
Bootstrap Current Close to Magnetic Axis

in Tokamaks

K.C. Shaing and R.D. Hazeltine
Institute for Fusion Studies, The University of Texas at Austin

Austin, Texas 78712 USA

Abstract

It is shown that the bootstrap current density close to the magnetic axis in tokamaks

does not vanish in simple electron-ion plasmas because the fraction of the trapped particles

is finite. The magnitude of the current density could be comparable to that in the outer core

region. This will reduce or eliminate the need of the seed current.
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It is well known from conventional neoclassical theory that a steady-state tokamak cannot

be sustained by the bootstrap current alone without a seed current on the magnetic axis.1−3

The main reason is that as r, the minor radius, approaches zero, the bootstrap current also

vanishes. A seed current is thus required to maintain the equilibrium safety factor q profile.

However, because particle orbit topology in the region close to the magnetic axis deviates

from that employed in the conventional theory, the prediction of the bootstrap current based

on the conventional theory becomes questionable in that region.4,5 Indeed, a parallel flow

close to the magnetic axis for the fusion alpha particles is calculated in Ref. 6 by taking

into account the proper orbit topology. This parallel alpha flow contributes to the bootstrap

current on the magnetic axis. It is also argued that because the fraction of the trapped ions

does not vanish when r → 0, the bootstrap current should be finite there.7 Here, we calculate

parallel plasma viscosities and find from the solution of the parallel balance equations for

simple electron-ion plasmas that the bootstrap current close to the magnetic axis does not

vanish. The magnitude of the current density can be comparable to that in the outer core

region. This will reduce or eliminate the need of the seed current.

The proper linearized drift kinetic equation is8
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where v‖ is the parallel (to the magnetic field B) particle speed, vd is the drift velocity, f is

the perturbed particle distribution function, v is the particle speed, vt is the thermal speed,

V is the mass flow velocity, q is the heat flow, p is the plasma pressure, B = |B|, C(f) is

the Coulomb collision operator, and fM is the Maxwellian distribution. The independent

variables in Eq. (1) are (E, µ, ψ, θ) where E = v2/2, µ = v2
⊥/2B, ψ is the poloidal flux

function, θ is the poloidal angle, and v2
⊥ = (v2−v2

‖)/2 is the perpendicular (to B) speed. For
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simplicity, we neglect the effects of orbit squeezing here. The basic assumptions for Eq. (1)

are that the equilibrium gradient scale length is larger than the width of the orbit, inverse

aspect ratio ε < 1, and that all the relevant flow velocities are subsonic (so that the plasma

is incompressible).

To solve Eq. (1), we need to know the particle trajectory shown in Fig. 1. The particle

trajectory close to the magnetic axis is determined by three constants of motion: toroidal

canonical momentum Pζ = ψ − Iv‖/Ω, magnetic moment µ, and energy v2/2. Here, I =

R2∇∇∇ζ · B, R is the major radius, ζ is the toroidal angle, and Ω is the gyrofrequency. For

particles in the vicinity of the magnetic axis, the deviation from the magnetic axis ψ0 = 0

can be described as

x3 + 2
Iv‖0
Ω0

x− 2I2C1

Ω2

(
v2
‖0 + µB0

)
cos θ = 0, (2)

where θ is the poloidal angle, x =
√
ψ, the subscript “0” indicates evaluation at ψ0 = 0 and

θ = θ0, and C1 =
√

2q/IR. To obtain Eq. (2), we have used a large aspect ratio expansion,

i.e., ε¿ 1, and assumed that there is no magnetic shear for simplicity.

The solution to Eq. (2) is characterized by the effective pitch angle parameter κ =

(8/27)(I|v‖0|/Ω0)
3/[(I2C1/Ω

2
0)

2(v2
‖0 + µB0)

2]. For simplicity, we assume Ω0 is positive. For

circulating particles, −∞ < σκ < −1, and 0 < σκ < ∞, where σ = v‖0/|v‖0|. For trapped

particles −1 ≤ σκ ≤ 0. Trapped particles are defined as particles that have turning points,

namely, poloidal angles at which poloidal angular speed ω = (v‖n̂ + vd) · ∇∇∇θ/(n̂ · ∇∇∇θ) = 0,

on their trajectories. Note that if Ω0 is negative, the orbit trajectory is the same as that of

the positive Ω0 as long as the sign of σ is also changed simultaneously.

The real positive solutions to Eq. (2) have the general form

x = 2x̂T, (3)

where x̂ = [(I2C1/Ω
2
0)(v

2
‖0 + µB0)]

1/3(|σκ|)1/6, and T is one of the following functions:

3



cos(β/3), sin(π/6 ± β/3), sinh(β/3), and cosh(β/3). Because orbit trajectories are up-

down symmetric in poloidal angle θ, we only describe trajectories in the first and the

second quadrants. There are two classes of circulating particles with −∞ < σκ < −1.

One class is described by T = cos(β/3) with cos β = cos θ/
√
|σκ| for 0 ≤ θ ≤ π/2, and

T = sin(π/6 + β/3) with cosβ = | cos θ|/
√
|σκ| for π/2 ≤ θ ≤ π. The other class is

described by T = sin(π/6 − β/3) with cosβ = | cos θ|/
√
|σκ| for π/2 ≤ θ ≤ π. This

class of circulating particles intersect the magnetic axis; thus the poloidal angle span is

π/2 ≤ θ ≤ π. There is only one class of circulating particles with 0 < σκ < ∞. They

can be described as T = sinh(β/3) with sinh β = cos θ/
√
|σκ| for 0 ≤ θ ≤ π/2. Note

this class of circulating particles also intersect the magnetic axis. For trapped particles,

there exists a critical angle θc defined by the solution of the equation σκ + cos2 θc = 0.

The turning point is θt = π − θc. There are two branches for a trapped particle trajec-

tory separated by θt. The inner branch that intersects the magnetic axis is described by

T = sin(π/6−β/3) with cosβ = | cos θ|/
√
|σκ| for π/2 ≤ θ ≤ π−θt. The outer branch is de-

scribed by T = sin(π/6+β/3) with cos β = | cos θ|/
√
|σκ| for π/2 ≤ θ ≤ π−θt, T = cos(β/3)

with cos β = | cos θ|/
√
|σκ| for θc ≤ θ ≤ π/2, and T = cosh(β/3) with coshβ = cos θ/

√
|σκ|

for 0 ≤ θ ≤ θc.

Employing the constants of motion and the definition of ω, we find9

ω =
3

4

Ω0

I

(
ψ +

2

3

Iv‖0
Ω0

)
, (4)

if ε ¿ 1. Note that ψ = x2 and x is given in Eq. (3). The poloidal angular speed ω can be

written as

ω = ω̂(4T 2 + σ), (5)

where ω̂ = (3Ω0/4I)[(I
2C1/Ω

2
0)(v

2
‖+µB0)

√
|σκ| ]2/3. It is straightforward to show that ω = 0

at θ = θt as expected.

The fraction of trapped particles ft can be estimated from κ ' 1 to obtain ft '
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(IvtC
2
1/Ω0)

1/3, by approximating v2
‖0 + µB0 ' v2/2 ' v2

t /2.

The trapped particle bounce frequency ωb can be found by approximating |σκ| ∼ 1 in ω̂

and is ωb ≈ (IvtC
2
1/Ω0)

1/3(vt/Rq) = vtft/Rq.

We are interested in the collisionless regime where ν/(f 2
t ) < ωb with ν the collision

frequency. The perturbed distribution function f can be expanded as f = f1 + f2 + ... with

small parameter ν/(f2
t ωb). The leading order equation is
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where K = V · ∇∇∇θ/B · ∇∇∇θ and H = q · ∇∇∇θ/B · ∇∇∇θ. The next order equation is

(v‖n̂+ vd) · ∇∇∇f2 = C(f1). (7)

Equation (6) can be solved approximately by neglecting the curvature drift and (3v2
‖/2v

2)

term on the right side of Eq. (6). Note that neglecting the curvature drift and (v‖/v)
2

terms are justified because transport fluxes in a large aspect ratio tokamak, including boot-

strap current, are dominated by either trapped particles or barely circulating particles where

ω ≈ 0.10 Both ω and vd · ∇∇∇ψ can be expressed in terms of the gradients of Pζ , namely,

ω = −(I/Ω)(∂Pζ/∂ψ)/(∂Pζ/∂E) and vd · ∇∇∇ψ = (I/Ω)[(∂Pζ/∂θ)/(∂Pζ/∂E)]n̂ · ∇∇∇θ. Because

v2
‖/v

2 ∼ f 2
t ¿ 1, the driving term on the right side of Eq. (6) can be written in terms of

vd · ∇∇∇ψ approximately to become

(v‖n̂+ vd) · ∇∇∇f1 = − I
Ω

∂Pζ/∂θ

∂Pζ/∂E
n̂ · ∇∇∇θ · D, (8)

whereD = (2/v2
t )(Ω0B0/I)fM [K+(v2/v2

t−5/2)2H/(5p)]. Changing variables from (E, µ, ψ, θ)

to (E, µ, Pζ , θ), and utilizing Eq. (4) we solve Eq. (8) for f1

f1 = −4

3

Iω

Ω0

D + g(E, µ, Pζ), (9)
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where g is the integration constant to be determined from Eq. (7).11 The pitch angle scat-

tering operator in Eq. (7) can be simplified by noting that the collision process is dominated

by pitch angle scattering across the ω ≈ 0 boundary:

C(f1) ≈ νDE
∂2f1

∂ω2
. (10)

Substituting Eqs. (9) and (10) into Eq. (7), annihilating the left side of Eq. (7) by averaging

over the particle trajectory and employing reflection boundary condition for trapped particles

and periodic boundary condition for circulating particles, we find

∂g

∂κ
=

C
κ
ω̂2

∮ dθ

n̂·∇∇∇θ
ω
. (11)

where C is an integration constant. To obtain Eq. (10) we have employed the relation

dω ≈ (4/3)[ω̂2/(2κω)]dκ. The average integral
∮
Adθ in Eq. (11) is defined as

∮
dθA =∫ T

0 dθA/T for each class of the circulating particles where T can be either T1 = π or T2 = π/2

depending on whether they encircle or pass the magnetic axis, and
∮
dθA = (

∫ θt
0 dθ|A|)/T1 +

(
∫ θt

0 dθ|A|)/T2 for trapped particles. The constant C is determined by the condition that

∂f1

∂ω
vanishes when |σκ| → ∞ for circulating particles and the even (in ω) part of ∂g/∂κ

continuous across the circulating/trapping boundary.11 This yields

∂f1

∂ω
= −4

3

I

Ω0

D
(

1− |ω|
〈|ω|〉θ

H

)
. (12)

where 〈|ω|〉θ =
∮
dθ|ω|, and H = 1 for circulating particles and H = 0 for trapped particles.

To calculate the parallel plasma viscosity, ∂f1/∂ω is adequate.

The parallel plasma viscosity is defined as12

〈B · ∇∇∇ · TTT j〉 =

〈∫
d3vMv2Σj

(
1

2
− 3

2

v2
‖
v2

)
fn̂ · ∇∇∇θ ∂B

∂θ

〉
, (13)

where TTT 1 = πππ, the viscous tensor, TTT 2 = ΘΘΘ, the heat viscous tensor, Σ1 = 1, Σ2 = v2/v2
t −5/2,

M is the mass, and the angular brackets denote both radial average and flux surface average

6



as defined in Refs. 8 and 11. With Eq. (6), 〈B · ∇∇∇ · TTT j〉 can be expressed in terms of collision

operator

〈B · ∇∇∇ · TTT j〉 = −
〈∫

d3vMf1C(f1)D−1
1

〉
, (14)

where D−1
1 = (v2

t /2)/{fM [K + (v2/v2
t − 5/2)(2H/5p)]}. Integrating by parts, and changing

variables from dµ to dω, we find

〈B · ∇∇∇ · TTT j〉 '
〈∫

d3vMD−1
1 νEE

(
∂f1

∂ω

)2〉
. (15)

〈B · ∇∇∇ · TTT j〉 can be evaluated by employing Eq. (12) in Eq. (15) and is

〈B · ∇∇∇ · TTT j〉 = 1.12Ip
NMB2

0√
π

νC
2/3
1

(
Ivt
Ω0

)1/3

×
∫ ∞

0
dx x5/3 νD

ν
e−xΣj

[
K + (x− 5/2)

2H

5p

]
, (16)

where Ip = Σα

∫∞
0 (dκ/κ2/3(〈ω̂/|ω|〉θ − Hω̂/〈|ω|〉θ) = 2.77, α = ω/|ω|, and ν is the self-

collision frequency. A set of viscous coefficients can be defined

µj = 1.12Ip
ν√
π

(
Ivt
Ω0

)1/3

C
2/3
1

∫ ∞
0

dx x5/3σj
νD
ν
e−x (17)

for j = 1−3, σ1 = 1, σ2 = x−5/2, and σ3 = (x−5/2)2. The parallel viscosities then become

 〈B · ∇∇∇ · πππ〉
〈B · ∇∇∇ ·ΘΘΘ〉

 = NMB2
0

µ1 µ2

µ2 µ3



K

2H

5p

 . (18)

Note that µj is proportional to the fraction of the trapped particles ft = C
2/3
1 (Ivt/Ω0)

1/3

similar to the viscous coefficient in the conventional theory.12

To calculate the bootstrap current in simple electron-ion plasmas, we solve the parallel

force balance equations for electrons and ions

〈B · ∇∇∇ · πππj〉 = 〈BF1j〉,

〈B · ∇∇∇ ·ΘΘΘj〉 = 〈BF2j〉,
(19)
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where j = 1 for ions and j = e for electrons. F1e = −F1i = `e11(Vi‖ − Ve‖) + (2/5)`e12(qe‖/pe),

F2e = −`e12(Vi‖−Ve‖)−(2/5)`e22(qe‖/pe), F2i = −(2/5)`i22(qi‖/pi), `
e
11 = NeMeνee, `

e
12 = 1.5`e11,

`e22 = 4.66`e11 and `i12 =
√

2NiMiνii.
12 Equation (19) has the same form as that in the

conventional theory, the bootstrap current has thus the familiar form12

〈JbB〉 = −σeff

(
Meµ1e

Ne2

)
Ic

(1 +
µ2e

µ1e

`eb12

`eb22

)
P ′

+

(
1 +

µ2e

µ1e

`eb12

`eb22

)
µ2i

µ1i

NT ′i +
µ2e

µ1e

(
1 +

µ3e

µ2e

`eb12

`eb22

)
NT ′e

, (20)

except for different viscous coefficients which are given in Eq. (17). The notations in Eq. (20)

are: Jb is the bootstrap current, `eb11 = `e11+NMeµ1e, `
eb
12 = `e12−NMeµ2e, `

eb
22 = `e22+NMeµ3e,

prime denotes d/dψ, P ′ = p′i + p′e, c is the speed of light, e is the ion charge, and electric

conductivity close to the magnetic axis σeff is

σeff = (Ne)2 `eb22

`eb11`
eb
22 − (`eb12)

2
. (21)

Thus, the electric conductivity is not classical as ψ → 0.

Note that for a parabolic profile in r, dP/dψ, and dT/dψ are finite as ψ → 0. Also

µj ∝ ft are also finite as ψ → 0. We have thus shown that 〈JbB〉 remains finite as ψ → 0.

The physical reason is obvious: the fraction of trapped particles does not vanish as ψ → 0,

because of the nature of orbit topology close to the magnetic axis. The magnitude of the

bootstrap current density in Eq. (20) can be comparable to that of the conventional theory

in the core region. For example, for parameters in enhanced-reversed-shear (ERS) mode in

TFTR.13: Te = 5 keV, B = 4.6 T, R = 2.6 m, q(ψ = 0) = 3, and minor radius a = 94 cm,

the ratio R of the bootstrap current density at ψ → 0 to that at r/a = 0.5 is about 18% if

we assume dP/dψ at ψ → 0 is the same as that at r/a = 0.5 and employ the large aspect

ratio expression of the bootstrap current at r/a = 0.5. Similarly, for DIII-D parameters14:

Te = 4 keV, B = 2.1 T, R = 1.6 m, q(ψ = 0) = 3, and a = 60 cm, the same ratio is
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about 27%. The corresponding fraction of trapped particles is ft ' 6 × 10−2 for DIII-D

and ft ' 4 × 10−2 for TFTR. The width of the trapped electron orbits discussed here is

about reM = R(2ρeq/R)2/3 where ρe is the electron gyroradius.5 For TFTR, reM = 0.62 cm,

and for DIII-D, reM = 0.83 cm.15 Because the bootstrap current density calculated from the

conventional theory and the theory developed here should have similar magnitude at r ∼ reM ,

we can also estimate R as Rc ∼
√
reM/R/

√
ε|r/a=0.5 based on the conventional theory. For

TFTR, Rc ' 11.5% and for DIII-D, Rc ' 16.6%. The difference between R and Rc results

from the detailed numerical viscous coefficients in Eq. (17) and is an indication that the

transition of the bootstrap current from the conventional theory to the theory presented

here is at about r ∼ 2reM > 1 cm for both TFTR and DIII-D.

The bootstrap current presented here could be narrow in radius. However, without such

a current, we can never have tokamaks with 100% bootstrap current. Thus the narrowness

of the bootstrap current density is not an issue. The existence of the bootstrap current

density on the magnetic axis is crucial, however. Indeed, it has been shown that conven-

tional tokamak equilibria do not exist if plasma current density vanishes on the magnetic

axis.16 Because bootstrap current density vanishes on the magnetic axis based on the con-

ventional neoclassical theory, on needs seed current to maintain tokamak plasma equilibria.

The amount of the seed current that is required can be very small, but finite nevertheless.

Stable tokamak plasma equilibria with bootstrap current fraction as high as 99.7%, but not

100%, have been found based on the conventional neoclassical theory.17 Employing the the-

ory developed here, we can find stable tokamak equilibria with 100% bootstrap current by

following the procedure used in Ref. 17. Namely, we first choose a dP/dψ profile which has

a finite value on the magnetic axis. Next, we calculate both diamagnetic current density

profile and bootstrap current density profile from the standard neoclassical theory and the

theory presented here. We then solve Grad-Shafranov equation to find the equilibrium which

now only has bootstrap current and diamagnetic current. Finally, we examine the stability
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property of the equilibrium.
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FIGURE CAPTIONS

FIG. 1. Schematic diagrams of the circulating and trapped particle orbits for (i) −∞ <

σκ < −1, (ii) 0 < σκ <∞, and (iii) −1 < σκ < 0.
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