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Richard Fitzpatricka)

Center for Magnetic Reconnection Studies, Institute for Fusion Studies, Department of Physics,
University of Texas at Austin, Austin, Texas 78712

Amitava Bhattacharjee and Zhi-Wei Ma
Center for Magnetic Reconnection Studies, Department of Physics and Astronomy, University of Iowa,
Iowa City, Iowa 52242

Timur Linde
Center for Magnetic Reconnection Studies, ASCI Flash Center, Department of Astronomy and Astrophysics,
University of Chicago, Chicago, Illinois 60637

~Received 28 May 2003; accepted 19 August 2003!

An improved Laplace transform theory is developed in order to investigate the initial response of a
stable slab plasma equilibrium enclosed by conducting walls to a suddenly applied wall perturbation
in the so-called Taylor problem. The novel feature of this theory is that it does not employ
asymptotic matching. If the wall perturbation is switched on slowly compared to the Alfve´n time
then the plasma response eventually asymptotes to that predicted by conventional asymptotic
matching theory. However, at early times there is a compressible Alfve´n wave driven contribution
to the magnetic reconnection rate which is not captured by asymptotic matching theory, and leads
to a significant increase in the reconnection rate. If the wall perturbation is switched on rapidly
compared to the Alfve´n time then strongly localized compressible Alfve´n wave-pulses are generated
which bounce backward and forward between the walls many times. Each instance these
wave-pulses cross the resonant surface they generate a transient surge in the reconnection rate. The
maximum pulse driven reconnection rate can be much larger than that predicted by conventional
asymptotic matching theory. ©2003 American Institute of Physics.@DOI: 10.1063/1.1617983#
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I. INTRODUCTION

This paper investigates a model resistive magnetohy
dynamical~MHD! problem which was first proposed by J. B
Taylor. In this problem, a stable slab plasma equilibrium
subject to a suddenly imposed, small amplitude bound
perturbation which is such as to drive magnetic reconnec
at the center of the slab. This type of reconnection, which
not due to an intrinsic plasma instability, is generally term
‘‘forced reconnection.’’ The so-called ‘‘Taylor problem’’ is o
fundamental importance to the field of magnetic reconn
tion, and has therefore been the subject of extensive stud1–6

The standard analytical technique used to investigate
Taylor problem involves first taking theLaplace transformof
the linearized MHD equations, and then solving the result
equations viaasymptotic matching.1 The various stages in
the matching process are as follows. First, the plasma is
vided into two regions. The so-called ‘‘outer region’’ com
prises most of the plasma, whereas the ‘‘inner region’’ is
narrow layer centered on the resonant surface~where the
equilibrium magnetic field reverses sign!. The outer region,
throughout which plasma inertia, resistivity, and viscosity
neglected, is governed by the easily soluble equations
marginally stable, ideal-MHD. In the inner region, plasm
inertia, resistivity, and viscosity are retained in the analy
but the governing equations are considerably simplified
exploiting the narrowness of this region compared to the

a!Electronic mail: rfitzp@farside.ph.utexas.edu
4281070-664X/2003/10(11)/4284/7/$20.00
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of the plasma. Asymptotic matching between the solutio
obtained in the inner and outer regions yields an expres
for the Laplace transformed reconnected magnetic flux.
nally, this expression is inverted to give the reconnec
magnetic flux as a function of time.

The analytic solution obtained via asymptotic matchi
reveals that theinitial response of the plasma to the wa
perturbation is largely governed by plasmainertia. In the
limit in which the perturbation is switched on very sudden
~at t50), the reconnected flux varies asc0;ht2, whereh is
the plasma resistivity at the resonant surface.1 This particular
result has been the subject of much dispute in
literature.3–6

One of the main difficulties encountered when discu
ing the initial response of the plasma to the wall perturbat
lies in the fact that at very early times the asymptotic mat
ing approach clearly breaks down. It should take at leas
few Alfvén times for information regarding the suddenly a
plied wall perturbation to travel from the edge to the cen
of the plasma. During this time interval, inertia plays a s
nificant role in the response throughout thewhole plasma,
i.e., there is no outer region in which the response is so
governed by marginally stable, ideal-MHD. Another way
putting this is that at very early times the inner region e
tends over all the plasma. In the conventional analysis of
Taylor problem, it is tacitly assumed that a few Alfve´n times
after the imposition of the wall perturbation the respon
relaxes to the marginally stable, ideal-MHD respon
throughout the bulk of the plasma, with deviations from th
4 © 2003 American Institute of Physics

license or copyright, see http://pop.aip.org/pop/copyright.jsp



o
r
li

ha

im
v
a

he
is
a

th
v
it

on-

the
ing

-

qs.

4285Phys. Plasmas, Vol. 10, No. 11, November 2003 Wave driven magnetic reconnection in the Taylor problem
response being localized to a relatively thin layer centered
the resonant surface. Of course, once relaxation has occu
the usual asymptotic matching approach becomes va
However, up to now, this important relaxation process
never been studied in any detail.

The aim of this paper is to investigate theearly time
responseof the plasma to the wall perturbationwithoutusing
asymptotic matching. We hope to characterize the early t
response, and also to determine whether this response e
tually asymptotes to that obtained via convention
asymptotic matching~as is generally assumed to be t
case!. We shall neglect plasma viscosity in our analys
since this effect plays an negligible role in the initial plasm
response.

II. PRELIMINARY ANALYSIS

A. Basic equations

Standard right-handed Cartesian coordinates (x,y,z) are
adopted. It is assumed that there is no variation along
z-axis, i.e.,]/]z[0. Consider a compressible plasma go
erned by equations of resistive MHD. Let the plasma dens
r, and resistivity,h, both be uniform. It follows that

B5¹∧A, ~1!

m0j5¹∧B, ~2!

2
]A

]t
2¹w1V∧B5h j , ~3!

rF]V

]t
1~V•¹!VG52¹p1 j∧B, ~4!

]p

]t
1V•¹p52Gp¹•V, ~5!

whereA is the vector potential,w is the scalar potential,B is
the magnetic field,V is the plasma velocity,p is the plasma
pressure,j is the current density, andG55/3 the ratio of
specific heats.

Let (x/a,y/a,z/a)→(x,y,z), t/(a/VA)→t, B/B0→B,
A/(B0a)→A, V/VA→V, w/(B0VAa)→w, p/(rVA

2)→p,
and j /(B0 /m0a)→ j , whereVA5B0 /Am0r is the Alfvén ve-
locity, a is a convenient scale-length, andB0 is a convenient
scale magnetic field-strength.

Let A(x,y,t)5@0,0,c(x,y,t)#, and V(x,y,t)
5@u(x,y,t),v(x,y,t),0#. It follows that

]u

]t
52u

]u

]x
2v

]u

]y
2

]p

]x
2¹2c

]c

]x
, ~6!

]v
]t

52u
]v
]x

2v
]v
]y

2
]p

]y
2¹2c

]c

]y
, ~7!

]c

]t
52u

]c

]x
2v

]c

]y
1h¹2c, ~8!

]p

]t
52u

]p

]x
2v

]p

]y
2GpS ]u

]x
1

]v
]y D , ~9!

where¹2[]2/]x21]2/]y2.
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B. Plasma equilibrium

Suppose that the plasma is bounded by perfectly c
ducting walls located atx561, and is periodic in the
y-direction with periodicity lengthL. The initial plasma equi-
librium satisfies

u~0!~x!50, ~10!

v ~0!~x!50, ~11!

c~0!~x!52
x2

2
, ~12!

p~0!~x!5p02
x2

2
, ~13!

wherep0 is the central pressure. In unnormalized units,B0 is
the equilibrium magnetic field-strength atx5a, anda is half
the distance between the conducting walls. Note that
above plasma equilibrium is completely stable to tear
modes.

C. Boundary conditions

Suppose that the conducting wall atx51 is subject to a
small~compared with unity! displacementJ(t)cos(ky) in the
x-direction, wherek52p/L. An equal and opposite dis
placement is applied to the wall atx521. The appropriate
no-slip boundary conditions at the walls are

u~1,y,t !52u~21,y,t !5
]J~ t !

]t
cos~ky!, ~14!

v~1,y,t !5v~21,y,t !50, ~15!

c~1,y,t !5c~21,y,t !52 1
21J~ t !cos~ky!, ~16!

p~1,y,t !5p~21,y,t !5p02 1
21J~ t !cos~ky!. ~17!

Let

J~ t !5J0@12e2t/t2~ t/t!e2t/t# ~18!

for t>0, with J(t)50 for t,0. Note that bothJ(t) and
dJ(t)/dt are continuous att50.

III. LAPLACE TRANSFORM THEORY

A. Analysis

Let us write u(x,y,t)5@]j(x,t)/]t#cos(ky). Here,
j(x,t) is the plasma displacement in thex-direction. The
boundary conditions onj(x,t) are simply

j~61,t !56J~ t !. ~19!

Moreover, it follows from symmetry thatj(2x,t)
52j(x,t), and hence that

j~0,t !50. ~20!

The linearized and Laplace transformed versions of E
~6!–~9! can be reduced to

]

]x F S x21
g2GP

g21GPk2D ]j̄

]x G2~k2x21g2!j̄50, ~21!
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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provided thath is negligible. Here,P5p02x2/2 is the equi-
librium pressure, and

j̄~x,g!5E
0

`

j~x,t !e2gtdt, ~22!

the Laplace transformed plasma displacement. The boun
conditions onj̄(x,g) are

j̄~61,g!56E
0

`

J~ t !e2gtdt56
J0

g~11gt!2
, ~23!

and

j̄~0,g!50. ~24!

Note that the neglect of resistivity during the derivation
Eq. ~21! is justified provided thatt!t1 , where1

t15
1

h1/3k2/3
. ~25!

In the following, we shall parameterize the plasma
sponse to the wall perturbation in terms of the quantity,

J~ t !52
]j~0,t !

]x
, ~26!

which represents~minus! the perturbed current density at th
resonant surface (x50). Now, it easily follows from Ohm’s
law ~including resistivity! that

dc0~ t !

dt
5hJ~ t !, ~27!

wherec0(t) is the reconnected magnetic flux. Thus,J(t) is a
measure of both the rate of magnetic reconnection and
amplitude of the current sheet driven at the resonant surf

Let Y(x,g) be a solution of Eq.~21! which satisfies

Y~0,g!50, ~28!

Y~1,g!51. ~29!

It follows that

J~ t !5
J0

2p i EC

2Y8~0,g!egt

g~11gt!2
dg, ~30!

whereY85]Y/]x, andC represents the Bromwich contou

B. Asymptotic matching response

The integrand on the right-hand side of Eq.~30! pos-
sesses obvious poles atg50 andg521/t. Let us calculate
the plasma response due to these poles. Provided thatt@1,
both poles are characterized byg!1. In this limit, Eq.~21!
can be solved via asymptotic matching. The outer reg
corresponds touxu@ugu. In this region, Eq.~21! reduces to

]

]x S x2
]j̄

]x D 2k2x2j̄.0. ~31!

The solution to the above equation which satisfies the bou
ary condition~29! takes the form
Downloaded 25 Mar 2004 to 128.83.61.74. Redistribution subject to AIP 
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sinhkx

x sinhk
. ~32!

The inner region corresponds touxu&ugu. In this region, Eq.
~21! reduces to

]

]x F S x21
g2

k2D ]j̄

]x G.0. ~33!

The solution to the above equation which satisfies the bou
ary condition~28!, and matches to the outer solution, is wr
ten

Y.
2k

p sinhk
tan21S kx

g D . ~34!

Thus, it follows that

2Y8~0,g!5
2kEsw

pg
, ~35!

whereEsw52k/sinhk. Finally, direct inversion of Eq.~30!
yields

J~ t !5
2kEswJ0

p
@ t1~ t12t!e2t/t22t#. ~36!

Note that the above expression is identical to that obtai
from conventional asymptotic matching theory.1,6

C. Wave response

The integrand on the right-hand side of Eq.~30! also
possesses poles which correspond to those of the func
Y8(0,g). These additional poles can be writteng56 ivn ,
for n51,2,3,... . Here, thevn ~which are real! are the eigen-
values of the eigenequation,

d

dx F S x22
vn

2GP

GPk22vn
2D dYn

dx G2~k2x22vn
2!Yn50, ~37!

where the eigenfunctionsYn(x) satisfy the boundary condi
tions Yn(0)5Yn(1)50. Of course, theYn represent the
natural Alfvénic modes of oscillation of the plasma, where
thevn are the associated oscillation frequencies. The plas
response emanating from these new poles can be thoug
as due to compressible Alfve´n waves excited by the sudden
imposed wall perturbation.

Figure 1 shows the first tenvn values calculated as func
tions of k for p051. For comparison, the curvesvn

5AGp0(n2p21k2) for n51,10 are also plotted. It can b
seen that there is a fairly close correspondence between
calculatedvn values and the curves, which indicates that t
natural Alfvénic modes of oscillation of the plasma hav
frequencies which satisfy the approximate dispersion rela
vn.AGp0(n2p21k2) for n51,2,3,... . The dependence o
Gp0 demonstrates that these modes are related tocompress-
ible ~rather than shear! Alfvén waves. Note that for smallk
values thevn areequally spaced, whereas this is not the cas
for largek values.
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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IV. NUMERICAL RESULTS

A. Introduction

Equations~6!–~9!, plus the initial equilibrium~10!–~13!,
and the boundary conditions~14!–~18!, have been imple-
mented numerically within the massively parallel, adapt
mesh refinement~AMR! architecture of the FLASH code.7

The particular integration scheme employed is a fully e
plicit, second-order~in both time and space!, finite-volume,
cell-centered method with limited gradient reconstruction8,9

B. Code diagnostics

The z-component of Ohm’s law is written

]c

]t
1V•¹c52h j , ~38!

where j [2¹2c is the current density in thez-direction.
Now, by definition,¹c50 at the magneticO- andX-points.
Since there is zero equilibrium plasma flow, and the w
perturbation is nonpropagating, the positions of theO- and
X-points are fixed and easily identifiable in our simulation
The reconnected flux is defined

c0~ t !5 1
2@c~X-point!2c~O-point!#. ~39!

Our reconnection rate diagnostic takes the form

J~ t !5 1
2@ j ~O-point!2 j ~X-point!#. ~40!

This definition is equivalent to Eq.~26!. It follows from Eq.
~38!, and the fact that¹c50 at theO- andX-points, thatJ
5h21dc0 /dt. Thus, J(t) measures both the reconnectio
rate and the current density in the reconnecting region.

C. Results

In the following, we shall compare and contrastJ(t)
curves produced by the FLASH code and by two differe
types of Laplace transform calculation. The conventio
asymptotic matching calculation gives theJ(t) curve speci-
fied in Eq. ~36!. The improved calculation presented in th
paper generates theJ(t) curve obtained by numerically in
verting Eq. ~30!. The plasma response obtained from th

FIG. 1. The crosses show the first ten plasma eigenfrequencies,vn , calcu-
lated at various differentk values forp051. The curves show the functiona
relationshipsvn5AGp0(n2p21k2) for n51,10.
Downloaded 25 Mar 2004 to 128.83.61.74. Redistribution subject to AIP 
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improved calculation can be thought of as a combination
the standard asymptotic matching response discussed in
III B and the wave response discussed in Sec. III C.

Figure 2 showsJ(t) curves generated by the FLASH
code and conventional asymptotic matching theory for a c
where the wall perturbation is switched oncomparatively
slowly ~i.e., t@tA). As expected, there is good agreeme
between the numerical and analytic curves whent!t1 .
However, ast→t1 the two curves diverge because resistiv
starts to play a role in the layer dynamics.~Recall, from Sec.
III, that the asymptotic matching theory employed in th
paper neglects the effect of resistivity on the layer dyna
ics.!

Figure 3 showsJ(t) curves at very early times for th
same calculation as that presented in Fig. 2. It can be s
that the numerical curve lies somewhat above the asymp
matching curve. Now, it is clear from Fig. 2 that the relati
difference between the two curves decreases as
progresses, and eventually becomes negligible. Neverthe
at early times~i.e., t&10tA) there is a significant discrep

FIG. 2. The magnetic reconnection rate,J, as a function of time,t, for a
calculation performed usingJ051024, L58, h51025, p051, andt510.
The solid curve shows the numerical solution generated by the FLA
code. The long-dashed curve shows the solution produced by convent
asymptotic matching theory. The vertical dotted line indicates whent5t1 .

FIG. 3. The magnetic reconnection rate,J, as a function of time,t, for a
calculation performed usingJ051024, L58, h51025, p051, andt510.
The solid curve shows the numerical solution generated by the FLA
code. The long-dashed curve shows the solution produced by convent
asymptotic matching theory. The short-dashed curve~which has been shifted
downward slightly to make it more visible! shows the solution generated b
the improved Laplace transform calculation.
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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ancy between the numerical and asymptotic match
curves. Figure 3 also shows theJ(t) curve produced by the
improved Laplace transform theory presented in Sec. II
Note that this curve agrees exactly with the numerical cu
generated by the FLASH code. We conclude that the disc
ancy between the numerical and asymptotic matchingJ(t)
curves, which is evident in Fig. 3, is due to thewave re-
sponsediscussed in Sec. III C. This response is not captu
by conventional asymptotic matching theory, and clea
leads to a significant increase in the reconnection rate at e
times.

Figure 4 showsJ(t) curves evaluated at very early time
for a case where the wall perturbation is switched onmod-
erately rapidly~i.e., t;tA). The numerical curve generate
by the FLASH code again lies above the asymptotic mat
ing curve. Moreover, the former curve exhibits pulse-li
features which are entirely absent from the latter. Howe
the J(t) curve produced by the improved Laplace transfo
theory again agrees exactly with the numerical curve.

Figure 5 showsJ(t) curves evaluated at very early time
for a case where the wall perturbation is switched onvery
rapidly ~i.e., t!tA). The dominant feature of the numeric
curve generated by the FLASH code is a set of evenly spa
spikes. It can be seen that this feature is reproduced exa
by the improved Laplace transform theory, but not at all
conventional asymptotic matching theory. Figure 6 sho
J(t) evaluated at later times for the same case. The num
cal data are generated by the University of Iowa MH
code.10 ~Incidentally, the U. Iowa code is in good agreeme
with the FLASH code.! It can be seen that the spikes in th
reconnection rate persist, although the average reconne
rate remains roughly in agreement with that predicted
conventional asymptotic matching theory~as long ast,t1).

Figure 7 shows density plots ofu(x,y,t) for the same
calculation as that presented in Fig. 5. It can be seen tha
sudden switch-on of the wall perturbation generates
strongly localizedpulseswhich propagate toward the reso
nant surface at the center of the plasma, pass through
another, and reflect off the walls. The two pulses sub

FIG. 4. The magnetic reconnection rate,J, as a function of time,t, for a
calculation performed usingJ051024, L58, h51025, p051, andt51.
The solid curve shows the numerical solution generated by the FLA
code. The long-dashed curve shows the solution produced by convent
asymptotic matching theory. The short-dashed curve~which has been shifted
downward slightly to make it more visible! shows the solution generated b
the improved Laplace transform calculation.
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quently bounce backward and forward between the w
many times. The arrival times of the pulses at the reson
surface correlate very well with the strong spikes in the
connection rate shown in Fig. 5. Note that the pulses
essentiallycompressionalAlfvén waves.@This is easily dem-
onstrated by increasing the central plasma pressure,p0 ,
which has the effect of increasing the propagation speed
compressional Alfve´n waves, and hence of decreasing t
spacing between the spikes in the numericalJ(t) curve.# We
conclude that the strong spikes in the numericalJ(t) curve
shown in Fig. 5 represent magnetic reconnection driven
compressional Alfve´n pulses which are excited by the su
den onset of the wall perturbation. These pulses arenot cap-
tured by conventional asymptotic matching theory. Note t
the maximum pulse driven reconnection rate can bemuch
larger than that predicted by conventional asymptotic mat
ing theory.

It is clear from the numericalJ(t) curve shown in Fig. 5
that there is a delay of about 1.5 Alfve´n times between the
switch-on of the wall perturbation and the onset of driv

H
nal

FIG. 5. The magnetic reconnection rate,J, as a function of time,t, for a
calculation performed usingJ051024, L58, h51025, p051, andt50.1.
The solid curve shows the numerical solution generated by the FLA
code. The long-dashed curve shows the solution produced by convent
asymptotic matching theory. The short-dashed curve~which has been shifted
downward slightly to make it more visible! shows the solution generated b
the improved Laplace transform calculation.

FIG. 6. The magnetic reconnection rate,J, as a function of time,t, for a
calculation performed usingJ051024, L58, h51025, p051, andt50.1.
The spiky curve shows data generated by the University of Iowa MHD co
The smooth curve shows the solution produced by conventional asymp
matching theory. The vertical dotted line indicates whent5t1 .
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 7. Density plots of thex-velocity, u(x,y,t), evaluated at various times for a calculation performed usingJ051024, L58, h51025, p051, andt50.1.
Data generated by the FLASH code.
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reconnection at the resonant surface. This delay simply
responds to the travel time of a compressional Alfve´n wave
between the wall and the resonant surface. As the cen
pressurep0 increases, we expect the time delay between
pulse switch-on and the onset of driven reconnection to
crease, since the propagation speed of compressional Al´n
waves varies asAp0. Let us investigate the incompressib
limit p0→`. Figure 8 showsJ(t) curves evaluated at ver
early times for a case where the wall perturbation is switc
on very rapidly andp0→`. There is no numericalJ(t)
Downloaded 25 Mar 2004 to 128.83.61.74. Redistribution subject to AIP 
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curve, since the FLASH code cannot operate in the inco
pressible limit. Fortunately, however, there is no such rest
tion on the improved Laplace transform theory presented
this paper. TheJ(t) curve generated by the improved theo
exhibits no time delay between the perturbation switch
and the onset of magnetic reconnection. This is as expec
since information regarding the wall perturbation is carri
by compressionalAlfvén waves, which travel infinitely fas
in the incompressible limit. Note, however, that theJ(t)
curve generated by the improved theory still lies significan
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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above that produced by conventional asymptotic match
theory. This demonstrates that, even in the incompress
limit, wave driven magnetic reconnection~presumably medi-
ated by infinitely fast compressional Alfve´n waves! is impor-
tant at early times. Note that the wave driven reconnec
exhibits none of the pulse-like behavior shown in previo
figures. This is true no matter how rapidly the wall perturb
tion is switched on.

Up to now, we have only considered cases whereL@a
~i.e., k!1). In the opposite limit,L&a ~i.e., k*1), com-
pressional Alfve´n pulses generated by the fast switch-on
the wall perturbation tend to disperse fairly rapidly, and co
sequently lose coherence after a few passes through
plasma. In marked contrast, the pulses shown in Figs. 5
7 remain coherent for very many transit times. The expla
tion is as follows. As is shown in Fig. 1, the compression
Alfvén eigenmodes of the plasma haveequally spacedeigen-
frequencies whenk!1, but not whenk*1. Now, it is pos-
sible to construct a narrow nondispersive pulse from a su
position of eigenmodes with equally spaced eige
frequencies. On the other hand, narrow pulses disperse
idly when the eigenfrequencies are not equally spaced.

V. SUMMARY

We have developed an improved Laplace transfo
theory for investigating the initial response of a stable s
plasma equilibrium to a suddenly applied wall perturbat
in the so-called Taylor problem. The novel feature of th
new theory is that it does not employ asymptotic matchin

When the wall perturbation is switched on slowly com
pared to the Alfve´n time, we find that the plasma respon
eventually asymptotes to that predicted by conventio
asymptotic matching theory. However, at early times~i.e., t
&10tA), there is a compressible Alfve´n wave driven contri-
bution to the magnetic reconnection rate which is not c
tured by asymptotic matching theory, and leads to a sign
cant increase in the reconnection rate.

When the wall perturbation is switched on rapidly com
pared to the Alfve´n time, strongly localized compressib

FIG. 8. The magnetic reconnection rate,J, as a function of time,t, for an
incompressible calculation performed usingJ051024, L58, h51025, and
t50.1. The long-dashed curve shows the solution produced by convent
asymptotic matching theory. The solid curve shows the solution gener
by the improved Laplace transform calculation.
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Alfvén wave-pulses are generated which bounce backw
and forward between the walls many times. Each time th
wave-pulses cross the resonant surface they generate a
sient surge in the reconnection rate. Indeed, the maxim
pulse driven reconnection rate can be much larger than
predicted by conventional asymptotic matching theory. N
that the pulses only remain coherent over many tran
across the plasma when the wavelength of the wall pertu
tion greatly exceeds the wall separation.

In the incompressible limit, the pulses are absent,
there is still a significant wave driven contribution to th
initial reconnection rate which is not accounted for
asymptotic matching theory.

The improved Laplace transform theory has been s
cessfully benchmarked against numerical results from
FLASH code.

Note that the deviations from standard asympto
matching theory reported here only affect the initial stages
the driven reconnection and have no influence on the fi
value of the reconnected flux nor the time taken to achi
full reconnection~which is much longer than any time sca
considered in this paper!.

Pulse-like driven magnetic reconnection has been
ported previously in stressedX-point configurations.11–13

Note, however, that in such configurations the pulses alw
stall at theX-point ~which is equivalent to our resonant su
face!, and are only able to propagate past theX-point through
the agency of resistivity. The problem considered in this
per is somewhat different, since our pulses pass through
resonant surface with a finite speed even in the limith→0.
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