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Abstract

The nonlinear plasma transport mechanisms that control the collisionless heating

in the Earth’s magnetosphere and the onset of geomagnetic substorms are reviewed. In

the high pressure plasma trapped in the reversed magnetic field loops on the nightside

of the magnetosphere, the key issue of the role of the ion orbital chaos as the mechanism

for the plasma sheet energization is examined. The energization rate is governed by

a collisionless conductance and the solar wind driven dawn-to-dusk electric field. The

low-frequency response function is derived and the fluctuation dissipation theorem is

given for the system. Returning to the global picture the collisionless energization

rate from the transport physics is the basis for a low-dimensional energy-momentum

conserving dynamical model of magnetospheric substorms.

To appear in the Physics Reports Proceedings of the Plasma Physics Program at the

Institute for Theoretical Physics, Santa Barbara, 1995
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1 Introduction

The Earth’s magnetotail is the most thoroughly measured and most extensively modelled

high pressure, collisionless plasma current sheet known to physicists. The Earth’s central

plasma sheet trapped by the reversed magnetic field serves as an important model of the

reversed magnetic field configuration—the so-called FRC—for both laboratory and astro-

physical plasma science. The most comparable laboratory plasma was produced in the FRC

plasma experiment by the Siemon group at Los Alamos National Laboratory. The principal

difference between the laboratory reversed field configuration and the magnetotail is in the

fixed metallic walls versus the free boundary for the magnetospheric plasma.

In that 2-meter theta pinch the record shot number 12357 of 1991 produced an ion

temperature of 1.9 keV in a dense n ' 2×1021 m−3 plasma confined for large number of Alfvén

times (Rej et al., 1992). In comparison to this and other laboratory FRC experiments, much

more detailed particle and field diagnostics are available for the geomagnetic tail plasma.

This space physics type of plasma confinement is of intrinsic interest to magnetic fusion

because of the high ratio of plasma energy density to magnetic energy, its natural divertor

and its engineering simplicity.

The central plasma sheet is a self-consistent plasma pinch with a current of order 5 ×
107 A flowing from dawn-to-dusk in the nightside magnetic equator. The magnetosphere

is parameterized by geocentric magnetospheric (GSM) coordinates X, Y, Z with X positive

along the Earth to Sun direction, and Y perpendicular to the X-Z plane containing the

Earth’s magnetic dipole axis. The Jy(X,Z)-current sheet extends from approximately X =

−10RE to beyond −100RE for a direction of length Ly ' 40RE through the cross-sectional

area of height Lz ' RE and length of order Lx = 100RE. At the dawn and dusk boundaries

of the magnetopause the current splits with one-half closing over the northern lobe and one-

half closing under the southern lobe closing the flow in the magnetopause at a nominal height

of z = ±H ' ±20RE above and below the center z = 0 of the current sheet. The inductance

of these two closed current loops is L = µ0HLy/Lx ' 40 H and the capacitance C of the

system arises from the polarization of the central plasma sheet C = Lx
∑
s nsms/(BzB

′
xLy)

where B′x = dBx/dz

∣∣∣∣
z=0

= µ0jy(0). Thus the LC-frequency of the magnetotail cavity is the

global Alfvén frequency ωA = (LC)−1/2 = (BzB
′
x/µ0ρmH)1/2. The value of C ranges from

103 to 104 F giving the global Alfvén eigenmode period of 20–60 min.

The resistance of the system is determined by the collisionless energy transfer from the

Ey field to the particles through
∫
jyEy d

3x = σ
〈
E2
y

〉
Ωcps through the nonlinear resonances
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in the particle Hamiltonian H(p,x). Here Ωcps = Lx Ly Lz is the volume of the plasma sheet.

The Horton-Tajima chaotic conductivity σ arises from the large ion gyro-orbits ε = ρi/Lz

and is of the form of a Hall conductivity since the electrons are strongly magnetized by the

small Bz in contrast to the large orbits of the ions. Horton-Tajima (1990, 1991a, 1994) have

given σ = C1(n0e/Bz)(ρi/Lz)
1/2 with the constant C1 ∼ 0.1 determined by test particle

simulations. The resulting RC-decay rate for the decay of the E×B kinetic energy is then

γRC = 1/RC = (eBx0/mi)(ρi/Lz)
1/2. Here the net conductance

∑
= LxLzσ/Ly gives the

dissipative current IΣ = ΣEyLy ¿ Ips that is small compared with the pressure gradient

current Ips for Ey/Bz ¿ vT i. The collisionless damping γRC is clearly a large ion orbit effect

and vanishes in the MHD limit ρi/Lz → 0. The collisionless damping may also be viewed as

phase mixing where the stretching and folding of phase space volumes by the Hamiltonian

occurs due to the chaos.

In the equilibrium state the pressure balance in the pinch determines the maximum

plasma pressure p(z = 0) in terms of the current I through p(0) = B2
x0/2µ0 = 1

2µ0
(µ0I/Lx)

2.

The magnetosphere based on the empirical satellite based model of Tsyganenko (1989) is

shown in Fig. 1. F1

Since the Earth’s magnetic tail and the FRC plasma are homologous there have been

parallel developments in their analysis. The expressions for the chaotic conductivity for the

magneto-tail have their parallel in the quadratic energy functional employed to examine the

stability of FRC’s in which the azimuthal θ-current (z → r, y → rθ, x → z) is carried by

energetic large-orbit ions with regular or chaotic orbits and whose dynamics is governed by

the Vlasov equation [Lovelace (1975, 1976), Sudan and Rosenbluth (1976, 1979), Finn and

Sudan (1978, 1979), Symon et al. (1982), Barnes et al. (1986)]. This energy-functional δW

is obtained by integrating the work done by the perturbed current δJ against the perturbed

electric field δE but the final expression for δW is expressed in terms of the plasma displace-

ment ξξξ i.e. δW (ξξξ, ξξξ) instead of δE, as in the chaotic conductivity kernel. An auto-correlation

function defines the chaotic orbits of ions in this functional [Finn (1979), Finn and Sudan

(1982), Krall et al. (1991)].

1.1 Energies and power flow in the magnetosphere

Both the laboratory and space FRC plasmas are driven by an induction electric field. In

the geotail the electric field Ey arises from the solar wind −vsw ×Bm acting on the Earth’s

magnetic field while the Eθ(r, z, t) field in the FRC experiment is induced by the discharge

of a capacitor bank through a single turn coil encircling the plasma.
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The principal energy components of the magnetotail are the lobe magnetic energy WB =∫
(B2/2µ0)d

3x = 1
2
LI2 ≈ 3 × 1015 J to 1018 J, the plasma energy U =

∫ 3
2
pd3x = 3

2
pΩcps '

1013 J to 1014 J. In the presence of the dawn-dusk electric field there is the E×B flow

kinetic energy KE =
∫ 1

2
ρv2

Ed
3x = 1

2
CV 2 ≈ 1012 J and the streaming kinetic energy K‖ =∫ 1

2
ρv2
‖d

3x ≈ 1013 J. For reference, Lyons and Williams (1984) estimate the total geotail

energy as 3 × 1015 to 3 × 1018 J, and the solar wind input to the magnetosphere to be on

average 1013 W. The dynamics of WB, U,KE and K‖ is analyzed in Sec. 4.1.

The traditional definition of the magnetospheric substorm is based on the increase in

the strength of the auroral electrojet currents as measured by changes in the horizontal

component of the Earth’s magnetic field by magnetometer stations at about 70◦ latitude.

The early review article of Ferraro (1957) is a useful introduction to the aurora and ground-

based magnetic disturbances.

The height integrated ionospheric current is dominated by the Hall current occurring in

the altitude range 90-130 km where the ions are collisional. Thus, the current flows in a large

dipolar vortex parallel to the polar cap equipotential contours in the opposite direction to

the E×B drift. Thus, the current flows tailward over the polar cap and divides into the

eastward and westward electrojets. During disturbed times the current system known as SD

shows the intensification of the westward electrojet giving the strong increase of the lower

envelope of the auroral latitude ground-based magnetometers. The lower envelope signal

is called the AL index and is the primary output signal used in the substorm correlation

studies of Baker et al. (1983) and Bargatze et al. (1985).

A classical isolated substorm will show (i) a growth phase of about 20−25 min in which

the AL may decrease from a few nT to −50 nT, (ii) an expansion phase of about 30 min

in which AL decreases to −1000 nT and higher, and (iii) a recovery stage over which AL

returns to the ambient level over the period of order one hour. There are extensive statistical

studies of the geomagnetic activity. The activity is well correlated with the solar wind and

the direction of the interplanetary magnetic field (IMF). Substorm onsets correlate with

rotation of the IMF from northward to an east-west direction as shown, for example, by

the Farrugia et al. (1993) analysis of a controlled period during which the IMF rotates from

northward to southward over a 29 hour period. This important database will be described

further in Sec. 4.2. Various linear and nonlinear filter methods have been able to produce

good short-time models for the solar wind-geomagnetic activity correlations. Here we are

concerned with the dynamics of the particle-field interactions during the substorm activity.
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1.2 Global MHD simulations

Global MHD simulations reveal the critical role of the IMF field in the triggering of the

substorms and plasmoid formation. Three-dimensional simulations with a southward IMF

are given by Brecht et al. (1982), Fedder and Lyon (1987, 1995), and with both northward

and southward IMF by Walker and Ogino (1989) and Usadi et al. (1993). Recently, Fedder

et al. (1995) show the change in the orientation of the plasma sheet and magnetotail as

a function of the clock angle of IMF with very long (300RE) magnetotail 3D simulations.

Spicer et al. (1996) have developed an adaptive tetrahedra finite element MHD code that

shows the details of the growth of a plasmoid with helical field lines driven by 5nT southward

IMF. Here we discuss in some detail the reconnection dynamics reported by Usadi et al.

(1993).

The Usadi et al. (1993) work presents a large scale supercomputer simulation of the

MHD equations over a large volume with a nonuniform mesh covering one quadrant of

the magnetosphere. The time advance is by fourth order Runge-Kutta-Gill and the space

derivatives are second order centered difference. The effective magnetic Reynolds number is

104 arising from the discretization of the partial differential equations.

The global simulations show that for northward IMF the magnetic flux is peeled off the

lobes resulting in a thicker and weaker geotail current sheet and a lower magnetospheric

cavity plasma pressure. The solar wind parameters used on this study are Vsw = 300 km/s,

ρ = 5mp/cm
3 and T = 20 ev with the BIMF

z = ±5 nT. For the southward IMF run the

authors describe the fast, strong dynamics as “explosive.” Reconnection begins in the near-

Earth region about 20 min after the reconnection starts at the day-side magnetopause which

is argued to agree with the time delay time reported by Baker et al. (1983). A magnetic

bifurcation occurs in the quasineutral sheet with the birth of an ×-O pair. The O-point

starts at about −28RE and rapidly moves tailward while the ×-point moves Earthward

slowly. The separatrix defining the trapped plasma called the plasmoid expands rapidly and

after an initial acceleration develops a tailward velocity of about 0.8RE/min taking 1.5 hrs

for the plasmoid to leave the simulation region. Figure 2 shows the dynamics over the 75 min F2

period after the start of the dayside reconnection. In frame (b), about 25 min after the birth

of the ×-0 pair, the separatrix has expanded to 12RE in length and 4RE in height. The

×-point (near Earth neutral line) has moved in to X = −18RE. In frame (c) at 50 min after

the plasmoid has reached a velocity of well over 100 km/s.

During the growth phase in the time interval between the onset of reconnection on the

dayside and before the bifurcation in the plasma sheet the current sheet continually thins
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and the current density grows 4 to 5 times stronger than in the quiet time geotail. After the

formation of the plasmoid the current density remains high along the separatrix, and thus

an amount up to 10% of the plasma sheet current is ejected from the tail. The correspond-

ing fractional decrease of the stored magnetic energy is approximately twice the fractional

loss of plasma current. The result is the release in a period of 20 min of up to 1015 J of

energy: part transported to the inner magnetospheric and ionosphere and part ejected out

the magnetotail.

To understand the dynamics of the collisionless current sheet before and during the

substorm it clearly is necessary to know the particle orbits in response to changes in the

electromagnetic fields in the current sheet. Thus, we now consider the particle orbits in

some detail.

2 Particle Dynamics in the Geomagnetic Tail

A standard model for the particle-field interactions in the geomagnetic tail follows from the

local dawn-dusk symmetry for |y| < Ly ∼ 20RE, and the slow variation along the Earth-

sunline ∂x ∼ 1/Lx ¿ ∂z ∼ 1/Lz compared to the thickness Lz of the CPS and the height

H of the geotail cavity. In this model the electromagnetic fields are given by the vector

potentials Ay(x, z, t) and Ax = Byz.

The Lorentz force equations of motion for the charged particles are derived from the

N = 2 1
2

degrees-of-freedom (DOF) Hamiltonian

H =
1

2m
P 2
z +

1

2m
(Px − qByz)

2 +
1

2m

(
Py − qAy(x, z, t)

)2

. (1)

Within the current sheet |z| < Lz the vector potential has the polynomial expansion Ay =

−1
2
B′xz

2 +Bzx where B′x = (dBx/dz)0 ≡ Bx0/Lz.

For By = Ey = 0 the system reduces to N = 2 DOF and can be we written as

H =
p2
z

2m
+

p2
x

2m
+
q2 B2

z

2mc

(
x− z2

2Rc

)2

= Hz(px, x) +Hx(px, x) + V z2x (2)

with the two integrable degrees of freedom

Hz(pz, z) =
p2
z

2m
+
m

8

Ω2

R2
c

z4 (3)

Hx(px, x) =
p2
x

2m
+
m

2
Ω2 x2 (4)
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coupled by the interaction V (z, x) with

V (z, x) = −mΩ2

2Rc

z2x (5)

where Ω = q Bz/mc is the cyclotron frequency in the “reconnection” or normal field compo-

nent Bz and Rc = Bz/B
′ is the radius of curvature of the field line at the reversal layer.

The action-angle variables for the current sheet Hamiltonian Hz(pz, z) are given in the

Appendix. Figures 3(a) and (b) shows the bifurcation of the effective potential Veff(z) = F3ab

(2m)−1(py + qB′xz
2/2)2 with the change in sign of qpy. In frame (a) there are crossing

orbits and in frame (b) noncrossing cyclotron orbits for E < p2
y/2m and crossing orbits for

E > p2
y/m. Frame (c) shows the phase space for frame (b) where the separatrix SX provides

the seed for the chaotic orbits in the full Hamiltonian in Eq. (2).

From the form of H in Eq. (2) we see that x is the bifurcation parameter with regard to

nonlinear z oscillations. For x < 0 there is a single stable elliptic fixed point at z = 0; while

for x > 0 the z = 0 point bifurcates into an unstable fixed point with stable fixed points

at z = ±(2Rcx)
1/2. The x(t) motion through the separatrix in this configuration generates

chaos in the system.

2.1 Two degrees of freedom and degeneracy

For a northward IMF the standard model is Ey = 0 with only the diamagnetic current

forming the geotail.

While the N = 2 DOF system is a difficult, nonanalytic problem, the KAM theory applies

under the following three conditions:

(i) non-degenerate lowest order system H = H0({I}) + εV ({I, θ})

det

(
∂2H0

∂Ii ∂ Ij

)
6= 0 (6)

(ii) weak ε¿ 1 perturbation

εV ({I, θ})→ 0 (7)

generally equivalent to sufficiently low oscillator energies
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(iii) irrational rotational transform or winding number

nΩz(H) +mΩx(H) 6= 0

q(H) = −Ωx(H)

Ωz(H)
6= m

n
(8)

The Hamiltonian (2) does not satisfy these conditions so we expect and find a rich dynamical

behavior beyond the simple opening up of island structures. In particular condition (i) is

not satisfied since Hx(px, x) in Eq. (4) is a linear oscillator. The occurrence of degeneracy

allows a global chaos to occur.

The degeneracy of the linear Hx(px, x) oscillator with ∂H0/∂Ix = Ω = eB/mc = const

can be removed by including a x-gradient of the Bz field. Usadi et al. (1995) consider the

analytic model of P (Ay) = k2A2
y/2 which gives Bz(x, 0) = Bze

x/Lx and report a new type of

transient-stochastic orbit boundary. In this review we stay with the Lz/Lx → 0 limit of the

studied modified Harris sheet (Harris, 1962). In the case of the magnetotail current sheet,

where this problem was originally studied, the spatial gradient of Bz is sufficiently weak that

Ω = const is a good approximation.

The oscillation frequency of the Hamiltonian Hz(pz, z) in Eq. (3) is

Ωz =

(
Ω(2Hz/m)1/2

Rc

)1/2 (
π

2K(1/2)

)
= 0.847

(
v

ΩxRc

)1/2

(9)

(from the elliptic function orbits in the Appendix), and that for Hx(px, x) is

Ωx = q
Bz

mc
= Ω.

The frequency Ωz is easily understood from the estimate that Ωz = vz/zt where vz '
(2Hz/m)1/2 and zt is the turning point where Hz(pz = 0, zt) = Hz is the kinetic energy

in the north-south z-degree of freedom.

2.2 Resonance conditions and the surface of section

A simple way to see the connection between the chaos in the two-degree of freedom au-

tonomous system (Ey = 0) and the chaos in the 1-1
2
-D system with a periodic Ey(t) is to

consider the problem of the transfer of energy between the two degrees of freedom. In par-

ticular, we may consider the case where the initial data puts most of the energy into the

Hx(px, x) oscillator which is linear and has the solution

px(t) = (2mHx)
1/2 sin(Ωt) x(t) =

(2Hx/m)1/2

Ω
cos(Ωt) (10)
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describing cyclotron orbits in the small region |z| ¿ Rc. With the x(t) motion substituted

into the Hamiltonian equation, we see that the form of H(pz, z, x(t)) in Eq. (2) becomes

identical to that where the perturbation is that from a sinusoidal transverse electric field

Ay(ωt) in Eq. (1) with By = Bz = 0. The periodic time torus φ = ωt that occurs in the

applied electric field problem is replaced with the abstract toroidal surface described by

the two-angle variables θ, φ associated with the Hz(pz, z) and Hx(px, x) components of the

motion.

The winding number for the uncoupled oscillators is given by 1/q = Ωz/Ωx = 0.847(v/ΩxRc)
1/2.

Thus, the winding number is controlled by the maximum of the finite Larmor radius param-

eter given by

ε =
ρ

Rc

=
mcv

q Bmin Rc

(11)

with 1/q ' ε1/2 < 1 giving the winding number less than one. In the case ε ¿ 1 the

magnetic moment µ = v2
⊥/2B is a good adiabatic invariant. The resonance condition (8) is

only satisfied for high m values with negligible (exponentially small) zones of instability.

For regimes with ε >∼ 1/2 the resonance conditions are satisfied for low m,n values, and

the phase space is filled up with overlapping resonances. As discussed above, the conditions

for the KAM theorem, Eqs. (6)–(8), are not satisfied so we must examine the surfaces of

section to understand the nature of the chaotic motion.

For the study of the surface of section and the Lyapunov exponents of the chaotic orbits

it is convenient to introduce dimensionless variables appropriate to the current sheet. For a

given value of H = 1
2
mv2 we define the rescaled (z, t) variables by

z→
(
mcv

qB′

)1/2

z and t→
(
mc

vqB′

)1/2

t (12)

so that
dz

dt
→ v

dz

dt
. (13)

The dimensionless Hamiltonian is then H = mv2h with

h =
p2
z

2
+
p2
x

2
+

1

2

(
κx− z2

2

)2

=
1

2
(14)

with κ (the Büchner and Zeleny̌ı (1986) parameter) being the only parameter that controls

the competition between the integrability and chaos. The κ parameter is

κ =
Bz

B0(ρ/LB)1/2
=

(
Rc

ρmax

)1/2

(15)
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where we have introduced LB = B0/B
′
x and Ω0 = qB0/mc. The single κ parameter con-

trols the solutions of the current sheet Hamiltonian including the winding number ν =

0.847(v/ΩxRc)
1/2 determining the resonant energies in Eq. (8). The (m = 5, n = −1)

resonance, for example, has ν = 1/5 and κ = 0.847/5 = 0.169.

A closely related two-parameter (b, ε) form of the dimensionless Hamiltonian is introduced

by Chen and Palmadesso (1986) for the global magnetic field model

Bx(z) = B0 tanh
(
z

L

)
and Bz = const. .

In this global model there are two parameters b ≡ Bz/B0 and the FLR parameter ε = ρ/L.

In the Chen and Palmadesso works the space variables are normalized by Rc = BzL/B0

and the time by t → t/Ω with Ω = qBz/mc so that the value of the kinetic energy 1
2
mv2,

measured relative to mL2 Ω2
0(Bz/B0)

4, becomes the stochasticity parameter. Defining

ĤCP =
mv2

2(mR2
c Ω2)

(16)

with Rc = LBz/B0 we have the relationship with the Büchner-Zeleny̌ı kappa parameter

κ = 1/(2ĤCP )1/4. A widely used reference parameter value is

κBZ = 0.18 or ĤCP = 500 or
ρmax

Rc

= 30.9. (17)

For motions confined well inside the current sheet |z| ¿ L the Chen-Palmadesso problem

reduces to the Hamiltonian (14). For motion outside the current sheet |z| > L the Chen-

Palmadesso problem has B = Bz ez ± B0 ex ' constant. In contrast the current sheet

Hamiltonian has |B| increasing as |Z| → ∞. Thus the surface of sections and the regular

versus chaotic phase space regions are different in the two systems.

The surface of section is constructed by finding the crossings of the z = 0 plane by

testing each time step for the condition z(tn)z(tn−1) < 0 and interpolating to find the values

of (x, px) at t∗∗∗ where z(t∗∗∗) = 0.

The results for the CP system with the parameter values Ĥcp = 500 and bz = 0.05 are

shown in Fig. 4 for By/Bz = 0, Fig. 5 for By/Bz = 1 and Fig. 6 By/Bz = 5. The surface of F4

F5

F6

sections show the mixture of integrable orbits, chaotic orbits and the white areas for which

(Speiser) orbits transit through the sheet.

The structure of the phase space is revealed by the surface of section in Fig. 4 where

three types of orbits can be identified by the regions labeled A, B, and C. The orbit types

are as follows.
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2.2.1 Integrable (ring) orbits with Hz À Hz

When most of the energy is in the pz − z oscillations there are invariant curves in the phase

space as shown in Region A. The rotation rate near the stable fixed point is approximately

κ. The spatial configuration of an integrable orbit is that of oscillations on a cylindrical

surface with its axis along Bzêz and radius r = mcv/qBz as shown in Fig. 7(a). F7a

2.2.2 Stochastic orbits with Hz ∼ Hx

In the region marked B the energy in the Hz and Hx oscillations are comparable and the

motions are unstable in that two neighboring trajectories diverge exponentially in time. A

stochastic orbit is shown in Fig. 7(b). F7b

In this regime the effective potential for the pz, z-oscillator is rapidly changing from the

stable to the unstable configurations shown in Fig. 3—due to the periodic oscillations of the

effective py for the pz, z-oscillator for which

py → peff
y (t) = b x(t). (18)

At the reversal layer where vy(z = 0) = bx the effective potential has an unstable fixed

point for bx > 0 and a stable fixed point for bx < 0. The energy in Hx(px, x) oscillator

forces the system to make repeated separatrix crossings in the pz, z-phase space giving rise

to the chaotic scattering of the orbit as it passes close to the ×-point of the unperturbed

Hamiltonian.

2.2.3 Transient unbounded orbits with Hz ¿ Hx

In this regime marked C the orbits have small pitch angles in the exterior region so that

they pass through the reversal layer and make long excursions into the strong left (z < 0)

and right (z > 0) exterior magnetic field regions. A transient orbit is shown in Fig. 7(c). F7c

While transiting through the reversal layer the particle is rotated in the y-x-plane by

the Bz magnetic field at the angular frequency Ω = qBz/mc. Chen and Palmadesso (1986)

show that when there are an integrable number n of (z, pz) oscillations in the half period

rotation time π/Ω that the particles enter and exit the white regions labeled C1, C2, . . . ,Cn

without entering into the stochastic domain B. The condition for n-oscillations is given by

Ωz∆t = (n+1/2)π with ∆t = π/Ω. This resonance condition defines a sequence of resonant

energies En since Ωz
∼= (vΩ0/L)1/2 by Eq. (8). In terms of the Chen-Palmadesso Ĥ the

resonance condition is

Ĥ1/4 = n+ 1/2. (19)
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For Ĥ = 500 used in Fig. 4 the system is close to the n = 5 resonance which explains

the origin of the five white regions labeled by C1, C2, . . . ,C5. Thus, in this degenerate

Hamiltonian system the m = −1, n = 5 resonance shows a different kind of phase space

structure from the standard chain of resonant islands along the rational surface.

The transient orbits in region C were discovered by Speiser (1965, 1967) and are known

as Speiser orbits. The Speiser orbits play an important role in the transport processes and

the heating rate of the plasma trapped in the geomagnetic tail on the night side of the earth

(Lyons and Speiser, 1982; Horton and Tajima, 1990, 1991a,b).

Chen and Palmadesso (1986) have emphasized that the particle distribution function fα

for the three regions α = A, B, C do not mix in a collisionless, fluctuation free, plasma and

thus can have different values. They use this property to predict that the value of f at the

resonant energies En is different than the value of f off the resonance when the northern

and southern lobe plasmas are different. Thus f(E) should show peaks and valleys spaced

at En defined by Eq. (19).

Subsequently, study of the energetic ion distribution function obtained from the ISEE-

3 satellite in the geomagnetic tail confirmed the bumpy structures of F (E) as shown in

Chen-Burkhart-Huang (1990). The spacing of the resonances in energy En is such that

E
1/4
n+1 − E1/4

n = const proportional to L1/2. The measured resonances confirmed well to

this prediction and suggest a method of determining the current sheet thickness from the

resonances of f(E) and the measured values of Bz and Bx.

Chen-Rexford-Lee (1990) have investigated the boundary between region B and region

C orbits. By repeatedly blowing up smaller and smaller regions of the B-C boundary they

show that the boundary is fractal in nature. This boundary curve is the large ε analog

of the loss cone boundary in small ε (gyroradius-to-scale length) theory. The boundary is

determined numerically following the definition of a loss-cone boundary in a µ-conserving

theory. Sufficiently far from the current sheet |z| >∼ 5L where B = Bmax = (B2
z + B2

0)
1/2

the particles are launched toward the current sheet with a nearly vanishing parallel velocity;

i.e. almost 90◦ pitch angle. Those with smaller pitch angles pierce the z = 0 plane inside

region C. While those corresponding to punctures just outside region C will have insufficient

Hz energy to reach the large |z| region. Thus, they are reflected back into the reversal layer

and become the stochastic B orbits.

A thorough review of the orbit types and the nature of the boundaries between the regions

and entry-exit regions in the surface of sections is to be found in Chen (1992). A resonance

in the structure of the ion velocity distribution in its dependence on the distance x along the
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geotail arising from the Bz(x, 0) variations of the κ parameters is shown by Ashour et al.

(1993)) with large scale test particle simulations in the Tsyganenko-based magnetic field

model.

2.3 Collisionless conductivity in magnetic field reversed config-
urations (FRCs)

The rate of conversion of electromagnetic energy into mass flow and thermal energy is given

by
∫
d3xJ · E, which is the total power transferred by the fields to the sources in a finite

volume.

Energy conservation for a system of sources and fields in a finite volume Ω with boundary

∂Ω is given by Poynting’s theorem,∫
Ω
d3x

∂u

∂t
+
∮
∂Ω
da · S = −

∫
Ω
d3xJ · E, (20)

where u is the energy density of the electromagnetic field, u = ε0E
2/2 +B2/2µ0, and S, the

Poynting vector, represents the energy flow, S = E×B/µ0. Expression (20) states that the

total work done by the fields on the charged particle is balanced with the rate of change of

electromagnetic energy in the volume and the transport through the boundary.

For fields varying harmonically in time, e−iωt, energy conservation can be written as

1

2

∫
d3xJ∗ω · Eω + 2iω

∫
d3x (ue − um) +

∮
da · Sω = 0, (21)

where ue = ε0|Eω|2/4, um = |Bω|2/4µ0, and Sω = Eω ×B∗ω/2µ0.

The complex Poynting theorem (21) is useful because it can be used to determine the

complex input impedance, Z = R− iX, of a general electromagnetic system. In particular,

the conversion rate of electromagnetic energy into particle energy is

Qω =
1

2
Re

∫
d3xJ∗ω · Eω (22)

and the reactive or stored energy and its alternating flow is given by the imaginary part of

(21),
1

2
Im

∫
d3xJ∗ω · Eω + 2ω

∫
d3x (ue − um) = 0. (23)

There are two contributions to the reactive power flow: (1) the polarization current propor-

tional to ∂tE and (2) the adiabatic deformation of the current sheet with Jad
ω proportional

to δBω.
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In order to determine the dissipation (22) necessary for magnetic reconnection in tail-like

magnetic field reversals, we consider the perturbed current density δJ produced as a response

of the medium to tearing-like perturbations of the form

δA(x, z, t) = δA(z)ei(kx−ωt) + c.c., (24)

δφ(x, z, t) = δφ(z)ei(kx−ωt) + c.c.. (25)

In the linear approximation, the perturbed distribution function fj for particle species j

can be written as

fj = f0j + δfj, (26)

where the equilibrium distribution satisfies

v · ∂f0j

∂r
+

qj
mj

(v ×B) · ∂f0j

∂v
= 0, (27)

and where the perturbed part of the distribution function satisfies the linearized Vlasov

equation

∂δfj
∂t

+ v · ∂δfj
∂r

+
qj
mj

(v ×B) · ∂δfj
v

= − qj
mj

[δE + v × δB] · ∂f0j

∂v
. (28)

The formal solution to (28) is

δfj(x, z,v, t) = − qj
mj

∫ t

−∞
dt′[δE′ + v′ × δB′] · ∂f

′
0j

∂v′
, (29)

where the integration is performed along the unperturbed trajectories (x′,v′), which satisfy

the initial conditions x′(t′ = t) = x and v′(t′ = t) = v. The primes in the integrand of

(29) mean that all the quantities are evaluated at time t′. Note also that the integration

domain (−∞, t) is such as to satisfy the causality principle, which states that the correction

δf cannot precede the perturbation (δE, δB).

The perturbed part of the current density, J = J0 + δJ, is given by becomes

δJ(x, z, t) = −
∑
j

q2
j

mj

∫
d3vv

∫ t

−∞
dt′[δE′ + v′ ×B′] · ∂f

′
0j

∂v′
. (30)

The equilibrium distribution is a function of the constants of the motion f0 = f0(H,Py),

with

H =
1

2
mv2 + qφ(x, z) and Py = mvy + qAy(x, z). (31)
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Thus we have
∂f0

∂v
= m

∂f0

∂Py
êy +m

∂f0

∂H
v, (32)

which for the Harris distribution,

f0 = n0

(
m

2πT

)3/2

exp
(
− 1

T
[H − UyPy]

)
, (33)

becomes
∂f0

∂v
= −m

T
(v − Uyêy)f0. (34)

Substituting (34) into (30) we get

δJ =
∑
j

q2
j

Tj

∫
d3v vf0j

∫ t

−∞
dt′[δE′ + v′ × δB′] · (v′ − Uyj êy), (35)

where the constancy of f0j along the unperturbed trajectories,(
df0j

dt

)
unpert.

= 0, (36)

has been used to take it out of the temporal integration.

From (35) we have that δJ can be split into two parts,

δJ = δJad + δJd, (37)

where the adiabatic correction to the current, δJad, is given by

δJad = −
∑
j

q2
jUyj

Tj

∫
d3vvf0j

∫ t

−∞
dt′[δE′ + v′ × δB′] · êy (38)

and the dissipative part of the perturbed current is

δJd =
∑
j

q2
j

Tj

∫
d3vvf0j

∫ t

−∞
dt′ v′ · δE′. (39)

First consider δJad. Expanding the term enclosed by square brackets in Eq. (38) in terms

of the perturbed potentials of Eq. (25), we get

[δE + v × δB] · êy = −dδAy
dt

. (40)

Substituting Eq. (40) into Eq. (38), we obtain that δJad is given by

δJad =

∑
j

q2
jUyj

Tj

∫
d3vvf0j

 δAy. (41)
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On the other hand,

∂J0y

∂Ay
=
∑
j

qj

∫
d3vvy

∂f0j

∂A0y

=
∑
j

q2
jUyj

Tj

∫
d3vvyf0j. (42)

Substituting (42) into (41) we get

δJad(x, z, t) =
∂J0y

∂Ay
δAyêy = − 1

µ0Bx(z)

d2Bx(z)

dz2
δAyêy. (43)

The power associated with δJad is given by

Qad(k, ω) =
1

2

∫
d3xδJadk,ω · δE∗k,ω = i

ω

2

∫
d3x

∂J0y

∂Ay
|δAy(k, ω, z)|2, (44)

where we have used Eq. (43). The quantity Qad is purely imaginary, that is, Qad corresponds

to the reactive part of energy transfer and is reversible. Qad is related to the adiabatic change

of current filament interaction energy.

The energy dissipated per unit time is given by

Q(k, ω) =
1

2
Re

∫
d3xδJk,ω · δE∗k,ω =

1

2
Re

∫
d3xδJdk,ω · δE∗k,ω. (45)

Hence, the time-averaged dissipated power is

Q =
1

2
Re

(
lim
T→∞

∫ T/2

−T/2

dt

T

∫
d3xδJd · δE∗

)
,

: =
1

2
σHαβ(k, ω) lim

T→∞

∫ T/2

−T/2

dt

T

∫
d3xδE∗αk,ω δEβ k,ω (46)

where the time average removes the reversible part of the power transfer in δJ · δE and

the height integrated effective conductivity σσσαβ is defined in the second line. Note that the

standard notation for the time period T for the average in Eqs. (46) and (47) is not to be

confused with the use of T for temperature in Eqs. (33) and (34).

From Eq. (39) we have that

lim
T→∞

∫ T/2

−T/2

dt

T

∫
d3xδJd · δE∗ =

∑
j

q2
j

Tj

∫
d6X0f0j lim

T→∞

∫ T/2

−T/2

dt

T

×
∫ t

−∞
dt′δE∗(z) · vv′ · δE(z′)× ei[k(x′−x)−ω(t′−t)], (47)

where the phase space integration is performed over the initial conditions X0 ≡ (x0,v0), and

where x ≡ x(t; X0) and v ≡ v(t; X0) are the position and velocity at time t of a charge

moving in the unperturbed fields with initial conditions X0.
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Dissipation for low frequency phenomena (ω ¿ ωcx0), such as tearing modes, occurs

only in the narrow layer where the effect of the lobe magnetic field can be neglected. The

thickness of the resistive layer can be estimated by determining the critical value of z, ∆,

which satisfies the condition ρc = ∆, where ρc is the Larmor radius evaluated at z = ∆.

Approximating the magnetic field in the current sheet layer by Bx(z) = Bx0z/Lz, we get

∆ = (ρ0Lz)
1/2, where ρ0 = vth/ωcx0.

2.4 Vlasov conductivity formula

From the above analysis we have that for low frequency phenomena, dissipation occurs in

the resistive layer with the characteristic half-thickness. Since the main contribution to (47)

comes from the resistive layer with |z| <∼ ∆, the fields can be approximated by their values

at z = 0 and taken out from the temporal integration in (47). Hence, the low frequency

conductivity is given by

σαβ(k, ω) =
∑
j

q2
j

Tj

∫
d6X0f0j

∫ ∞
0

dτeiωτ

× lim
T→∞

∫ T/2

−T/2

dt

T
vα(t; X0)vβ(t− τ ; X0)× eik[x(t−τ ;X0)−x(t;X0)], (48)

where the change of variables from t′ to τ ≡ t− t′ has been made.

At this point it is convenient to introduce some notation. From now on, the product

v(t; X0)e
−ikx(t;X0) will be denoted by v(k, t; X0);

v(k, t; X0): = v(t; X0)e
−ikx(t;X0). (49)

Ensemble averages over the initial conditions will be denoted by triangular brackets;
∫
d6X0f0j . . . : =

n0〈. . .〉j. Finally, we define single-particle, two-time velocity correlations by

Cαβ(k, τ ; X0): = lim
T→∞

∫ T/2

−T/2

dt

T
vα(k, t; X0)vβ(−k, t− τ ; X0) (50)

and we denote the one-sided Fourier transform of Cαβ(k, τ ; X0) by Cαβ(k, ω; X0), that is,

Cαβ(k, ω; X0): =
∫ ∞

0
dτ eiωτCαβ(k, τ ; X0). (51)

Note that X0 has been included in the definition of Eq. (50) to stress the fact that the single

particle velocity correlation tensor depends on the initial conditions. For ergodic systems
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the time integration in Eq. (50) can be replaced by averages over the ensemble of particles

and the reference to the initial conditions X0 in Eq. (50) can be suppressed.

Substituting Eqs. (49)–(51) into Eq. (48), we find that the low frequency conductivity

formula (48) can be written as

σαβ(k, ω) =
∑
j

njq
2
j

mj

〈Cαβ(k, ω; X0)〉j. (52)

The dissipative part of the conductivity corresponds to its Hermitian part, which according

to Eq. (52) is determined by the Hermitian part of the correlation tensor,

CH
αβ(k, ω): =

1

2
[Cαβ(k, ω) + C∗βα(k, ω)]. (53)

From Eq. (50) we have that Cαβ(k, τ) has the following properties:

C∗αβ(k, τ) = Cαβ(−k, τ) (54)

and

Cαβ(k,−τ) = Cβα(−k, τ). (55)

From these properties it is easily verified that the Hermitian part of Cαβ(k, ω) is

CH
αβ(k, ω) = C̃αβ(k, ω), (56)

where C̃αβ(k, ω) is the Fourier transform of Cαβ(k, τ),

C̃αβ(k, ω) =
∫ ∞
−∞

dτ eiωτCαβ(k, τ). (57)

In this work we will refer to C̃αβ(k, ω) as velocity power spectrum or spectral velocity corre-

lations.

From (52) and (56) it follows that the dissipative part of the conductivity is given by

σHαβ(k, ω) =
∑
j

njq
2
j

mj

τcj, (58)

where the correlation time τc (the effective “collisional time”) is defined as

τcj =
1

2v2
th j

〈
C̃αβ(k, ω; X0)

〉
j
. (59)

In tail-like magnetic field reversals the conductivity depends on the finite Larmor radius

parameter ε: = ρ/Lz, and on the magnetic field components by: = By/Bx0 and bz: = Bz/Bx0;

σαβ(k, ω) = σαβ(k, ω; by, bz, ε). (60)

Equations (52), (58), and (59) are the main results for the conductivity.
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2.5 Frequency sum rule

Consider the integral over all the frequencies of the dissipative part of the conductivity. From

(58), (59), and (57) we get

∫ ∞
−∞

dωσHαβ(k, ω) = π
∑
j

njq
2
j

mjv2
th j

〈Cαβ(k, τ = 0)〉j. (61)

Noting that

〈Cαβ(k, τ = 0)〉 = v2
thδαβ + U2

y δαyδβy, (62)

we obtain the frequency-sum rule∫ ∞
−∞

dω σHαβ(k, ω) = π
∑
j

njq
2
j

mj

[
δαβ +

(
Uy
vth

)2

j

δαyδβy

]
, (63)

which has been verified in our numerical experiments.

The frequency-sum rule (63) means that regardless of the details of the absorption spec-

trum the total amount of dissipation is constant. In the lobe region (|z/Lz| À 1), where the

particles execute cyclotron motion around the magnetic field lines, the main contribution to

the total dissipation is due to the high frequencies centered around the cyclotron frequency

ωcx0 for the asymptotic field Bx0, as shown in Fig. 3. On the other hand, in the dissipative

layer (|z| ≤ (ρLz)
1/2), chaotic particle motion spreads the dissipation to low frequencies and

the frequency-sum rule (63) has contributions from a broad band of absorption frequencies.

In general, for inhomogeneous systems, dissipation is spread to low frequencies (ω ¿ ωcx0)

even if the motion is integrable (Horton et al., 1994).

In this section we have developed the spectral velocity correlations formalism for the

calculation of the space-time-averaged conductivity. Numerically, the formalism consists of

the following steps:

(i) Launch an ensemble of N particles distributed in phase space according to the equi-

librium distribution function f0.

(ii) For each particle integrate the equations of motion in the unperturbed fields and com-

pute the corresponding power spectra C̃
(j)
αβ (k, ω; X0j), j = 1, 2, . . . , N .

(iii) Average over all the particles,

σHαβ(k, ω) =
q2

mv2
th

1

N

N∑
j=1

C̃
(j)
αβ (k, ω; X0j). (64)

19



(iv) As a consistency test, check the frequency-sum rule (63).

The single particle ensemble procedure just described is essential when the dynamics is

nonintegrable. In Sec. 2.8 we show how the procedure reproduces the analytic σHαβ(k, ω) in

the limit of integrable (straight-line) orbits.

Holland and Chen (1992) and Chen (1992) have criticized the above procedure in terms

of the energization rate in the zero frequency limit. They point out that there is a part of the

energization that is proportional to qv Ey rather than σ E2
y . They also point out that for the

transient Speiser orbits the zero frequency limit of the orbit integrals in Eqs. (50)–(51) are

not well defined due to the nonstationary nature of the two-time velocity correlation function

for these orbits. We agree that there is a component of the heating that is proportional to Ey,

and thus is reversible over a full cycle of a slowly varying Ey(ωt). The division between the

Eyv and E2
y is seen in the work of Lyons and Speiser (1982) and was reinvestigated by Baek

et al. (1995). Baek et al. consider ensembles of transient ions launched from the lobe region

toward the current sheet and calculate the energy gained and residence time over a wider

range of initial energies (0.1 ev to 20 keV) than in previous works. They also report the effect

of finite By. The results show that low energy ions (v ≤ Ey/Bz corresponding to H ≤ 1 keV

for Ey = 0.25 mV/m and Bz = 1 nT) gain energy as σ E2
y whereas the higher energy ions

gain according to qv Ey. Thus the energization rate of the fast, transient ions is not well

characterized by the collisionless conductivity apparently due to their short residence time

in the current sheet.

2.6 Fluctuation dissipation relations and the collisionless con-
ductivity

Based on the idea that for a system close to thermodynamic equilibrium, the evolution to-

wards equilibrium does not depend on whether the system was set out of equilibrium by an

external perturbation or by an spontaneous fluctuation, a link can be established between

the microscopic fluctuations and the response functions of the system. In particular, linear

response theory leads to the so-called Green-Kubo formulae (eg., Kubo, 1957) which are gen-

eral relations connecting transport coefficients and autocorrelation functions of fluctuating

quantities. Taking Fourier transforms of the Green-Kubo formulae, general relations between

spectral correlations of microscopic fluctuations and the dissipative part of the transport co-

efficients are obtained. These general relations are called fluctuation-dissipation relations

(Sitenko, 1982; Kubo et al., 1985; Klimontovich, 1991).
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Consider a system in thermodynamic equilibrium. In the absence of external pertur-

bations, the Hamiltonian is independent of time and is denoted by H0(Γ), where Γ is an

abbreviation for the 6N independent variables:

Γ = {X1, . . . ,XN}, Xi: = {xi, vi}, (65)

with xi and vi the position and the velocity of the i-th particle, respectively. When the

system is perturbed by an external vector potential, A(x, t), the Hamiltonian takes the form

H(Γ, t) = H0(Γ) + δH(Γ, t) (66)

where

δH(Γ, t) = −
∫
d3xJ(x, t; Γ) ·A(x, t), (67)

with the current density

J(x, t; Γ) =
N∑
i=1

qivi(t)δ(x− xi(t)). (68)

The linear causal response of the medium to the perturbing potential

J(x, t) =
∫ t

−∞
dt′
∫
d3x′K(x,x′, t, t′) ·A(x′, t′). (69)

Then, for the Fourier components of J and A we can write

J(k, ω) = K(k, ω) ·A(k, ω), (70)

where Kαβ is the response tensor of the medium.

The fluctuation-dissipation theorem relates the spectral correlations of current density

fluctuations to the dissipative properties of the medium and is given (Kubo et al., 1985) by

〈J∗αJβ〉kω =
h̄

exp(h̄ω/T )− 1
i
{
K∗αβ(k, ω)−Kβα(k, ω)

}
, (71)

which in the classical limit (T À h̄ω) becomes

〈J∗αJβ〉kω =
T

ω
i
{
K∗αβ(k, ω)−Kβα(k, ω)

}
. (72)

In writing Eqs. (71) and (72) we are assuming that the system is in thermal equilibrium at

the temperature T .

In the derivation of (71) the average energy absorbed by the medium per unit time Q is

calculated using time-dependent perturbation theory, with the perturbation given by (67),

21



and by performing two averages: one over the quantum state of the system and one over the

statistical distribution of the different quantum states of the system given by the canonical

distribution.

The fluctuation-dissipation theorem can be used in several ways. If the response tensor

Kαβ(k, ω) is known (for example, the dielectric tensor for a uniform plasma both in the

absence and in the presence of a constant magnetic field), then the spectral distribution of

J can be found. On the other hand, if we somehow know the fluctuation spectra of J, then

we can invert (71) and determine the response properties of the medium (this is like using

the absorption lines in a spectrum to determine the dielectric properties of the medium).

The later approach is the one we use in this work: we want to calculate the collisionless

conductivity from the numerical computation of the spectral velocity correlations.

For the case of electromagnetic perturbations, the response tensor Kαβ(k, ω) is given in

terms of the electrical conductivity σαβ(k, ω) through

Kαβ(k, ω) = iωσαβ(k, ω), (73)

and the fluctuation-dissipation relation which follows from substituting (73) into (72) gives

σHαβ(k, ω) =
∑
j

1

2mjv2
th j

∫ ∞
−∞

dτeiωτ 〈Jα(k, t)Jβ(−k, t− τ)〉j, (74)

Formula (74) is called the Kubo conductivity formula (Kubo et al., 1985). Expression

(74) has to be compared with expression (58) for the collisionless conductivity. The space-

time-averaged conductivity formula (58) is more general than the statistical equilibrium

conductivity formula (74). To the extent that the orbits are ergodic so that the ensemble-

averaged two-time velocity correlation function 〈vα(k, t)vβ(−k, t− τ)〉 is the same as the

time-averaged velocity correlation function in (50), the Kubo conductivity formula is identical

to the space-time averaged conductivity (58).

2.7 Conductivity from Kubo’s formula for an unmagnetized plasma

Consider a collisionless, uniform, homogeneous, and unmagnetized plasma. There are no

forces acting on the system, thus the particles move along straight-line trajectories,

xi(t) = xi(t0) + vi(t− t0),

vi(t) = vi = const., (75)
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with the microscopic distribution function

F (x,v, t; Γ) =
1

N

N∑
i=1

δ(x− xi(t))δ(v − vi(t)). (76)

One obtains the connection between microscopic quantities and macroscopic quantities

by taking averages over ensembles of systems, which differ only in the particle states, and

by considering the distribution of the systems in the different states.

The spectral correlation between fluctuations of the distribution function:

〈δF (v)δF (v′)〉kω = 2πδ(ω − k · v)δ(v − v′)f0(v). (77)

The particle density distribution n(x, t; Γ) is obtained integrating Eq. (76) over v. The

result is

n(x, t; Γ) =
N∑
i=1

δ(x− xi(t)) =
∑
k

nk(t)eik·x, (78)

where

nk(t) =
N∑
i=1

e−ik·xi(t). (79)

Similarly, the current density J(x, t; Γ) is obtained multiplying Eq. (76) by qv and integrating

over v. The result is

J(x, t; Γ) = q
N∑
i=1

vi(t)δ(x− xi(t)) = q
∑
k

vk(t)eik·x, (80)

where

vk(t) =
N∑
i=1

vi(t)e
−ik·xi(t). (81)

The spectral correlations between density fluctuations are obtained integrating Eq. (77)

twice over the velocities, 〈
δn2

〉
kω

= 2π
∫
d3v δ(ω − k · v)f0(v). (82)

Similarly, the spectral correlations between current density fluctuations are obtained multi-

plying Eq. (77) by vv′ and integrating twice over the velocities,

〈JαJβ〉kω = 2πq2
∫
d3v vαvβδ(ω − k · v)f0(v). (83)

Taking the distribution f0(v) to be the Maxwellian distribution function fM(v),

fM(v) = n0
1

(2π)3/2 v3
th

exp[−v2/2v2
th], (84)
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substituting (84) into (83) and substituting the result into Kubo’s conductivity formula (74),

we obtain the well-known Vlasov-Maxwell conductivity

Reσσσ =

√
π

2

n0q
2

m|k|vth


ω2

k2v2
th

0 0

0 1 0
0 0 1

 exp

(
− ω2

2k2v2
th

)
, (85)

where we have taken the wave vector k to be along the x-axis.

2.8 Conductivity from the spectral velocity correlations (SVC)
formalism

The numerical calculation of the conductivity formula from the spectral velocity correlations

formalism is illustrated in Fig. 8. Figure 8 displays plots for (a) the transverse and (b) the F8

longitudinal components of the dissipative part of the conductivity for the unmagnetized

plasma. We obtained both plots by launching N = 3000 particles according to a Maxwellian

distribution and following the spectral velocity correlations formalism. The impulse lines in

the plots correspond to our numerical results for the discrete frequency components over the

finite time interval, and the solid curves correspond to the analytical result from Eq. (85).

We can see that the numerical results are in good agreement with the analytical formula

in this limit of straight line trajectories. The frequency sum rule was verified for both the

transverse and longitudinal components of the conductivity since the numerical values 3.04

and 3.028 were obtained, which are close to π, within 1/30, as desired.

3 Applications of the Conductivity to Tearing Modes
in the Central Plasma Sheet

3.1 Collisionless conductivity for the Harris sheet

In the case of the Harris sheet the orbits, while integrable, are highly nonlinear. The only

practical method of determining the conductivity is by velocity spectral correlations formal-

ims.

Figure 9 is a plot of the dissipative part of the conductivity produced by the microscopic F9

fluctuations from charged particles trapped in the plasma sheet. We obtained the plot by

launchingN = 1000 particles distributed according to the Harris distribution of Eq. (33) with

number density n(z) = n0 sech2(z/Lz) for |z/Lz| < 1, with Uy/vth = 2ε = 0.08, ωcx0/ωbz = 5,
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and with kvth/ωbz = 0.02. We find that the dc value of the conductivity is the value expected

from the Galeev-Zeleny̌ı conductivity (85) with the density of the effectively unmagnetized

particles given by n = n0(∆/Lz) = ε1/2n0 = 0.2n0.

Figure 10 displays the dissipative part of the conductivity produced by the microscopic F10

fluctuations from charged particles located away from the plasma sheet, that is, well into

the region where the magnetic field is nearly uniform, B(z) ≈ Bx0êx. Initially the particles

were uniformly distributed in the range 3 ≤ z/Lz ≤ 4, where the magnetic field is uniform

to within 0.5%. The rest of the simulation parameters are the same as those in Fig. 9. Note

that the only significant contribution to the conductivity occurs for ω ≈ ωcx0, which is in

agreement with the assumption that the low-frequency component of the conductivity arises

from particles in the current sheet.

The possibility of collisionless magnetic reconnection in a straight magnetic field reversal

was proposed by Coppi et al. (1966). These authors showed that the Harris sheet is tearing-

unstable for long wavelength (kLz ¿ 1) perturbations for which the energy released by the

pinching of the current filaments exceeds the energy spent in the creation of the perturbed

magnetic field. The mechanism for energy dissipation is given by the transfer of energy from

the plasma to a fraction of the electrons through the resonant interaction of the waves with

the particles in the thin layer of thickness ∆e = (ρeLz)
1/2.

In the outer region we have δJdy = 0, and the reconnection perturbation δAy(z) satisfies

the homogeneous equation [
d2

dz2
− k2 − B′′x(z)

Bx(z)

]
δAy(z) = 0, (86)

with the even-parity solution satisfying the boundary conditions

lim
|z|→∞

δAy(z) = 0. (87)

The even parity modes describe a pinching and then tearing: the odd modes δAy(−z) =

−δAy(z) describe a flapping or kinking of the current sheet.

The matching between the inner and outer regions is achieved through the matching

parameter ∆′ defined by

∆′: =

(
d ln(δAy(z))

dz

)+∆e

−∆e

, (88)

which for the approximate solution (86) is given by

∆′kLz
∼= 2

kLz
(1− k2L2

z) ≈ 2/kLz (89)
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for kLz ¿ 1. The perturbation releases reversed magnetic field energy in proportion to

|δB|2∆′ producing exponential growth γ. The tearing mode growth rate

γ =
∆′k

2µ0σyy∆
. (90)

For the electron σyy = σG−Z = (π/2)1/2(nee
2/me|kx|vthe) we find that the correlation time

is τG−Zc e ≈ 1 s, the half-width of the unmagnetized layer is (ρeLz)
1/2 = 160 km, and the

conductivity is σG−Z ∼ 10−2 mho/m. In contrast, For substorm time scales to be met. We

would require τce ∼ 10−3 sec and σyy ∼ 10−5 mho/m.

Using the pressure balance formula n = B2
x0/2µ0(Ti+Te) to determine the plasma density

in terms of the lobe magnetic field strength, we find that the collisionless electron tearing

mode growth rate takes the form

γ

ωcx0 e

=
23/2

π1/2

(
1 +

Ti
Te

)
ε5/2e , (91)

and the mode is unstable for kLz ¿ 1. For the typical geotail parameters the growth

rate of the instability is γ ∼= 10−4 sec−1, and the growth time is τ ∼ 3 hr. The observed

growth phase of a substorm lasts 20 min-40 min. Thus, in recent times this electron tearing

mechanism in the Harris sheet is not considered as a plausible mechanisms for the substorm

dynamics.

3.2 Collisionless Hall conductivity for the magnetic field rever-
sals

In reality the small component of the magnetic field normal to the current sheet layer,

Bz ¿ Bx0, magnetizes the electrons, which perform gyromotion around Bz in the current

sheet layer, and thus the main contribution to the low-frequency dissipative part of the

conductivity is due to the unmagnetized ions. This is a type of collisionless Hall effect for

the conductance. This hybrid or Hall-like conductance is also the principle of the plasma

ion-diode (Golden et al., 1977, 1981), where the perpendicular magnetic field in the diode

is adjusted to magnetize the electrons (εe ¿ 1), leaving the ions, with εi >∼ 1, to carry the

current in the diode. Ion diodes are used for the generation and propagation of intense ion

beams (Dreike et al., 1976).

In parabolic-like magnetic field reversals with Bz ¿ Bx0, ion motion becomes chaotic.

The chaotic particle motion leads to a continuous broadband power spectrum and to the

decay of the velocity correlations. That is, chaotic particle motion smears the resonance
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peaks at the orbital frequencies, thus allowing the exchange of energy between particles and

waves for a continuum of frequencies.

The conductivity formula can be motivated if we follow the picture of Lyons and Speiser

(1985). The main pickup of energy from vyEy occurs when the particles are in the ∆i =

(ρiLz)
1/2 layer and when ωcz < ωbz. In this regime the orbits enter into the ∆i layer, make

rapid north-south oscillations, make a large section of approximately one-half of the cyclotron

orbit around Bz, and then escape to one of the lobes. Particles are coherently accelerated

by Ey when they are in the ∆i layer. Taking the correlation time in the layer to be on the

order of one-half of the cyclotron period, π/ωcz, the low-frequency conductivity is given by

the Lyons-Speiser formula

σL−S =
n0q

2

m

π

|ωcz|
. (92)

Horton and Tajima (1990, 1991) showed that the conductivity acquires this value only

in the ∆i layer and thus the height-averaged conductivity for the current sheet is given by

σH−T = ε1/2σL−S . (93)

Formula (93) has the important property that as m/e (or the gyroradius) vanishes so that

the particles are tied to the field lines, the conductivity vanishes. This is in contrast to

Eq. (92) where σ is independent of m/e.

When the period ∆t = π/|ωcz| is shorter than the streaming time 1/kvth, the cyclotron

frequency at z = 0 determines the correlation time and the conductivity, rather than the

phase mixing rate kvth. Combining the characteristics given above we obtain the conductivity

formula

σH−T =
nq2

m

ε1/2

c1|ωcz|+ c2|k|vth
=

nq2

m|ωcx0|
ε1/2

c1bz + c2|k|ρ
, (94)

where c1 and c2 are constants which are determined by test particle simulations. Note that

in the limit that ε = ρ/Lz → 0, the particle motion becomes strictly adiabatic, executing

only E×B drift motion, and the low-frequency conductivity (94) and the mobility vanish.

Note also that for long wavelengths, kvth <∼ ωcz, the second formula in (94) shows clearly the

role of the κBZ parameter defined in Eq. (15) in determining the conductance.

The variation of the conductivity (94) with ε, bz, and kLz has been tested (Horton and

Tajima, 1991a and Hernández et al. (1993)) by numerical simulations following the procedure

given in Sec. 2.5. Good agreement with Eq. (94) has been obtained with c1 ≈ 10 and c2 ≈ 2.

The relatively large value of the ratio c1/c2 implies that the partial magnetization of the
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orbits is more effective than the phase mixing from the Landau resonance at v = ω/k in

determining the low-frequency conductivity when kvth/ωcz ¿ c1/c2 ' 5.

Outside the ∆i layer the particles are magnetized and the dominant current is given

by the polarization current Jy = (nq2/mω2
cx)dEy/dt, and the δJad in Eq. (41) which are

completely reversible or reactive and does not contribute to the time-averaged 〈JyEy〉.
The reconnection growth rate γ obtained from the substitution of (94) into (90) is given

by
γ

|ωcx0|
= ε3/2

c1bz + c2kLzε

kLz

(
1 +

Te
Ti

)
. (95)

Thus the widely used collisionless ion tearing mode growth rate γG−Z = |ωcx0|ε5/2 of Galeev

and Zeleny̌ı (1976) increases to γ = c1bz|ωcx0|ε3/2, due to the low value of the conductivity

(94). For kLz > c1bz/c2ε the growth rate reduces to the Galeev-Zeleny̌ı value γG−Z/|ωcx0| ≈
c2ε

5/2 giving 1/γG−Z ∼ 1 hour. For kLz < c1bz/c2ε and bz < ε1/2 the growth rate is increased

to γ/|ωcx0| ≈ c1ε
3/2 giving 1/γ ∼ 1 min.

For typical geotail parameters, and for kLz ∼= 0.5 the correlation time is

τc =
ε1/2|ωcx0|−1

c1bz + c2kρ
= 0.15 sec, (96)

the unmagnetized layer half-width is ∆i = (ρiLz)
1/2 = 980 km, the conductivity is σH−T =

1.2 × 10−6 mho/m, the growth rate is γ = 0.9 min−1, and the growth time is τγ = 1/γ '
1 min.

Now we analyze the global implications of the onset of the tearing mode with a growth

time of order one minute. The trigger condition is that the current sheet thins sufficiently

that Lz ¿ bzLx/ε and bz < ε1/2. Within a time of order 20 min the plasmoid is fully

developed.

The reader should note that the ion tearing mode mechanism is actively debated after

20 years of research following its introduction by Galeev and Zeleny̌ı (1976). Lui and his

collaborators, Yoon and Lui (1996), present the Wiebel instability driven by the Z-gradient

of the ion drift velocity as alternative mechanism. This purely electromagnetic mode can

also filament the current density. Nevertheless, the 3D MHD simulations show the tearing

mode mechanism for the plasmoid formation occurs with the onset of a southward IMF field

as discussed in Sec. 1.2.
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4 Substorm Correlations with the Interplanetary Plasma:
Global Model

4.1 Global substorm model

The correlation of the magnetospheric substorm activity with solar wind and the orientation

of the interplanetary magnetic field (IMF) has been extensively investigated over the past

thirty years. The early stages of the studies are succinctly summarized by Cliver (1994).

Quantitative correlation studies began with Perrault and Akasofu (1978), Akasofu (1980,

1994) and with the rather precisely defined time series of solar wind driving voltage vsw[Bz]s

as input and auroral electrojet current AL(t) as output by Bargatze et al. (1985). In the

past ten years many important, quantitative correlation studies have been repeated. In

this section we give the global model of the substorm that is associated with plasma sheet

conductivity and the tearing mode as the fast plasma unloading mechanism. We describe

two correlation studies that we view as supporting the theoretical model developed here.

The global low-dimensional dynamical model based on the physical processes of the

collisionless Hall conductivity Σ and the fast plasma unloading U0 triggered by magnetic

reconnection in the plasma sheet is given by four ode’s for I(t), V (t) = LyEy(z = 0, t), p0(t)

and K‖(t). In the introduction estimates of the global magnetotail energies WB = 1
2
LI2,

KE = 1
2
CV 2, U = 3

2
pΩcps andK‖ =

∫
1
2
ρv2
‖d

3x associated with these four key state variables

are given along with the values of the lobe inductance L and central plasma sheet capacitance

C. The solar wind input voltage Vsw(t) is taken as the standard rectified signal

Vsw(t) = βvsw
x [Bz(t)]s Ly (97)

where the bracket with subscript s indicates that the voltage is zero for Bz > 0 and given by

the magnitude of the southern component for Bz < 0. Here β ' 0.1 gives the fraction of the

solar wind electric field loading magnetic flux in the geotail (Hill, 1975). This input voltage is

the well-accepted input signal used in the numerous solar wind-geomagnetic activity studies,

e.g. Bargatze et al. (1985). The alternative input is the Perrault-Akasofu (1978) input power

EPA(θ) given below with a partial rectification in terms of the IMF clock angle θ (tan θ =

BIMF
y /BIMF

z ).

The low-dimensional dynamical model is given by

L dI

dt
= Vsw(t)− V (t) (98)
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C
dV

dt
= I − Ips − ΣV (99)

3
2

dp

dt
=

ΣV 2

Ωcps

− u0 K
1/2
‖ Θ(I − Ic)p (100)

dK‖
dt

= IpsV −
K‖
τ‖

(101)

where Ips(t)/Lx = (8p(t)/µ0)
1/2 follows from the self-consistent pinch equilibrium. The

critical current Ic for the onset of the fast unloading of plasma pressure follows from onset of

the tearing mode with the thinning of the current sheet discussed in Secs. 1.2 and 3 and shown

in Fig. 2. The critical current may be estimated by setting a limit on ∆′ ≥ ∆′crit = LNL
x /L2

z,crit

for the release of sufficient reversal field energy by δJad in Eqs. (86)–(90). Here we take the

tailward location of the near-Earth neutral line point LNL
x to determine the relevant mode

number through kxL
NL
x = π. This choice is guided by the 3D-MHD simulations for the onset

position of the X-O bifurcation in the reversed magnetic field. The dynamical properties of

the low-dimensional model defined by Eqs. (99)–(102) is that the conductivity Σ is based

on the Hamiltonian dynamics with internal resonances given rise to the transfer of energy

from the fields to the ions. As a consequence when the driving voltage Vsw and unloading

are switched off the system is energy conserving with

d

dt

[
1
2
L I2 + 1

2
CV 2 + 3

2
p(t)Ωcps +K‖

]
= 0 (102)

when Vsw = u0 = 0. The global dynamical model given by Eqs. (99)–(102) is closely related

to the Klimas et al. (1992, 1994) “dripping faucet” model as explained in Horton and Doxas

(1995). In the Klimas et al. (1995a) model there is a critical current above which there is

fast unloading with the rate of loading chosen to be proportional to dI/dt, rather than K
1/2
‖ ,

at the moment that the current reaches the critical value.

In the Horton-Doxas model the plasma loss rate is taken to be given by the flux limit

parameter u0 in Eq. (100) through the mean parallel flow velocity. The detailed picture of

how the flow of plasma is divided toward the inner magnetosphere and the distant tail is

provided by the 3D MHD simulations. The Horton-Doxas model contains kinetic effects that

are beyond the simple closure of the fluid moment equations. The parallel thermal loss q‖

modeled by u0K
1/2
‖ p and the nonadiabatic heating from ΣV 2 are effects contained in test

particle codes. Ashour-Abdalla et al. (1994) report large scale test particle simulations of the

transport of ions in the geotail in a Tsygananko-based geomagnetic field. Usadi et al. (1996)

investigate the global ion transport problem with simpler, analytic X-dependent geotail

30



model fields. Both of these simulations show the importance of fast parallel flows out of

dynamically active regions.

4.2 Substorm recurrence during southward IMF

The Klimas et al. model and the Horton-Doxas model appear capable of explaining the

dominant features of the solar wind-geomagnetic activity databases. Here we restrict the

discussion to three complementary correlation studies those of Bargatze et al. (1985), Farru-

gia et al. (1993) and Blanchard and McPherron (1994). We also comment on the Borovsky

et al. (1993) database. The Bargatze et al. (1985) data is characterized by 2.5 min sampling

of the IMF Bz and solar wind velocity vsw
x and the AL index over long periods from 1 to 2

days, containing both active and quiet periods. The Farrugia et al. (1993) data contain a

29 hour period in which a strong IMF field rotates from northward Bz > 0 (so vBs = 0) for

the first 11 hours, to then Bz < 0 (so that vBs = |Bz|vsw
x ∼ −4 to −10 mv/m) during the

following 18 hour period. This data justifies the choice of the rectified input voltage of vBs(t)

which is switched on and off according to whether the IMF is southward or northward. A

strongly rectified solar wind input signal such as the Perrault-Akasofu (1978) input power

E(θ) = ρv3
sw`

2 sin4(θ/2) where θ is the clock angle of the IMF is not ruled out by the Farrugia

et al. (1993) data. Furthermore, the southward IMF period of the Farrugia et al. (1993) data

sets limits on substorm modeling. In particular, for the 18 hour period with V Bs ∼ −4 to

−10 mv/m there is a sequence of 23 substorms with the mean recurrence period between

onsets of 50 min within the range of time intervals between 25 min to 100 min during this

period.

Further details of the Farrugia et al. (1993) database are that during a 30-hour period the

IMF rotates through 240◦ from a northeasterly to a southerly orientation. The maximum

northward orientation occurs at 1530(UT ) with Bmax
z ∼ 24 nT. At the transition between the

two regimes the field is purely westward with By = −31 nT and then the IMF monotonically

decreases in strength over an 18 hour interval decaying from Bz = −18 nT to −4 nT.

In contrast to both these data sets the Blanchard and McPherron database is a set of

well-isolated substorms with a range of (AL)max = −170 to −1140 nT with active period

lengths ranging from 90 min to 600 minutes. Of the 124 data sets some show the classic

two-time delayed responses of ∆t1 ∼ 20 min and ∆t2 ∼ 60 min very clearly and thus provide

support for the bi-modal response model put forth in Bargatze et al. (1985) and developed

further by McPherron and Blanchard (1994).

Borovsky et al. (1993, 1994) report two patterns of substorm recurrences: one is the train
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of substorms with a well-defined mean recurrence time as in the Farrugia et al. data, except

now the mean recurrence time is 3.1 hr, and the second is a random sequence of events with

an exponential distribution of recurrence times consistent with a Poisson process. The mean

recurrence time here is 5 hrs.

Linear and nonlinear prediction filters have been employed by numerous groups to address

the issues of the type of internal nonlinear dynamics versus the external fluctuating solar wind

responsible for the substorms. The question is whether the internal magnetosphere dynamics

can be accurately characterized by a low-dimensional chaotic attractor. The theoretical

support for such a characterization stems in part from the observation that the extended

geomagnetic tail is a highly stressed system close to the MHD stability limit. For such

systems the theory of self-organized criticality (Chang (1992) states that only a few degrees

of freedom are required to describe the system. Support for this description follows from

the analysis of Sharma et al. (1993) and Vassiliadis et al. (1995). Using the singular value

decomposition method to extract the coherent dynamics from the stochastic solar wind

driven component, a rather clear convergence of the correlation dimension to ν ' 2.5 is

shown for the Bargatze AE time series.

4.3 Observations of plasma sheet heating

Huang et al. (1992) report detailed correlations of “density dropouts” and nonadiabatic

plasma heating with the expansion phase of substorms. The data is based on particle detec-

tors on ISEE satellite while in the CPS and the PSBL in the range X = −9RE to −23RE.

The energy range for the ions is 24−65 keV and electrons 23−75 keV. The principal conclu-

sion of their work is that the CPS is a major sink of substorm energy requiring powers of up

to 5×1010 W. The conclusion is based on using the observed changes in the particle densities

and energies applied uniformly to the region ∆x = 14RE, ∆z = 13RE and ∆y/x ∼= 15◦

azimuth for the plasma volume Ω ∼ 700R3
E in which the inferred thermal (non-streaming)

energy increase is ∆E ∼ 1.5 × 1012 J in the time ∆t ∼ 6 min, giving 5 × 1010 watts. Based

on the observations, Huang et al. (1992) argue that the plasma sheet heating is a result of

and not a cause of the substorm.

The energy conserving nonlinear dynamics substorm model explains quantitatively the

heating of CPS plasma since it explicitly contains a heating of the thermal plasma which

increases sharply with substorm onset expansion (EXO) phase. The model given here is

consistent with that of Doxas et al. (1994) which also correlates with the Huang et al. (1992)

data.
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These local particle observations place constraints on the time sequence of the oscillations

in WB, Wp, KE, and K‖. They also constrain the heating rate and the loss rate of the

thermal balance equation Wp. The test particle simulations of Doxas et al. (1990) address

these observations using a reconnection perturbation for the NENL paradigm. The test

particle simulations of Ashour-Abdalla et al. (1994) show the fast energization of the ions

and formation of parallel streaming beams that are consistent with the observed plasma

distributions and the nonlinear model (98)–(101). These test particle simulations intrinsically

contain a nonlinear form of the large gyroradius conductivity since they integrate the full

Lorentz force dynamics in prescribed tearing modes.

To summarize, collisionless heating and reconnection follow from the Horton-Tajima

(volume averaged) conductivity formula

σH−T =
nq2

mi

ε1/2

c1|ωcz|
, (103)

where c1 ≈ 10 is a constant determined by test particle simulations, ωcz is the cyclotron

frequency of the ions for the component of the magnetic field normal to the current sheet

(Bz) and ε = ρ/Lz is the finite Larmor radius parameter for the ions. Ion temperatures in

the central plasma sheet are in the range Ti = 1− 5 keV. For Ti = 1 keV the conductivity is

σH−T = 1× 10−5 mho/m which corresponds to Rm = 330. The Horton-Tajima conductivity

is valid for vanishing By. In the By = 0 case the electrons are tied to the magnetic field lines

and cannot move across them in the y-direction in response to the Ey field. When By 6= 0

the electrons can move along y and start playing an important role (Hernández et al. 1993b)

in the substorm dynamics.

On the other side of the issue, however, is the evidence from the studies of Prichard and

Price (1992), Prichard et al. (1995) that the evidence for low-dimensional nonlinear dynamics

for the magnetosphere is not convincing. Prichard et al. (1995) arguments are based on the

Borovsky et al. database and the issues are thoroughly debated in the reply by Klimas et al.

(1995b).

5 Conclusions

Returning to the global view of the solar-wind driven dynamics of the magnetosphere we

see that there is an important role in the global dynamics from the microscale electrical

transport properties in the plasma sheet. In this high plasma pressure-to-magnetic pressure

reversed field current sheet the ion orbits are large, comparable to the radius of curvature of
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the magnetic field line, and thus their motion is highly complex as shown in Sec. 2 through

the surface of sections in Figs. 4 to 7. A direct result of the chaotic orbits is to yield a

short correlation time for the transfer of energy-momentum between the electromagnetic

fields and the ions. The ion-fluctuation resonance is thus broad and a technique called

the velocity spectral correlation function method is used to calculate the self-consistent

field dynamics (Horton-Tajima, 1990, 1991a; Hernańdez et al., 1993; Horton et al., 1994).

The resulting conductivity is anomalously low and is of the form of a collisionless Hall

conductivity. This low conductivity gives a magnetic Reynolds number comparable to that

used in resistive MHD codes (Birn and Hesse, 1990) and global MHD simulations which

range from 4 × 102 to 104 (Usadi et al., 1994). In the terminology of tearing mode theory

this collisionless Hall conductivity determines the growth rate through the energy transfer

rate in the dissipation layer which in the magnetosphere is clearly a collisionless Hamiltonian

resonance between the particles and electromagnetic fields. Such a collisionless dissipation

is related to the microscopic velocity correlation function in Secs. 2.4–2.5 given through the

fluctuation-dissipation relation given in Sec. 2.6.

To complete the global tearing mode theory the energy released δWext by a pinching

perturbation of the current sheet must be calculated and may be expressed in terms of

δBz = ikxδAy through δWext = (πLyLz/2µ0k
2
x)|δBz|2∆′ext. The calculation of the external

∆′ext, or equivalently δWext, is a difficult numerical problem with different models given rather

different results according to the inclusion or exclusion of effects associated with Bz/Bx0,

By/Bx0, Lz/H and the value of kxLz. In essence, however, the global 3D MHD simulations

calculate the energy available in the evolving equilibria with mass flows. Returning to the

discussion in Sec. 1.2 it appears that for a northward IMF the magnetotail is sufficiently

“dipolar” that ∆′ext ∼ LNL
x /L2

z is not large enough to overcome stabilizing influences, partic-

ularly of Bz/Bx0. As the IMF rotates to θ = tan−1(By/Bz) ∼ π/2, and clearly for θ ∼ π,

the ∆′ext increases dramatically due to the thinning of the current sheet. There is then a

rapid growth of the tearing reconnection perturbation develops according to collisionless ion

conductivity. The electrons remain magnetized except possibly at the much smaller scale

of order c/ωpe where they finally break loose from the magnetic field lines. In this electron

microscale the plasma is decoupled from the magnetic field and electrons heat.

Other potentially unstable modes of importance are the pressure gradient driven inter-

changes and the kinking or flapping of the current sheet. As in the case of the laboratory

FRC confinement experiments, these modes appear to be anomalously stable in comparison

with the predictions of ideal MHD theory. The current view in laboratory FRC research is
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that the large ion orbits provide stabilizing kinetic currents. In the work of Krall-Seyler-

Sudan (1991) the method of calculating the large ion orbit current is closely related to the

method of Horton and his collaborators for the tearing mode. Krall et al. call their method

the calculation of phase-space autocorrelation functions. They conclude that the decorrela-

tion time τd for the exchange of energy, expressed in terms of δW , is τd ∼ 10/ωci. Although

requiring further study, this result appears consistent with the Horton-Tajima conductivity

formula.

From the theories and simulations reviewed here it is clear that for the FRC system

the kinetic response of the ions exerts a strong control over the large scale dynamics of the

system.

In the author’s view the complex and chaotic orbits may be thought of as providing a col-

lisionless dissipation which would be expected to provide the fast, collisionless reconnection

and the enhanced stability of pressure gradient driven interchange modes.
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Appendix A: Current Sheet Hamiltonian

Charged particles trapped in the current sheet have strongly nonlinear oscillations due to the

reversing of the magnetic field direction as they cross the sheet. The lowest order Hamiltonian

thus has the cubic nonlinear Lorentz restoring force rather than linear. The Hamiltonian for

Py = 0 is

H = 1
2
mż2 + 1

2
m

(
qB′x
2m

)2

z4 (A1)

where the restoring force is proportional to the square of the current density

µ0jy(0) =
dBx

dz

∣∣∣∣
z=0

= B′x. (A2)

For a given energy H = E the velocity at z = 0 is v = ż = (2E/m)1/2 and the tuning

point is zt = (2E/m)1/4(2m/qB′x)
1/2 = 21/2(vL/Ωx0)

1/2 where introduce the scale length

L = Bx0/B
′
x(0) and define the cyclotron frequency Ωx0 = qBx0/m.

It is important to know the details of the orbits of Eq. (A1) for the perturbation theory

and KAM theory of the system. To find the orbits let

z = zt tan θ

ż = zt sec2 θθ̇

and

E =
m

2
z2
t sec4 θθ̇2 +

m

8

(
qB′x
m

)2

z4
t tan4 θ

mz2
t

2E
(θ̇)2 =

1− tan4 θ

sec4 θ
=

1− tan2 θ

sec2 θ
= cos2− sin2 θ = 1− 2 sin2 θ. (A3)

Now, we let sinφ =
√

2 sin θ with θmax = π/4 corresponding to φmax = π/2 and obtain

φ∫
0

dφ√
1− 1

2
sin2 φ

=
∫ (

4E

mz2
t

)1/2

dt = u.

The orbit is then given by the sn(u,m)− Jacobi elliptic function through

sinφ = sn(u,m)
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with the quarter period T/4 given by

T

4
=

(
mz2

t

4E

)1/2 π/2∫
0

dφ√
1− 1

2
sin2 φ

and thus angular frequency of the motion is

Ω =
dH

dI
=

2π

T
=

π

2K(1
2
)

(
4E

mz2
t

)1/2

=
(
vΩ

L

)1/2
(

π

2K(1
2
)

)
= 0.847

(
vΩ

L

)1/2

.

This frequency is the geometric mean of the free transit rate v/L and the cyclotron frequency

at the edge z = L of the current sheet.

The Fourier series expansion of their orbit and other properties with respect to the

KAM theorem are given in Chirikov (1979). The action I readily obtained by integrating

I =
∫ H

0
dH/Ω(H) = IθH

3/4 ∝ v3/2 giving the action-angle Hamiltonian H = (I/I0)
4/3.
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[13] Büchner, J., and L.M. Zeleny̌ı, Deterministic chaos in the dynamics of charged particles

near a magnetic field reversal, Phys. Lett. A. 92, 13,395 (1986).

[14] Chang, T., Low-dimensional behavior and symmetry breaking of stochastic systems

near criticality—Can these effects be observed in space and in the laboratory?, IEEE

Transactions on Plasma Sci. 20, 691 (1992).

[15] Chen, J., and P.J. Palmadesso, Chaos and nonlinear dynamics of single-particle orbits

in a magnetotail-like magnetic field, J. Geophys. Res. 91, 1499 (1986).

[16] Chen, J., G.R. Burkhart, and C.Y. Huang, Geophys. Res. Lett. 17, 2237 (1990).

[17] Chen, J., J.L. Rexford, and Y.C. Lee, Fractal boundaries in magnetotail particle dy-

namics, Geophys. Res. Lett. 17, 1049 (1990).

[18] Chen, J., Nonlinear dynamics of charged particles in the magnetotail, J. Geophys. Res.

97, 15,011–15,050 (1992).

[19] Chirikov, B.V., A universal instability of many-dimensional oscillator systems, Phys.

Rep. 52, 263 (1979).

[20] Cliver, E.W., Solar activity and geomagnetic storms: The first 40 years, EOS Transac-

tions, American Geophysical Union 75, 566 and 609 (1994).

[21] Coppi, B., G. Laval, and R. Pellat, Dynamics of the geomagnetic tail, Phys. Rev. Lett

16, 1207 (1966).

[22] Doxas, I., W. Horton, K. Sandusky, T. Tajima, and R. Steinfolson, Numerical study of

the current sheet and plasma sheet boundary layer in a magnetotail model, J. Geophys.

Res. 95, 12033 (1990).

[23] Doxas, I., T.W. Speiser, P.B. Dusenbery, and W. Horton, A proposed neutral line

signature, J. Geophys. Res. 99, 2375 (1994).

[24] Dreike, P.L., C. Eischenberger, S. Humphries, Jr., and R.N. Sudan, Production of in-

tense proton fluxes in a magnetically insulated diode, J. Appl. Phys. 47, 2382 (1976).

39



[25] Farrugia, C.J., M.P. Freeman, L.F. Burlaga, R.P. Lepping, and K. Takahashi, The

earth’s magnetosphere under continued forcing: Substorm activity during the passage

of an interplanetary magnetic cloud, J. Geophys. Res. 98, 7657 (1993).

[26] Fedder, J.A., and J.G. Lyon, The solar wind-magnetosphere current-voltage relation-

ship, Geophys. Res. Lett. 14, 880 (1987).

[27] Fedder, J.A., and J.G. Lyon, The Earth’s magnetosphere is 165RE long: Self-consistent

currents, convection, magnetospheric structure, and processes for northward interplan-

etary magnetic field, J. Geophys. Res. 100, 3623–3635 (1995).

[28] Fedder, J.A., S.P. Slinker, J.G. Lyon, and R.D. Elphinstone, “Global numerical simula-

tion of the growth phase and the expansion onset for a substorm observed by Viking,”

J. Geophys. Res. 100, 19,083–19,093 (1995).

[29] Ferraro, V.C.A., “Aurorae and magnetic storms,” in The Earth and its Atmoshpere,

edited by D.R. Bates (Basic Books, Inc., Pergamon Press, 1957).

[30] Finn, J.M., and R.N. Sudan, Phys. Rev. Lett. 41, 695 (1978).

[31] Finn, J.M., Plasma Phys. 21, 405 (1979).

[32] Finn, J.M., and R.N. Sudan, Phys. Fluids 22, 1148 (1979).

[33] Finn, J.M., and R.N. Sudan, Nucl. Fusion 22, 1443 (1982).

[34] Galeev, A.A., and L.M. Zeleny̌ı, Tearing instability in plasma configurations, Sov. Phys.

JETP 43, 1113 (1976).

[35] Golden, J., C.A. Kapetanakos, S.J. Marsh, and S.J. Stephanakis, Generation of 0.2-TW

proton pulses, Phys. Rev. Lett. 38, 130 (1977).

[36] Golden, J., C.A. Kapetanakos, J.A. Pasour, and R.A. Mahaffey, The generation and

application of intense pulsed ion beams, Am. Sci. 69, 130 (1981).

[37] Harris, E.G., On a plasma sheath separating regions of oppositely directed magnetic

field, Nuovo Cim. 23, 115 (1962).

[38] Hernández, J.V., W. Horton, and T. Tajima, Low-frequency mobility response functions

for the central plasma sheet with applications to tearing modes, J. Geophys. Res. 98,

A4, 5893 (1993).

40



[39] Hernández, J., T. Tajima, and W. Horton, Neural net forecasting for geomagnetic ac-

tivity, Geophys. Res. Lett. 20, 2707 (1993b).

[40] Hill, T.W., Magnetic merging in a collisionless plasma, J. Geophys. Res. 80, 4689 (1975).

[41] Holland, D.L., and J. Chen, On chaotic conductivity in the magnetotail, Geophys. Res.

Lett. 19, 1231–1234, (1992).

[42] Horton, W., and T. Tajima, Decay of correlations and the collisionless conductivity in

the geomagnetic tail, Geophys. Res. Lett. 17, 123 (1990).

[43] Horton, W. and T. Tajima, Collisionless conductivity and stochastic heating of the

plasma sheet in the geomagnetic tail, J. Geophys. Res. 96, 15811 (1991).

[44] Horton, W., J.V. Hernández, T. Tajima, and A. Dykhne, Fluctuation dissipation rela-

tions for plasmas in strongly inhomogeneous magnetic fields, Physica D 71, 249 (1994).

[45] Horton, W., T. Tajima, and I. Doxas, in Physics of Space Plasmas (1995). Number

14, T. Chang and J.R. Jasperse, eds. (MIT Center for Theoretical Geo/Cosmo Plasma

Physics, Cambridge, MA, 1996); also Horton, W., and I. Doxas, A low-dimensional

energy conserving state space model for substorm dynamics, submitted to J. Geophys.

Res. (1995).

[46] Huang, C.Y., L.A. Frank, G. Rostoker, J. Fennell, and D.G. Mitchell, Nonadiabatic

heating of the central plasma sheet at substorm onset, J. Geophys. Res. 97, 1481 (1992).

[47] Klimas, A.J., D.N. Baker, D.A. Roberts, D.H. Fairfield, and J. Büchner, A nonlinear
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Figure Captions

1. The magnetic field lines forming the Earth’s magnetosphere as given by the widely

used magnetic field model Tsyganenko (1987) based on satellite data. The solar wind

from the left stretches the dipole field out into the extended magnetotail to the right.

2. Equatorial and meridian cross-sections showing the plasma flow lines and magnetic

field lines over a 1.5-hour period for the case when a southward IMF is present in

the solar wind. Because of reconnection in the plasma sheet, a plasmoid develops

and is accelerated toward the tail boundary. Note that Figs. 2(a)-(d) are drawn for

−90RE ≤ x ≤ 20RE, 0 ≤ y ≤ 40RE, and 0 ≤ z ≤ 40RE, while actual simulations were

executed for −95RE ≤ x ≤ 30RE, 0 ≤ y ≤ 50RE, and 0 ≤ z ≤ 50RE.

3. The effective potential Vpy(z) controlling the motion of a charged particle in the pres-

ence of a nonuniform magnetic field. (a) the shape of the effective potential for the

case of a reversed field for qpy > 0. (b) the effective potential for the case of particles

with qpy < 0. (c) the phase space diagrams for the Hamiltonian flow for case (b) with

the phase space separatrix SX separating the crossing and non-crossing orbits. The

critical energy is Hc = p2
y/2m.

4. Surface of section plot for the reversed field configuration with bz = 0.05 and κ = 0.18

(ĤCP = 500) and By/Bz = 0.
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5. Surface of section plot for the reversed field configuration with bz = 0.05 and κ = 0.18

(ĤCP = 500) and By/Bz = 1.

6. Surface of section plot for the reversed field configuration with bz = 0.05 and κ = 0.18

(ĤCP = 500) and By/Bz = 5.

7. Three-dimensional perspective views for examples of the three orbit classes for the

current sheet Hamiltonian with κ = 0.18 and bz = 0.05 and By/Bz = 0. (a) a ring

orbit, (b) a quasi-trapped or stochastic orbit and (c) a transient or Speiser orbit.

8. Conductivity for unmagnetized plasma. (a) transverse and (b) longitudinal compo-

nents of the dissipative part of the conductivity for perturbations propagating along

the x-axis. In both plots the solid curves represent the theoretical conductivities (85)

and the impulse lines represent the conductivities from microscopic fluctuations ob-

tained numerically with the SVC formalism of Sec. 4.2. The results were generated

by launching N = 3000 particles distributed according to a Maxwellian distribution in

velocity and uniformly distributed along the x-axis from x = 0 up to x = 2π/k.

9. Conductivity for the Harris sheet: |z/Lz| < 1.(a) Transverse component of the dissipa-

tive part of the conductivity (Re σyy) produced by the microscopic fluctuations from

charged particles trapped in the plasma sheet and (b) blow up of the low-frequency

portion of Re σyy.

10. Conductivity for the Harris sheet: 3 ≤ z/Lz ≤ 4. (a) transverse component of the

dissipative part of the conductivity (Re σyy) produced by the microscopic fluctuations

from charged particles away from the plasma sheet, that is, well into the lobe region

where the magnetic field is nearly uniform, B(z) ≈ Bx0êx; (b) blow up of the low-

frequency portion of Re σyy. Note the difference between the low frequency portions

of the transverse conductivity for the inhomogeneous case (Fig. 9(b)) and for the

homogeneous case (Fig. (10(b)). This is an example of the enhancement of the low

frequency spectrum due to inhomogeneities in the plasma.
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