompanied by the generation of turbulence. The turbulence
is sustained by the destabilization of resistive drift waves,
which are driven by the density gradients. The same behaviour
at the transition is observed in simulations with v∗ = −0.05,
v∗ = −0.075 and v∗ = −0.1. In figure 5(b) the dashed–dotted
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Figure 6. (Colour online) (a) Comparison between the theoretical
and numerical forces balance for v∗ = ρ = 0. The theoretical
prediction for the force F1 = +(-)/|- − -′

mode|2 is represented by
the solid line and the force F2 = 16(Qedge − Q)δ4P/(Lx-

′2
coilψ

2
err),

obtained from the numerical simulations, is marked by crosses for
wvac = 0.56, circles for wvac = 0.49 and squares for wvac = 0.4.
(b) Comparison between the theoretical (solid line) and numerical
(symbols) shielding ratio, w2/w2

vac. Q = v/δ is the normalized
velocity and δ 2 0.1.

lines show a snapshot of the average poloidal velocity profile
in presence of turbulence for a case with v∗ = −0.05. In
addition, figure 7 shows the contours of the vorticity in the
turbulent case (b), which can be compared with the quiescent
stationary solution for vedge outside (a) and inside (c) the drift
band (wvac = 0.4 and v∗ = −0.075).

It is interesting to note that the numerical simulations do
not show any penetration at the ‘ion’ resonance for v∗ =
−0.05, v∗ = −0.075 or v∗ = −0.1. A similar result was
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Figure 7. (Colour online) Contour plot of the vorticity for a case with wvac = 0.4 and v∗ = −0.075. The edge velocity in (a) is outside the
drift band and above the penetration threshold, vedge = 0.15, and the solution is localized. The edge velocity in (b) is outside the drift band
and below the penetration threshold, vedge = 0.08, and turbulence appears. The edge velocity in (c) is inside the drift band, vedge = 0.05, and
the solution is delocalized.

found in [16], where the penetration threshold is symmetric
with respect to the electron diamagnetic velocity and no ‘ion’
resonance is observed. The lack of penetration in the cases
discussed could be due to the different nature of the singularity
at v = 0 with respect to that at v = −v∗. Indeed, in the
vicinity of the latter, the intersection between the forces F2

and F1 occurs around the electron diamagnetic velocity, where
w2/w2

vac is large, and it lingers there for a range of values of
vedge. This is a consequence of the fact that F2 has a negative
slope. Conversely, at the ‘ion’ resonance the characteristic
value of v can easily jump from one branch of the curve
representing F1 to the other, and therefore the solution can
avoid the resonance. Furthermore, it is possible that the particle
diffusivity, neglected in our theoretical treatment, can smooth
away the singularity and regularize the F1 and w2/w2

vac curves.
When 0 ! vedge ! −v∗, the penetration of the external

perturbation is studied by gradually increasing the edge
velocity from a value close to the first resonance (where
we expect shielding) toward the second resonance. Our
simulations in the drift band show a poor agreement with
the theoretical results. In particular, although predicted (see
figure 4), it is not possible to find shielded solutions for
wvac = 0.4 and v∗ = −0.05, v∗ = −0.075 or v∗ = −0.1 (but
they exist for v∗ = −0.15 and for v∗ = −0.1 the penetration
is partial). In order to shed light on this discrepancy, it is
useful to test some key assumptions of the theory. To ensure
a linear shielded solution, we reduce the amplitude of the
external perturbation to wvac = 0.1265. Then, we scan the drift
band in order to reconstruct the ratio w2/w2

vac and the force F2

applied on the plasma, as a function of the plasma velocity, v.
Even if the perturbation is shielded and clearly linear for such
a low amplitude of the external field, the numerical values
(crosses for wvac = 0.1265 and squares for wvac = 0.4) do not
agree with the theoretical curves, as figures 8, 9 and 10 show.

In particular, these results suggest that the theory in [12, 13]
is neglecting a contribution in the momentum balance that is
significant in the drift band. The investigation of (27) shows
that the missing force must be produced by the term v · ∇vy .
Indeed, within the drift band, this radiative force can become
relevant as a consequence of the fact that the magnetic island
emits drift waves that propagate outward from the resonant
surface.

To support this statement, we compare the weight of the
different forces in four significant cases. In order to do that, it
is useful to write (27) at saturation as

v′
y(x) − v′′

y(Lx/2)x = µ−1〈∂x φ̃∂y φ̃〉 + µ−1〈∂xψ̃∂yψ̃〉, (29)

where the left-hand side represents the contribution of the
viscous force (plus the external forcing), the first term on the
right-hand side is the radiative v · ∇vy effect and the second
term is related to the J×B force. The poloidal average operator
is defined as 〈· · ·〉 = (2π)−1

∮
· · · d(ky). We remark that (29)

is just the balance of the radially integrated forces. In figure 11
we plot the three contributions of (29) for wvac = 0.1265
and wvac = 0.4 for a case with edge velocity inside the drift
band and for one outside. Our results clearly show that in the
presence of drift wave emission, the radiative term (solid line
in the figure) is comparable with the other two and therefore
changes the nature of the force balance. As a consequence,
predictions made with models that neglect this contribution
are unreliable. Furthermore, the v · ∇vy term can directly
modify the ratio w2/w2

vac. Indeed, (16) shows that the velocity
perturbation induced by a non-localized drift wave can affect
the matching between the ‘outer’ and the ‘inner’ layer through
a new ‘intermediate’ layer, included between x = ±vy/ψ

′
eq

(i.e. the Alfvén resonances), where inertia must be retained
while the dissipative effects can be dropped. As a consequence,
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Figure 8. (Colour online) (a) Comparison between the theoretical and numerical forces balance for v∗ = −0.05. The theoretical prediction
for the force F1 = +(-)/|- − -′

mode|2 is represented by the solid line and the force F2 = 16(Qedge − Q)δ4P/(Lx-
′2
coilψ

2
err), obtained from

the numerical simulations, is marked by crosses for wvac = 0.1265, squares for wvac = 0.4. (b) Comparison between the theoretical (solid
line) and numerical (symbols) shielding ratio, w2/w2

vac. Q = v/δ is the normalized velocity and δ 2 0.1.
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Figure 9. (Colour online) Same as figure 8 with v∗ = −0.075. The circles represent cases with wvac = 0.2828.

the matching procedure described in section 3 is no longer
applicable and therefore (21) loses its validity.

To complete this section we briefly discuss the nature
of the perturbed velocity field in the two-fluid model, which
is the cause of the discrepancy between the theory and our
numerical results. In this regard, it is useful to note that the
left-hand side of (16) is the standard drift wave equation in
presence of a sheared magnetic field, while the right-hand side
couples the drift waves with the magnetic perturbation. It
is easy to see that for weak coupling and small dissipative
parameters, (16) produces a localized solution only when
vy is outside the drift band (see figure 7(a)), while the
solution becomes a non-localized drift wave when inside (see
figure 7(c)). The non-localization of the solution is associated
with momentum transport, which affects the force balance, as
described above. Lastly, we remark that our model does not
include Landau damping effects which would localize the drift
waves [26]. Nevertheless, even for more realistic models, the

considerations drawn above remain valid, and in particular the
message that when the plasma velocity is in the drift band,
the radiation drag must be considered in order to calculate
correct penetration thresholds (see also [27, 28] in the context
of unstable tearing mode theory).

5. Conclusions and summary

We have presented a detailed numerical investigation of the
magnetic field penetration in the presence of diamagnetic and
semicollisional effects, in the framework of a two-fluid model.
Our main goal was to test previous analytical or semi-analytical
descriptions of the penetration mechanism and verify their
predictions with our numerical results. In this regard, we have
drawn a direct comparison between the models in [12, 13] and
our direct numerical simulations.

A fundamental difference between the MHD and the two-
fluid model is that the latter allows for the generation of
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Figure 10. (Colour online) Same as figure 8 with v∗ = −0.1.
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Figure 11. (Colour online) Stationary radially integrated forces
(i.e. (29)) from a numerical simulations with v∗ = −0.075. The
solid curves represent the radiative term, the dashed lines are the
J × B term, while the dashed–dotted line is the viscous term
(left-hand side of (29)). The external field amplitude and edge
velocity are wvac = 0.1265 and vedge = 0.05 for (a), wvac = 0.1265
and vedge = 0.15 for (b), wvac = 0.4 and vedge = 0.05 for (c) and
wvac = 0.4 and vedge = 0.15 for (d). The thin solid line close to the
horizontal axis is the left-hand side of equation (29) minus its
right-hand side and shows that the force balance is satisfied.

drift waves. In particular, these waves are excited when the
difference of velocity between the external perturbation and
the plasma at the resonant surface lies between the ion and the
electron diamagnetic velocity (drift band). Our main result is
the observation that, in the drift band, the presence of the drift
waves can significantly affect the dynamics of the system and
in particular the value of the penetration threshold.

Indeed, the presence of non-local drift waves introduces
a non-negligible contribution to the momentum balance,
which acts as a radiative drag force. This contribution
is usually neglected in the theoretical calculations. The
matching procedure can also become questionable when
an ‘intermediate’ layer, caused by inertia, appears. As a
consequence, the theoretical predictions must include these
effects in order to be reliable.

In support of this interpretation, our numerical results
show good agreement with the MHD theory of [2] and with
the two-fluid calculation of [12, 13] when the plasma velocity
is outside the drift band. However, when drift waves are
excited, the shielding of the perturbation is less effective than
predicted and the external field can penetrate more easily. As
a consequence, our work suggests that the top of the pedestal,
where the plasma velocity can be in the drift band, could be
more sensitive to error fields. On the other hand, in this region
the penetration of the resonant magnetic perturbation could be
easier.

Another interesting result of our numerical campaign is the
first observation of post-penetration generation of turbulence.
In our simulations, the turbulence appears every time the
penetration threshold is crossed by reducing the edge plasma
velocity toward the ‘electron resonance’. This implies that the
generation of a stochastic region to control ELMs could be
accompanied by an increase of the local turbulence and of the
transport coefficients. This could possibly result in the density
pump-out often observed in the experiments.
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