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Abstract

The characteristics of the local magnetic shear, a quantity associated with high-mode-

number ballooning mode stability, are considered in heliotron/torsatron devices that have a

large Shafranov shift. The local magnetic shear is shown to vanish even in the stellarator-like

region in which the global magnetic shear s ≡ 2
d ln ι´́
d lnψ

(ί́ is the global rotational transform

and 2πψ is the toroidal flux) is positive. The reason for this is that the degree of the

local compression of the poloidal magnetic field on the outer side of the torus, which main-

tains the toroidal force balance, is reduced in the stellarator-like region of global magnetic

shear because the global rotational transform in heliotron/torsatron systems is a radially

increasing function. This vanishing of the local magnetic shear is a universal property in

heliotron/torsatron systems with a large Shafranov shift since it results from toroidal force

balance in the stellarator-like global shear regime that is inherent to such systems.
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I. INTRODUCTION

In currentless helical systems with a planar axis, such as heliotron/torsatron devices,

the global rotational transform ί́ of the vacuum magnetic field increases in the minor radius

direction, i.e., the global shear defined as s ≡ 2
d ln ι´́
d lnψ

is positive (2πψ is the toroidal flux). This

is in contrast to the tokamak for which the global magnetic shear is usually negative (s < 0).

(Note that in a tokamak, the definition s ≡ 2
d ln ι´́

−1

d lnψ
is used for the global shear, and hence

it has the opposite sign to that in a helical system.) Using a low-β approximation (where β

is the ratio of the kinetic pressure to the magnetic pressure), Shafranov1 speculated that if

the global shear is stellarator-like, i.e., positive (s > 0), then high-mode-number ballooning

modes would not become unstable when the Mercier modes are stable. A counter-example

to Shafranov’s conjecture was found, however, in a Heliac configuration.2 With the use of

a low-β approximation and a steep-gradient equilibrium model, it was pointed out that the

averaged Pfirsch-Schlüter current can make the global magnetic shear change sign, so that

unstable high-mode-number ballooning modes will occur in the resultant tokamak-like global

magnetic shear regime.3 Using three-dimensional equilibria, Cooper et al.4 found high-mode-

number ballooning modes in the stellarator-like global magnetic shear regime of the ATF

device; however, they did not give the physical mechanism.

In currentless heliotron/torsatron systems that allow an inherently large Shafranov shift

as a result of toroidal force balance, the characteristics of the vacuum configuration—e.g., the

global and local pitch of the magnetic field, and the global shape of the flux surfaces—can be

significantly deformed as the plasma beta increases. Thus, the low-β approximation and the

steep-gradient model may not be applicable to such systems. In this paper, we investigate the

properties of the local magnetic shear using a general magnetic coordinate system. We find

that in the stellarator-like (i.e., positive global magnetic shear) region of heliotron/torsatron
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systems with a large Shafranov shift, it is possible for high-mode-number ballooning modes

to be unstable, because the stabilizing effect of field line bending is reduced, even though

this region is Mercier stable.

The present paper is organized as follows. In Sec. II, expressions for the local mag-

netic shear5 and the perpendicular wave number for the high-mode-number ballooning mode

equation are given in various magnetic coordinate systems. Although the Boozer coordi-

nate system6 will be used for our numerical calculations, a new magnetic coordinate system

related to the Boozer coordinate system is introduced for the analytical calculations. The

characteristics of the local magnetic shear are described in Sec. III. Numerical calculations

and an analytical treatment are used to explain why the local magnetic shear disappears in

the stellarator-like region of positive global shear. A model expression for the local magnetic

shear is also presented. Concluding comments and discussion are given in Sec. IV.

II. EXPRESSIONS FOR THE LOCAL MAGNETIC SHEAR

The vector form of the incompressible high-mode-number ballooning mode equation7 is

B · ∇
[
|k⊥|2
B2

B · ∇Ψ

]
+
ρm
B2

ω2|k⊥|2Ψ +
2

B2
n̂× k⊥ · κn̂× k⊥ · ∇PΨ = 0, (1)

where k⊥ is the perpendicular wave number, n̂ = B
B

the unit vector along the field line,

κ the magnetic curvature, ρm the mass density, and P the pressure. The potential energy

corresponding to the variational form of Eq. (1), namely,

δW =
1

2

∫
dτ
[
|k⊥|2 (n̂ · ∇Ψ)2 − 2

B2
n̂× k⊥ · κn̂× k⊥ · ∇PΨ2

]
. (2)

exhibits the competition between the stabilizing effect of field line bending, represented by

|k⊥|2, and the destabilizing effect of the pressure gradient when the magnetic curvature is

unfavorable.

The magnitude of the perpendicular wave number, |k⊥|, is so closely related to the local

magnetic shear5 that the characteristics of the local magnetic shear have a direct bearing
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on whether high-mode-number ballooning modes are stable. For studies of the local mag-

netic shear that involve numerical stability calculations of the high-mode-number ballooning

modes, it is appropriate to use the Boozer coordinate system,6 at least for three-dimensional

equilibria. For an analytical treatment, however, the Boozer coordinate system may not nec-

essarily be the most suitable for finite-β three-dimensional equilibria with large Shafranov

shifts, since almost all the information about changes in the local magnetic structure that

result from the Shafranov shift are expressed by metrics that are difficult to handle analyt-

ically. Thus, in what follows, we will introduce more general magnetic coordinate systems

in which the magnetic field lines are not straight. We will show later that the defect of not

having straight field lines is what allows us to handle the local magnetic shear analytically

and clarify its properties.

Let us introduce a general magnetic coordinate system (ψ, θ, ζ) such that the contravari-

ant and covariant expressions of the magnetic field are given, respectively, by

B = ∇ψ ×∇[θ − ί́ζ + λ(ψ, θ, ζ)] (3)

and

B = ∇[Jζ + Iθ + ω(ψ, θ, ζ)] + [−J̇ζ − İθ + β(ψ, θ, ζ)]∇ψ. (4)

Here ψ = ΦT
2π

is the label of the flux surface with ΦT the toroidal flux inside a flux surface;

derivatives are denoted as J̇ ≡ dJ
dψ

; θ and ζ are the poloidal and toroidal angles; and 2πJ

is the poloidal current outside a flux surface and 2πI the toroidal current inside. The three

functions λ, ω, and β are periodic functions with respect to θ and ζ. The periodic function

β must satisfy the following magnetic differential equation:

B · ∇β = Ṗ +
1√
g

{
J̇(1 + ∂θλ) + İ(ί́ − ∂ζλ)

}
, (5)

where
√
g is the Jacobian,

√
g =

1

∇ψ · ∇θ ×∇ζ =
(1 + ∂θλ)(J + ∂ζω) + (ί́ − ∂ζλ)(I + ∂θω)

B2
. (6)
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From the solvability condition of Eq. (5) and the flux surface average of Eq. (6), the following

two relations are obtained:

Ṗ = −(2π)2 J̇ + ί́ İ

V̇
, (7)

〈
B2
〉

= (8)

(2π)2J + ί́I

V̇
. (9)

Here, V is the volume surrounded by the flux surface ψ, and brackets indicate a flux surface

average:

〈f〉 =
d

dV

∫
fdτ. (10)

For the high-mode-number ballooning mode equation, Eq. (1), it is convenient to use

a field-line coordinate system (ψ, η, α), which is related to the above magnetic coordinate

system (ψ, θ, ζ) through
η = θ,
α = ζ − 1

ι´́
θ − 1

ι´́
λ(ψ, θ, ζ). (11)

In the field-line coordinate system (ψ, η, α), the perpendicular wave number |k⊥| is expressed

in terms of an integral of the local magnetic shear ŝ along the magnetic field line, as follows:

|k⊥|2 =
2ψB2

B0|∇ψ|2

1 +

(
|∇ψ|2
2ψB

)2 [∫ η

ŝdη
]2
 . (12)

Here the local magnetic shear can be decomposed into two parts as

ŝ =
2ψ
√
g

ί́

B×∇ψ
|∇ψ|2 · ∇ ×

[
B×∇ψ
|∇ψ|2

]
= s+ s̃, (13)

with

s ≡ 2ψ

ί́

dί́

dψ
, (14)

s̃ =
∂

∂η

{
−2ψί́∂ψ

(
λ

ί́

)
+ 2ψ

(J + ∂ζω)gψθ − (I + ∂θω)gψζ√
g|∇ψ|2

}
. (15)
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The integral of the local magnetic shear yields∫ η

ŝdη = s(η − θk)− 2ψί́∂ψ

(
λ

ί́

)
+ 2ψ

(J + ∂ζω)gψθ − (I + ∂θω)gψζ√
g|∇ψ|2 , (16)

where the radial wave number θk is the constant of integration, and the covariant metrics

are given by

gψθ = ∂ψr · ∂θr, gψζ = ∂ψr · ∂ζr. (17)

The local magnetic shear ŝ consists of the global magnetic shear s and an oscillatory com-

ponent s̃. Note that the derivative of λ
ι´́

with respect to ψ appears in s̃, the oscillatory part

of the local magnetic shear; this comes from the last term on the right-hand side of Eq. (10)

and means that the magnetic field lines are not straight in this magnetic coordinate system.

For subsequent use, we give the expression for the gθθ metric element:

gθθ = ∂θr · ∂θr =
(I + ∂θω)2 + (1 + ∂θλ)2 |∇ψ|2

B2
> 0. (18)

In the Boozer coordinate system6 (ψ, θB, ζB), the contravariant and covariant expressions

of the magnetic field are given, respectively, by

B =∇ψ ×∇(θB − ί́ζB), (19)

B =∇(JζB + IθB) + (−J̇ζB − İθB + βB)∇ψ. (20)

The transformation from the general magnetic coordinate system (ψ, θ, ζ) to the Boozer

coordinate system is obtained from the solution of the following relations:

θB − ί́ζB = θ − ί́ζ + λ(ψ, θ, ζ), (21)

JζB + IθB = Jζ + Iθ + ω(ψ, θ, ζ). (22)

The single-valuedness of the magnetic field B with respect to θ and ζ, which is expressed by

θB = θ + pT (ψ, θ, ζ), (23)

ζB = ζ + qT (ψ, θ, ζ), (24)
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where the functions pT and qT are periodic functions with respect to θ and ζ, must be taken

into account. By substituting Eqs. (22) and (23) into Eqs. (20) and (21), we find that the

functions pT and qT are given by

pT (ψ, θ, ζ) =
Jλ(ψ, θ, ζ) + ί́ω(ψ, θ, ζ)

J + ί́I
, (25)

qT (ψ, θ, ζ) =
−Iλ(ψ, θ, ζ) + ω(ψ, θ, ζ)

J + ί́I
. (26)

Equations (22)–(25) provide the prescription for transforming from the general magnetic

coordinate system (ψ, θ, ζ) to the Boozer coordinate system (ψ, θB, ζB).

If the general magnetic coordinate system (ψ, θ, ζ) happens to be identical to the Boozer

coordinate system, then pT and qT must vanish in Eqs. (22) and (23), i.e., λ = ω = 0 from

Eqs. (24) and (25). In this case the field-line coordinate system (ψ, ηB, αB) is related to the

Boozer coordinate system (ψ, θB, ζB) through

ηB = θB,
αB = ζB − 1

ι´́
θB.

(27)

Hence, we obtain the expressions for the perpendicular wave number and other associated

quantities in the field-line coordinate system by putting λ = ω = 0 in Eqs. (11)–(17):

|k⊥|2 =
2ψB2

B0|∇ψ|2

1 +

(
|∇ψ|2
2ψB

)2 [∫ ηB
ŝdηB

]2
 , (28)

ŝ =
2ψ
√
gB

ί́

B×∇ψ
|∇ψ|2 · ∇ ×

[
B×∇ψ
|∇ψ|2

]
= s+ s̃, (29)

s̃ =
∂

∂ηB

{
2ψ
JgψθB − IgψζB√

gB|∇ψ|2
}
, (30)

∫ ηB
ŝdηB = s(ηB − θk) + 2ψ

JgψθB − IgψζB√
gB|∇ψ|2

, (31)

√
gB =

J + ί́I

B2
, (32)

gθBθB =
∂r

∂θB
· ∂r

∂θB
=
I2 + |∇ψ|2

B2
> 0. (33)
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For a currentless equilibria with I = 0, the expressions for |k⊥|2, s̃, and
∫ ηB

ŝdηB become

especially simple:

|k⊥|2 =
2ψ

B0gθBθB

1 +

(
|∇ψ|
2ψ

)2

gθBθB

[∫ ηB
ŝdηB

]2
 , (34)

s̃ =
∂

∂ηB

{
2ψ

gψθB
gθBθB

}
, (35)

∫ ηB
ŝdηB = s(ηB − θk) + 2ψ

gψθB
gθBθB

, (36)

where we used Eqs. (31) and (32) with I = 0. Note that Eqs. (33)–(35) are applicable to

high-εβp tokamak equilibria, because
ι´́ I
J
∼ (εt ί́)

2 ¿ 1, I2

|∇ψ|2 ∼ (εt ί́)
2 ¿ 1, and |gψθB | >∼ |gψζB |

where εt ≡ 〈r〉
R

is the inverse aspect ratio.

We now introduce a new magnetic coordinate system (ψ, θu, ζB) such that the toroidal

angle is the same as that of the Boozer coordinate system but the poloidal angle is still

arbitrary. To construct this magnetic coordinate system, the function qT in Eq. (23) must

vanish; consequently Eqs. (24) and (25) show that

ω = Iλu(ψ, θu, ζB),
pT = λu(ψ, θu, ζB).

(37)

Related to this new magnetic coordinate system (ψ, θu, ζB) is a new field-line coordinate

system (ψ, ηu, αu):
ηu = θu,
αu = ζB − 1

ι´́
θu − 1

ι´́
λu(ψ, θu, ζB). (38)

In the new field-line coordinate system, the perpendicular wave number and other associated

quantities are expressed as follows:

|k⊥|2 =
2ψB2

B0|∇ψ|2

1 +

(
|∇ψ|2
2ψB

)2 [∫ ηu
ŝdηu

]2
 , (39)

ŝ =
2ψ
√
gu

ί́

B×∇ψ
|∇ψ|2 · ∇ ×

[
B×∇ψ
|∇ψ|2

]
= s+ s̃, (40)
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s̃ =
∂

∂ηu

{
−2ψί́∂ψ

(
λu
ί́

)
+ 2ψ

(J + I∂ζBλu)gψθu − I(1 + ∂θuλu)gψζB√
gu|∇ψ|2

}
, (41)

∫ ηu
ŝdηu = s(ηu − θk)− 2ψί́∂ψ

(
λu
ί́

)
+ 2ψ

(J + I∂ζBλu)gψθu − I(1 + ∂θuλu)gψζB√
gu|∇ψ|2

, (42)

√
gu =

1

∇ψ · ∇θu ×∇ζB
=

(J + ί́I)(1 + ∂θuλu)

B2
, (43)

gθuθu =
∂r

∂θu
· ∂r

∂θu
=
I2 + |∇ψ|2

B2
(1 + ∂θuλu)

2 > 0. (44)

As with the Boozer coordinate system, the expressions for |k⊥|2, s̃, and
∫ ηB

ŝdηB become

further simplified in the case of a currentless equilibrium (I = 0):

|k⊥|2 =
2ψ(1 + ∂θuλu)

2

B0gθuθu

1 +

(
|∇ψ|
2ψ

)2
gθuθu

(1 + ∂θuλu)
2

[∫ ηu
ŝdηu

]2
 , (45)

s̃ =
∂

∂ηu

{
−2ψί́∂ψ

(
λu
ί́

)
+ 2ψ

gψθu
gθuθu

(1 + ∂θuλu)

}
, (46)

∫ ηu
ŝdηu = s(ηu − θk)− 2ψί́∂ψ

(
λu
ί́

)
+ 2ψ

gψθu
gθuθu

(1 + ∂θuλu). (47)

The currentless condition, I = 0, implies that ∂ζBλu and gψζB vanish, while the derivatives

with respect to ψ and θu remain non-zero. For the same reason as was mentioned in connec-

tion with the Boozer coordinate system, Eqs. (44)–(46) are applicable to high-εβp tokamak

equilibria.

In the Boozer coordinate system, the toroidal angle ζB is very similar to the geo-

metrical toroidal angle of the cylindrical coordinate system (R,ϕ, Z) in planar-axis he-

liotron/torsatron systems and tokamaks, as shown by the magnetic field line equation,

dζB
dϕ

=
B · ∇ζB
B · ∇ϕ =

B2R

(J + ί́I)Bϕ

∼ B2

B2
ϕ

∼ 1 + (ί́εt)
2. (48)

Thus, if the poloidal angle is chosen subject to a mild constraint such as being proportional to

the arc length, it may be possible to extract the essential parts of the local magnetic structure
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from the metric elements and handle them analytically. For this magnetic coordinate system,

the local rotational transform ί́̂ is defined as

ί́̂ ≡ dθu
dζB

=
B · ∇θu
B · ∇ζB

= ί́
1− q∂ζBλu
1 + ∂θuλu

, (49)

where q = 1
ι´́

is the safety factor. Although the local rotational transform ί́̂ defined in Eq. (48)

cannot be directly related to the local magnetic shear ŝ, it is still useful for obtaining an

intuitive grasp of the local magnetic structure—e.g., the local compression of the poloidal

field—especially if the poloidal angle θu is chosen such that λu almost vanishes in the vacuum

configuration. Hereafter, we will choose θu as the uni-arc poloidal angle that is proportional

to the arc length, taking account of results of the numerical calculations mentioned in the

next section.

When the Boozer coordinate system has been given, this uni-arc magnetic coordinate

system is easily constructed. The increment of the poloidal angle, dθu, is proportional to dlp

the line element along θB:

dθu ∝ dlp =
√
gθBθBdθB. (50)

Let

θB = θu + λu(ψ, θu, ζB) or θu = θB − λB(ψ, θB, ζB), (51)

with λu(ψ, θu, ζB) = λB(ψ, θB, ζB). Then we obtain

λB(ψ, θB, ζB) = −

∫ θB

0
dθB

˜√gθBθB〈√
gθBθB

〉
θB

= −

∫ θB

0
dθB

˜(
|∇ψ|
B

)
〈
|∇ψ|
B

〉
θB

, (52)

with the average defined by

〈f(ψ, θB, ζB)〉θB =
1

2π

∫ 2π

0
f(ψ, θB, ζB)dθB, (53)

and the oscillatory component given as

f̃(ψ, θB, ζB) = f(ψ, θB, ζB)− 〈f(ψ, θB, ζB)〉θB , (54)
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where Eq. (32) with the currentless condition I = 0 has been used. After λB(ψ, θB, ζB) is

obtained from Eq. (51), the Fourier expanded form of λu(ψ, θu, ζB) can be expressed as

λu(ψ, θu, ζB) =
∑
mn

λumn(ψ) sin[mθu − nζB], (55)

with Fourier components

λumn(ψ) =
2

(2π)2

∫ 2π

0
dθu

∫ 2π

0
dζBλu(ψ, θu, ζB) sin[mθu − nζB],

=
2

(2π)2

∫ 2π

0
dθB

∫ 2π

0
dζB(1− ∂θBλB)λB sin[m(θB − λB)− nζB]. (56)

Since the Boozer toroidal angle ζB is similar to the geometrical toroidal angle ϕ, it is possi-

ble for uni-arc magnetic coordinate system (ψ, θu, ζB) that has been introduced to be fairly

similar to the VMEC magnetic coordinate system9 (ψ, θV , ζV ), in which ζV is the geomet-

rical toroidal angle and θV is the poloidal angle optimized to reduce the number of Fourier

harmonics in the expressions for the equilibrium.

III. CHARACTERISTICS OF THE LOCAL MAGNETIC SHEAR

A. Numerical treatment

For our numerical calculations we will use L = 2/M = 10 planar axis heliotron/torsatron

currentless equilibria like those for the Large Helical Device8 (LHD), where L and M are the

polarity and toroidal pitch number of the helical coils, respectively. The three-dimensional

equilibria are calculated with the VMEC code under the condition of fixed boundary.9 The

boundary is determined from the outermost flux surface of the vacuum magnetic field, which

has nearly concentric circular magnetic flux surfaces when averaged in the toroidal direction.

The pressure profile given by

P = P0(1− ψN)2 (57)

is used for the numerical calculations, where ψN = ψ
ψedge

is the normalized toroidal flux. The

normalized average minor radius 〈r〉N is approximately given by 〈r〉N =
√
ψN . Note that
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the pressure profiles obtained in experiments on the Compact Helical System10 (CHS) are

fairly close to the profile given by Eq. (56).

As shown in Fig. 1(a), the global rotational transform ί́ of the vacuum magnetic field

monotonically increases radially outward, exceeding unity near the boundary. Hence the

global magnetic shear s is positive in the whole plasma region, as shown in Fig. 1(b). This

results from the inherent separatrix structure that is due to the helical coils when the global

rotational transform on the separatrix ί́
s
∼ M

L
= 5 À 1. This type of vacuum ί́ profile is

usually created by continuous helical coils, which produce a strong averaged poloidal field

in their vicinity. The equally spaced (ψ, θB) coordinate contours in the Boozer coordinate

system corresponding to the vacuum field are shown for various poloidal cross sections in

Fig. 2(a). Since the vacuum field being used has on average nearly concentric circular flux

surfaces in the toroidal direction, the poloidal angle θB of the Boozer coordinate system on

each flux surface is quite similar to the poloidal angle proportional to the arc length, i.e.,

the uni-arc poloidal angle θu, apart from a weak effect due to the helicity of helical coils.

As β increases, a Shafranov shift occurs, due to the outward-directional pressure force in

the major radius direction. This leads to a local compression of the poloidal magnetic field

at the outer side of the torus in order to maintain toroidal force balance. Since there is no

net toroidal current (I = 0), it is the Pfirsch-Schlüter current, J ·BPS = J ·B− 〈J·B〉〈B2〉 B
2, that

supports the significantly deformed flux surfaces and the modulated global and local pitch of

the magnetic field, as a result of the toroidal force balance. In planar-axis heliotron/torsatron

systems with small vacuum global rotational transform at the magnetic axis, the Shafranov

shift in the major radius direction becomes so large (on the order of the minor radius) that

it makes the flux surfaces become non-concentric on every poloidal cross section, as shown

in Fig. 2(b), where the outside of the torus corresponds to the right-hand side of each figure.

In correspondence with the Shafranov shift, the Pfirsch-Schlüter current localizes at the

outer side of the torus on every poloidal cross section, as shown in Fig. 2(c). Thus, the
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essential parts of the change in the local magnetic structure due to the Shafranov shift and

the distribution of the Pfirsch-Schlüter current in planar axis heliotron/torsatron systems

are axisymmetric.

In contrast to the situation with the vacuum magnetic field, the global rotational trans-

form ί́ in a finite-β equilibrium increases near the magnetic axis, as indicated in Fig. 1 (a).

Hence a region in which the global shear is negative (s < 0), as in a tokamak, appears near

the magnetic axis, as shown in Fig. 1 (b). The deformation of the flux surfaces plays an

essential role in changing the global rotational transform ί́ .3 However, since the flux surfaces

do not change very much near the plasma boundary, the value of the global rotational trans-

form there is nearly unchanged from the vacuum field value. Thus, a shearless region (s ∼ 0)

and a region of strong positive stellarator-like global shear (s ∼ 3) both appear, as shown in

Fig. 1 (b).

The global rotational transform ί́ near the plasma periphery in heliotron/torsatron sys-

tems always monotonically increases in the minor radius direction, regardless of the β value,

due to the strong averaged external poloidal field that is inherently created by the heli-

cal coils. By contrast, the global rotational transform in an ordinary high-εβp tokamak

equilibrium monotonically decreases in the direction of the minor radius. Since the Pfirsch-

Schlüter current supporting the locally compressed poloidal field at the outer side of the

torus is inversely proportional to the global rotational transform ί́, while being proportional

to dβ
d〈r〉 with 〈r〉 the average minor radius, it has a tendency to localize away from the plasma

periphery in heliotron/torsatron systems (in contrast to high-εβp tokamaks where it local-

izes near the periphery). Although the precise distribution of the Pfirsch-Schlüter current

is determined by the competition of both effects, for the vacuum configuration and pres-

sure profile used here the Pfirsch-Schlüter current flows locally around the shearless region

(with minimum ί́) at the outer side of the torus, as can be understood if one compares s

in Fig. 1 (b) with the contours for the Pfirsch-Schlüter current in Fig. 2(c). Thus, at the
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outer side of the torus, within the shearless region in the minor radius direction where the

Pfirsch-Schlüter current localizes, the local and the global magnetic field structures are very

similar to those for an ordinary high-εβp tokamak. Outside the shearless region, however, a

heliotron/torsatron system and a high-εβp tokamak are very different. Specifically, the vari-

ation of the local compression of the poloidal field at the outer side of the torus is expected

to be non-monotonic in the direction of the minor radius in heliotron/torsatron systems—in

contrast to an ordinary high-εβp tokamak equilibrium that has a monotonically decreasing

rotational transform (s < 0). These characteristics of heliotron/torsatron systems can be

clarified with the use of the Boozer poloidal angle θB.

In the Boozer coordinate system, because the toroidal angle ζB is very similar to the

geometrical toroidal angle, any changes in the local magnetic field structure caused by the

distribution of the Pfirsch-Schlüter current appear as a distortion of the poloidal angle θB.

Since the Boozer poloidal angle θB in a vacuum configuration is substantially the same as

the uni-arc poloidal angle θu, this distortion is represented by the quantity λu of Eq. (50).

In the region where the poloidal magnetic field is locally strong (weak), the interval between

two adjacent lines of constant θB becomes wide (narrow). Since this distortion results from

toroidal force balance in the major radius direction, the essential parts of the distortion are

axisymmetric, i.e., λu ∼ λu(ψ, θu). Reflecting the localization of the Pfirsch-Schlüter current

at the outer side of the torus, turning points appear on the contours of constant θB around the

shearless surface on every poloidal cross section, as can be seen in Fig. 2(b). At such turning

points the contours of constant θB and ψ become orthogonal: i.e., gψθB = 0. By connecting

the turning points, we can define a turning surface. The contours of constant θB are folded

back across the turning surface. This folding feature is conspicuous at the outer side of

the torus, along with the localization of the Pfirsch-Schlüter current. Note that neither the

vacuum field, shown in Fig. 2(a), nor a high-εβp tokamak equilibrium with a monotonically

decreasing global rotational transform has such a turning surface. At the outer side of the
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torus, the turning surface divides the plasma into two separate radial domains. Inside the

turning surface, as can be seen in Fig. 2(b), the interval between two adjacent contours of

constant θB significantly increases radially in order to satisfy toroidal force balance, i.e.,

gψθB ∼ c sin θB with c > 0. Thus, in this region, the oscillatory local magnetic shear s̃ given

by Eq. (34) is positive, whereas the global magnetic shear is negative. This situation is

similar to that in a high-εβp tokamak. By contrast, outside the turning surface, the interval

between contours of constant θB narrows toward the plasma boundary, as can be seen in

Fig. 2(b), i.e., gψθB ∼ c sin θB with c < 0. This indicates that the oscillatory magnetic

shear is negative at the outer side of the torus, whereas the global magnetic shear is positive

there. In other words, s̃ > 0 in the region where s < 0, and vice versa. As a result, the local

magnetic shear ŝ = s+ s̃ becomes nearly independent of the sign of the global magnetic shear

s. The integration of the oscillatory part of the local magnetic shear,
∫ ηB

s̃dηB = 2ψ
gψθB
gθBθB

,

on the outer side of the torus changes sign inside and outside the turning surface depending

on where it is performed; moreover, its sign is the opposite to that of the integrated global

shear, sηB, on both sides. This in turn leads to a reduction of the shear stabilization effect

due to the field line bending term in Eq. (2), both in regions of negative and positive global

shear at the outer side of the torus.

The behavior of the integrated local magnetic shear, with θk = 0 and α = 0, is shown

in Figs. 3 and 4. The flux surfaces selected for Figs. 3 and 4 are indicated in Figs. 1 and 2

by the arrows (A) and (B) corresponding to surfaces inside and outside the turning surface,

respectively. Figure 3 shows the behavior of the integrated local magnetic shear in the region

of tokamak-like negative global magnetic shear (s ∼ −0.5), and Fig. 4 shows the behavior

in the region of strong stellarator-like global magnetic shear (s ∼ 3). Figures 3(a) and

4(a) show the integral
∫ ηB

s̃dηB in the vacuum configuration used in Figs. 1 and 2. The

same quantities are shown in Figs. 3(b) and 4(b) for a finite-β equilibrium. Clearly, the

integral
∫ ηB

s̃dηB in the finite-β configuration is in phase with the toroidicity on both sides
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of the turning surface, whereas in the vacuum configuration it is in phase with the helicity.

This explains how the sign of the integral
∫ ηB

s̃dηB changes depending on the sign of the

global magnetic shear. Being in phase with the toroidicity is what makes the integrated

local magnetic shear
∫ ηB

ŝdηB nearly vanish in the vicinity of ηB = 0, as can be shown in

Fig. 4 (c). Note that the contribution of the global shear cannot be cancelled purely by the

modulation due to the helicity of helical coils. Thus, the wave number |k⊥|2 becomes rather

small at ηB = 0 for a finite-β equilibria, as shown in Fig. 4(d), leading to a reduction of the

field line bending stabilization term in Eq. (2).

B. Analytical treatment

In order to further clarify the changes in the local magnetic structure due to the Shafranov

shift and to obtain a model expression for the local magnetic shear, we will use the uni-arc

magnetic coordinate system (ψ, θu, ζB) introduced in Sec. II, where θu is the poloidal angle

proportional to the arc length defined on planes of constant ψ and ζB, and the toroidal angle

ζB is the same as that in the Boozer coordinate system (ψ, θB, ζB).

Since the Boozer poloidal angle θB in a vacuum configuration is very similar to the uni-

arc poloidal angle and since the dominant part of the change in the local magnetic structure

due to the Shafranov shift is axisymmetric, the quantity λu in a finite-β equilibrium may be

approximated by axisymmetric components only. Then the local rotational transform ί́̂ of

the finite-β equilibrium defined in Eq. (48) may be written as

ί́̂ = ί́
1

1 + ∂θuλu
. (58)

From Fig. 2(b) and Eq. (57), we see that

λu ∼ c sin θu, with c < 0, (59)

where the radial derivative ∂c
∂ψ

is negative inside the turning surface and positive outside.

Equations (57) and (58) show that at the outer side of the torus, the ratio of the local
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rotational transform to the global rotational transform,
ι̂´́
ι´́
, is a radially increasing function

inside the turning surface where ί́ decreases, but that it is a radially decreasing function

outside the turning surface where ί́ increases. This situation is consistent with the earlier

numerical result for the local magnetic shear ŝ described in the Boozer coordinate system.

Since the axisymmetric quantity, λu can be considered to be sufficient for describing the

behavior of the local magnetic shear, the approximate solution of the equilibrium obtained

by means of a stellarator expansion may be used in order to evaluate the quantities |k⊥|2,

s̃, and
∫ ηu

ŝdηu. In the uni-arc magnetic coordinate system (ψ, θu, ζB), the quantities |k⊥|2,

s̃, and
∫ ηu

ŝdηu for a currentless equilibrium are given by Eqs. (44)–(46) with the use of the

axisymmetric function λu, i.e, λu(ψ, θu). The equation for a currentless equilibrium written

in the stellarator expansion11 is

[
1

r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2

]
χ = −R2

0

dβ

dχ
r cos θ

R0

+
1

r

d

dr

[
r2 ί́

v
(r)
]
, (60)

where χ ≡ Φp
2πB0

with Φp the poloidal flux, β ≡ 2P (χ)
B2

0
, and B0 is the strength of the magnetic

field at R = R0. A quasi-toroidal coordinate system (r, θ, ϕ) with clockwise θ is used, which

is related to the cylindrical coordinate system (R,ϕ, Z) as follows:

R = R0 + r cos θ, 0 ≤ r ≤ a,

Z = − r sin θ.
(61)

Since the vacuum field considered here has concentric circular magnetic flux surfaces, the

plasma boundary is assumed to be a circle of radius r = a, and the vacuum field in Eq. (59)

is assumed to be helically symmetric, so that the vacuum poloidal flux can be expressed

in terms of the vacuum rotational transform ί́
v
, which is a function of r, as may be seen

from the second term on the right-hand side of Eq. (59). The currentless equilibrium can be

approximately solved with the use of the so-called Shafranov coordinate system12 (rs, θs, ζs),
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which is defined by
r cos θ = ∆(rs) + rs cos θs,
r sin θ = rs sin θs,
ϕ = ζs,

(62)

with ∆ the Shafranov shift. In the Shafranov coordinate system (rs, θs, ζs), the magnetic

flux surfaces are assumed to be non-concentric circles of minor radius rs, whose center is

determined by the Shafranov shift ∆(rs) for each surface from the relation (r, θ) = (∆(rs), 0).

The Shafranov shift ∆ has the following properties:

∆(rs) ≥ 0, ∆(a) = 0, ∆′(rs) ≤ 0,≡ d

drs
. (63)

Thus, the normalized poloidal flux function χ = χ(rs) is assumed to be a function of rs. In

the Shafranov coordinate system (rs, θs, ζs), the equation for a currentless equilibrium of

Eq. (59) is given by

1

rsX

∂

∂rs

(
r2
s

X
ί́

)
+
ί́∆′

X

∂

∂θs

(
sin θs
X

)
= −R2

0

β′

rs ί́

∆ + rs cos θs
R0

+
1

r

d

dr
(r2 ί́

v
(r)). (64)

Here we define

X = 1 + ∆′ cos θs,

|∇rs|2 =
1

X2
, ∇rs · ∇θs =

∆′ sin θs
rsX2

, (65)

√
gs =

1

∇rs ×∇θs · ∇ζs
= R0rsX,

and the following relation11 was used:

ί́(rs) =

[
1

2π

∫ 2π

0

rsdθs
|∇χ|

]−1

=
χ′

rs
. (66)

From Eq. (63), we see that rs = r and ί́(rs) = ί́
v
(r) for the vacuum magnetic field with

β = 0 and ∆ ≡ 0. Since the Boozer toroidal angle is very similar to the geometrical toroidal

angle and since the poloidal angles in the Shafranov and uni-arc coordinate systems are both
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proportional to the arc length, we could treat the Shafranov coordinate system (rs, θs, ζs) as

a uni-arc magnetic coordinate system (ψ, θu, ζB).

Thus, by evaluating Eq. (43) with I = 0 in the Shafranov coordinate system, we obtain

the following relation:

1 + ∂θsλs =
√
gθsθs

B

|∇ψs|
= X = 1 + ∆′ cos θs, (67)

where

√
gθsθs = rs, B ∼ B0, ψs ∼ B0r

2
s

2
(68)

are used. Therefore we have

λs = ∆′(rs) sin θs. (69)

From Eq. (50) and the relation given by Eq. (68), we see that the difference between the

poloidal angle in the Boozer coordinate system and that in the uni-arc (Shafranov) coordinate

system is approximately proportional to the derivative of the Shafranov shift:

θB ∼ θs + ∆′(rs) sin θs =
∫ θs

0

ί́

ί́̂
dθs, (70)

where

ί́̂ =
B · ∇θs
B · ∇ζs

= ί́
1

1 + ∆′(rs) cos θs
. (71)

For a vacuum magnetic field where the Boozer poloidal angle θB is similar to the uni-arc

poloidal angle θs, the Boozer poloidal angle θB deviates from θs as β increases through ∆′.

The deviation of θB from θs corresponds to the deviation of the local rotational transform ί́̂

from the global rotational transform ί́. Thus, it can be understood that the radial profile of

θB and ί́̂ reflect how the toroidal force balance is maintained, i.e., how the local compression

of the poloidal field on the outer side of the torus occurs through the derivative of the

Shafranov shift, ∆′. By using Eqs. (64), (67), and (68) and the relation

gψsθs = −∆′

B0

sin θs, (72)
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we can rewrite Eqs. (44) and (46) as

|k⊥|2 = (1 + ∆′ cos θs)
2

1 +


∫ θs

ŝdθs

(1 + ∆′ cos θs)2


2
 , (73)

s̃ =
∂

∂θs

{
−∆′

[
1 + ∆′ cos θs − s+

rs∆
′′

∆′

]
sin θs

}
, (74)

∫ θs
ŝdθs = s(θs − θk)−∆′

[
1 + ∆′ cos θs − s+

rs∆
′′

∆′

]
sin θs, (75)

where ηs has been replaced by θs. Thus, the qualitative properties of the quantities |k⊥|2,

s̃, and
∫ ηs

ŝdηs can be understood from consideration of the Shafranov shift ∆(rs). For this

purpose Eq. (63) may be solved with the use of an expansion around the magnetic axis,13

which is justified by the ordering β = O(εt) in the stellarator expansion. This ordering

corresponds to the high-β ordering for a tokamak equilibrium, and hence we cannot assume

∆′ = O(εt) as is done in the low-β ordering for a tokamak equilibrium when the model

equation for high-mode-number ballooning modes in a tokamak is derived. Moreover, for

simplicity, the vacuum rotational transform ί́
v

will be assumed to be nearly shearless. By

expanding the equilibrium quantities as

ί́ = ί́
0

+ ί́
2
r2
s + ί́

4
r4
s + · · · ,

∆ = ∆0 + ∆2r
2
s + ∆4r

4
s + · · · , (76)

β = β0 + β2r
2
s + β4r

4
s + · · · ,

and substituting the above quantities into Eq. (63), we find that the lowest order expanded

form of Eq. (63) is given by

2ί́
0
− 8∆2 ί́0

rs cos θs + · · · = −2R0∆0β2

ί́
0

+ 2ί́
v
− 2R0β2

ί́
0

rs cos θs + · · · . (77)
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Thus, two independent relations are obtained from the cos θs-independent and the cos θs-

dependent terms:

ί́
0

= −R0∆0β2

ί́
0

+ ί́
v
, (78)

2∆2 ί́0
rs =

R0

4ί́
0

2β2rs. (79)

Both relations may be thought of as the form of the following two relations expanded about

the magnetic axis:

ί́ = −R0∆β′′

2ί́
+ ί́

v
, (80)

∆′ =
R0

4ί́2
β′ < 0. (81)

We have assumed that the monotonically decreasing pressure profile determines the sign of

Eq. (80). Equation (80) indicates that ∆′ = O(1) for the stellarator-ordering β = O(εt).

According to Eq. (79), we see that ί́ increases compared with ί́
v

near the magnetic axis with

β′′ < 0, but decreases near the plasma periphery with β′′ > 0. Also, the flux surface at

which ί́ = ί́
v

holds is determined by the pressure profile, independent of the β value. These

changes in the global rotational transform ί́ when β increases are always seen in numerical

calculations of the 3D equilibrium considered here.14 Therefore, although Eqs. (79) and (80)

are obtained by an expansion around the magnetic axis, we may consider these two relations

to have the form that is reasonably applicable over the entire plasma region except for the

region very near the plasma boundary, at least for the purpose of a qualitative investigation

of the local magnetic shear ŝ and the perpendicular wave number |k⊥|. Because we have

∆′′ =
R0

4ί́2

[
−2ί́ ′

ί́
β′ + β′′

]
, (82)

from Eq. (80), we can understand that λs and ∆′, given by Eqs. (68) and (80), respectively,

satisfy the qualitative property given by Eq. (58), because ί́ ′ < 0 and β′′ < 0 near the

magnetic axis and ί́ ′ > 0 and β′′ > 0 near the plasma periphery.
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In order to compare the results obtained here with the standard results due to the steep-

gradient model in a low-β tokamak equilibrium, we introduce new variables:

sq =
rs
q

dq

drs
= −s, s̃q = −s̃, ŝq = −ŝ, (83)

α = −∆′ = −R0

4ί́2
β′ > 0. (84)

By substituting those new variables into Eqs. (72)–(74), we find

|k⊥|2 = (1− α cos θs)
2

1 +


∫ θs

0
ŝqdθs

(1− α cos θs)2


2 , (85)

s̃q =
∂

∂θs

{
−α

[
1− α cos θs + sq +

rsα
′

α

]
sin θs

}

=
∂

∂θs

{
−α

[
1− α cos θs + 3sq +

rsβ
′′

β′

]
sin θs

}
, (86)

∫ θs

0
ŝqdθs = sq(θs − θk)− α

[
1− α cos θs + sq +

rsα
′

α

]
sin θs

= sq(θs − θk)− α
[
1− α cos θs + 3sq +

rsβ
′′

β′

]
sin θs, (87)

where β′′ enters through Eq. (81). Note that the correction terms 3sq + rsβ′′

β′ due to the

global magnetic shear and pressure exist in the oscillatory part of the local magnetic shear

s̃. Simplified forms of Eqs. (84)–(86), with only the essential terms kept, are given by

|k⊥|2 = 1 +

[∫ θs

0
ŝqdθs

]2

, (88)

s̃q = −α
[
1 + 3sq +

rsβ
′′

β′

]
cos θs, (89)

∫ θs

0
ŝqdθs = sq(θs − θk)− α

[
1 + 3sq +

rsβ
′′

β′

]
sin θs. (90)

Equations (84)–(89) are applicable to a high-εβp tokamak. Indeed, Eqs. (84)–(86) are exactly

same as those in Ref. 13, except for the terms related to β in Eqs. (85) and (86), although the
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model equation for high-mode-number ballooning modes in a high-εβp tokamak equilibrium

is derived with the use of a different coordinate system.

At the outer side of the torus (θs ∼ 0), Eq. (89) can be written, for θk = 0, as∫ θs

0
ŝqdθs =

[
sq − α

(
1 + 3sq +

rsβ
′′

β′

)]
θs. (91)

For a monotonically decreasing pressure profile like the one given by Eq. (56), rsβ
′′

β′ is positive

near the magnetic axis and negative near the plasma periphery. Define

β = β0f(rs), (92)

where f(rs) is a given function of rs; then the critical pressure at which the stabilizing effects

of the local magnetic shear disappear is given by

β0c = − 4ί́2

R0f ′
sq

1 + 3sq + rsf ′′

f ′
. (93)

For the ordinary high-εβp tokamaks with a monotonically decreasing global rotational

transform, i.e., sq > 0, a result is obtained that is qualitatively similar to the usual model

for the local magnetic shear in the steep-gradient model for a low-β tokamak equilibrium:

namely, pressure values for which β0 ¿ β0c is satisfied correspond to the first stable region.

For pressures such that β0 ∼ β0c, high-mode-number ballooning modes become unstable. The

second stable region is attained when the pressure satisfies β0 À β0c. The physical meaning

of the global shear correction term in the oscillatory component of the local magnetic shear

s̃ is as follows: An ordinary tokamak equilibrium has a monotonically decreasing global

rotational transform, i.e., a monotonically decreasing averaged poloidal field. The faster the

averaged poloidal field decreases in the direction of the minor radius , i.e., the larger the

global shear sq is, the stronger the local compression of the poloidal magnetic field that is

needed at the outer side of the torus to maintain toroidal force balance. The above physical

mechanism appears in the oscillatory component of the local magnetic shear s̃q by enhancing

the coefficient of the α term in Eqs. (86), (89), and (90).
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For a high-εβp tokamak with reversed magnetic shear (sq < 0) near the magnetic axis,

at first sight it might be thought that it is possible for the local magnetic shear ŝq to vanish.

Near the magnetic axis, however, the pressure correction term rsβ′′

β′ is positive and the global

magnetic shear sq is weak, so that the integrated oscillatory local magnetic shear does not

change sign, i.e., 1 + 3sq + rsβ′′

β′ > 0.

In contrast with a high-εβp tokamak with reversed magnetic shear, in heliotron/torsatron

systems the global magnetic shear is so strong in the stellarator-like global magnetic shear

region, as shown in Fig. 1(b), that the oscillatory component of the local magnetic shear

can change sign. From Eqs. (56) and (89), the correction term 1 + 3sq + rsβ′′

β′ is positive in

the tokamak-like global shear region and negative in the stellarator-like global shear region.

This behavior is consistent with Figs. 3(b) and 4(b), respectively. The physical meaning of

the global shear correction term in the oscillatory component of the local magnetic shear s̃

is now manifest. Near the plasma periphery of a heliotron/torsatron system, the averaged

poloidal field due to the helical coils monotonically increases up to over unity, i.e., the global

rotational transform monotonically increases. The faster the averaged poloidal field increases

in the direction of the minor radius, i.e., the smaller the global shear sq is, the stronger the

local compression (enhancement) of the poloidal magnetic field that is needed to maintain

toroidal force balance is suppressed at the outer side of the torus. This physical mechanism

appears in the oscillatory component of the local magnetic shear s̃q by reducing the coefficient

of the α term in Eqs. (86), (89), and (90).

The critical pressure (or critical pressure gradient) in the strong stellarator-like global

magnetic shear region is given by

β0c ∼ −
4ί́2

3R0f ′
or − β′c ∼

4ί́2

3R0

, (94)

where 1 + 3sq + rsβ′′

β′ ∼ 3sq was used in Eq. (92).
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IV. DISCUSSION

We have investigated the properties of the local magnetic shear in heliotron/torsatron

systems with a large Shafranov shift. There is a possibility that the local magnetic shear

vanishes, independent of the sign of the global magnetic shear. The physical reason for this

comes from the fact that the degree of the local compression of the poloidal magnetic field

at the outer side of the torus to maintain the toroidal force balance is strongly dependent on

the magnitude of the global rotational transform (i.e., the averaged poloidal field). When the

global rotational transform (averaged poloidal field) decreases in the minor radius direction,

i.e., the global magnetic shear is negative as in usual tokamaks (in our definition), the degree

of the local compression of the poloidal field at the outer side of the torus must increase in

the minor radius direction, since otherwise toroidal force balance can not be maintained.

In contrast, when the global rotational transform (averaged poloidal field) increases in the

minor radius direction, i.e., the global magnetic shear is positive, the degree of the local

compression of the poloidal field outside of the torus does not have to increase in the minor

radius direction. Rather, it must decrease, because the larger the global rotational trans-

form (averaged poloidal field) becomes, the less the local compression of the poloidal field

that is needed to maintain toroidal force balance. Thus, the degree of the local compression

decreases (increases) radially outward when the global rotational transform increases (de-

creases) radially outward, leading the local magnetic shear to be reduced or to even vanish,

independent of the sign of the global magnetic shear.

Since the Shafranov shift and the related local compression of the poloidal field at the

outer side of the torus come from the outward pressure force in the major radius direction,

they are inherently axisymmetric. Thus, the reduction or vanishing of the local magnetic

shear is not strongly dependent on the label of the magnetic field lines.

Although there are many variations for the vacuum magnetic configuration in the he-
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liotron/ torsatron system considered here, having to maintain toroidal force balance (local

compression of the poloidal field outside of the torus) and having a monotonically increasing

ί́ profile near the plasma periphery that essentially comes from the external magnetic field

due to the helical coils are both common features to all cases. Therefore, the reduction or the

vanishing of the local magnetic shear in the stellarator-like positive global magnetic shear

region will occur, independent of the particular vacuum configurations.

The pressure profile has a significant effect on the magnitude of the Shafranov shift and

the profile of the global rotational transform, leading to changes in both the position where

the Pfirsch-Schlüter current is localized and the position of the turning surface. However,

since a monotonically increasing global rotational transform still exists near the plasma

periphery independent of the pressure profile, the reduction or vanishing of the local magnetic

shear in the stellarator-like global magnetic shear region will more or less occur, although

the β value at which the disappearance will occur may be different.

Note that the vanishing of the local magnetic shear in the stellarator-like global magnetic

shear region is universal in L = 2 heliotron/torsatron systems that have a large Shafranov

shift because it is caused by toroidal force balance in the stellarator-like global shear region

that is inherent to such the systems.

The stability characteristics of the high-mode-number ballooning modes,15 which mirror

the properties of the local magnetic shear, will be examined in a companion paper, along with

the characteristics of the local magnetic curvature. In accordance with the α-dependence that

stems from the nature of the local magnetic curvature, the high-mode-number ballooning

modes in heliotron/torsatron systems can be classified into two types: One is tokamak-like,

while the other is inherent to heliotron/torsatron systems. The relation of the high-mode-

number ballooning modes to the low-mode-number modes are also discussed.

The model equations for the (integrated) local magnetic shear and the perpendicular wave

26



number can be used to construct the model equation for the high-mode-number ballooning

modes in heliotron/torsatron systems, which will be mentioned elsewhere.
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FIGURE CAPTIONS

FIG. 1. Radial profiles of (a) the global rotational transform ί́ and (b) the global magnetic

shear s, for a vacuum (dot-dashed curves) and a finite-β (solid curve) L = 2/M =

10 heliotron/torsatron system. The β value at the magnetic axis of the finite-β

equilibrium is 7%.

FIG. 2. (a) Equally spaced (ψ, θB) mesh on several poloidal cross sections for the vacuum

configuration in Fig. 1; (b) equally spaced (ψ, θB) mesh for the finite-β equilib-

rium in Fig. 1; and (c) corresponding contours for the Pfirsch-Schlüter current:

(J ·BPS ≡ J ·B −〈J ·B〉 B2

〈B2〉

)
. The center axis of the torus is on the left-hand

side of each figure, so that the outer side of the torus corresponds to the right-hand

side of each figure. The directions of the poloidal angle and magnetic field lines are

clockwise and the direction of the Pfirsch-Schlüter current is from the front to the

back of the paper (+ζ direction) in the region drawn by thick curves. The position

of θB = 0 is on the equatorial plane outside the torus.

FIG. 3. Variations along the field line in the tokamak-like global magnetic shear region

indicated by the arrow (a) in Figs. 1 and 2 of: (a)
∫ ηB

s̃dηB in the vacuum con-

figuration of Figs. 1 and 2, (b)
∫ ηB

s̃dηB in the finite-β equilibrium of Figs. 1 and

2, (c)
∫ ηB

ŝdηB and sηB (thin line) in the finite-β equilibrium of Figs. 1 and 2, (d)

|k⊥|2 in the finite-β equilibrium of Figs. 1 and 2. The position ηB = 0 corresponds

to the equatorial plane at the outer side of the torus in the horizontally elongated

cross section of Fig. 2.

FIG. 4. The same quantities as in Fig. 3 in the stellarator-like global magnetic shear region

indicated by the arrow (b) in Figs. 1 and 2.
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