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Abstract

The effect of diamagnetic drifts and of long electron mean free path on the shielding of resonant

magnetic perturbations by plasma rotation is investigated. The nature of the force exerted on a

moving plasma by a resonant perturbation is qualitatively altered by both drift and long mean-

free-path effects. The force is found to have three minima, each of which is a possible locus for

discontinuous transitions in plasma velocity. Between these minima are two points where the force

exerted by the perturbation is resonant. These points describe locked states where shielding is

ineffective and a magnetic island will grow. They correspond to rotation velocities such that either

the electrons or the ions are at rest in the frame of the perturbation. The ion root, however, is

unstable.

PACS numbers: 52.30.Ex, 52.55.Tn, 52.35.Vd,52.40.Fd
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I. INTRODUCTION

The resonant response of a magnetized plasma in resonant layers where the wavefront

is parallel to the magnetic field is of interest in many contexts. In axisymmetric systems,

it influences the dynamics of wall modes,[1, 2, 3, 4] the interaction between the various

internal modes,[5, 6] and the effect of externally imposed perturbations such as feedback

corrections[7, 8, 9] and error fields.[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] In

helical systems a favorable magnetic well has been shown to lead to the healing of magnetic

islands.[24]

In a static plasma resonant perturbations give rise, through magnetic reconnection, to

islands of widths proportional to the square root of the transverse displacement at a large

distance from the island.[15] Magnetic reconnection is strongly inhibited, however, in the

presence of even modest levels of plasma motion.[10, 17, 21] The primary effect of the

perturbations is then to exert a braking force on the plasma. When the perturbation ex-

ceeds a threshold amplitude, the plasma is abruptly stopped and reconnection proceeds to

saturation.[17, 18] The transition between the kinematically shielded and the reconnecting

states is known as mode penetration.[17]

The plasma braking and mode penetration phenomena are well characterized

experimentally.[11, 13, 18, 25] Two manifestations of these phenomena have received partic-

ular attention due to their importance for tokamak operation. The first is the penetration

of coil-alignment errors, giving rise to the so-called low density locked modes (LDLM).[18]

The second is the seeding of magnetic islands during magnetic activity such as sawtooth,

fishbone and the edge localized mode (ELM).[26] It has also been shown experimentally

that the mode-penetration threshold becomes vanishingly small when the plasma is heated

towards its ideal stability limit.[12] More recently, Garofalo et al. have shown that error

fields are amplified when the plasma pressure rises above the value where stabilization by a

conducting wall is required. The amplification of the error fields causes the onset of plasma

deceleration and leads to disruptions.[2, 3]

Although present and future fusion experiments operate in the long mean-free-path

regime, most of the existing theoretical results, both analytic[5, 6, 16, 17, 19, 21, 22, 23]

and numerical,[14, 15, 20, 27] are based on low beta Magnetohydrodynamics (MHD) in

slab geometry. An exception is the early paper by Fitzpatrick and Hender,[10] which dis-
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cussed kinematic shielding in the presence of diamagnetic drifts. This paper assumed a

collisional plasma response, however, and did not consider rotation braking or mode pene-

tration. While the existing collisional theory is reasonably successful in accounting for the

experimental observations,[11] it cannot be extrapolated with confidence to burning plasma

experiments.

The purpose of the present paper is to investigate the effect of long mean free path on

rotation braking and on the mode penetration threshold. In order to simplify the analysis,

we use a fluid model with cold ions, but retain drift terms and, crucially, the electron pressure

term in Ohm’s law. The existing theory for tearing modes shows that this model correctly

describes essentially all the features of long mean-free path physics found in more detailed

kinetic descriptions.[28, 29, 30]

The paper is organized as follows. We begin in Sec. II by describing the model used

in our analysis. In Sec. III we describe analytic solutions in various asymptotic regimes.

We compare these analytic solutions to numerical solutions in Sec. IV before concluding in

section V.

II. FORMULATION

A. Description of the plasma

We consider a periodic sheared slab geometry with a magnetic field given by

B = B0ẑ−∇ψ(x, y)× ẑ, (1)

where B0 is a constant magnetic field pointing in the symmetry direction ẑ = ∇z, and where

the azimuthal magnetic flux ψ is related to the longitudinal vector potential Az by ψ = −Az.

The reference state is chosen such that ψ0 = −B0x
2/2Ls, where Ls is the magnetic shear

length. We consider a perturbed azimuthal flux of the form ψ = ψ0 + ψ̃ cos kyy, where y is

the azimuthal coordinate. At the surface x = 0, the phase of the perturbation is constant

along the magnetic field so that the electrostatic shielding of the inductive field perturbation

is disabled. This leads to a resonant current response.

The above sheared-slab geometry can be considered to model a large aspect-ratio tokamak

by making the correspondence x = r − rs, where r is the minor radius and r = rs is the

radius of the resonant surface, and kyy = mθ − nζ where θ and ζ are the poloidal and
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toroidal angles, and m and n are the poloidal and toroidal mode numbers. The shear-length

is related to the tokamak parameters by Ls = Rq/s, where R is the major radius, q is the

safety factor, and s = (r/q)dq/dr is the magnetic shear.

The long mean free path regime that is the object of this paper is defined by k2
‖v

2
te � ωνei,

where k‖ = k ·B/B is the parallel component of the wavevector, vte is the thermal velocity

of the electron, and νei is the electron-ion collision frequency. [28, 31] The principal features

of the dispersion relation for tearing modes in this long mean free path regime are known

to be correctly predicted by the two-fluid, drift-MHD model.[31, 32, 33] To simplify the

analysis, we consider here only the cold ion model (Ti = 0). Furthermore, we will restrict

consideration to weak shear systems for which k‖cs � ω∗, where k‖ is the parallel component

of the wavevector and cs is the sound speed. For such systems we may neglect the ion parallel

motion. We denote the convective time derivative along the E×B flow by D/Dt,

D

Dt
=

∂

∂t
+ vE ·∇,

where vE, the electric drift velocity, is related to the electrostatic potential φ by vE =

(c/B0)ẑ×∇φ. Note that since Ti = 0, vE is approximately equal to the ion fluid velocity.

The electron continuity equation is then

Dn

Dt
=

1

e
∇‖J‖, (2)

where n is the density (equal for ions and electrons by quasi-neutrality), e is the electron

charge, J = (c/4π)∇2ψ is the parallel current, ∇‖ = (B/B) ·∇ and ∇⊥ represent the gradi-

ents respectively along and transverse to the magnetic field. The quasi-neutrality condition

requires ∇ · J = 0, or

∇‖J‖ =
c2

4πv2
A

[
DU

Dt
− µ∇2

⊥U

]
, (3)

where U = ∇2
⊥φ is proportional to the vorticity, and µ is the viscosity. Eq. (3) can be

viewed alternatively as a vorticity or a local force-balance equation. Lastly, we use Ohm’s

law in the form

E‖ +
∇‖p

ne
=
J‖
σ‖
, (4)

where E‖ = (1/c)∂ψ/∂t−∇‖φ is the parallel electric field and p is the plasma pressure.
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B. Plasma Response to external perturbations

For large Lundquist numbers one may separate the response of the plasma into a diffuse

and a resonant response. The diffuse response is caused by the currents excited throughout

the bulk of the plasma where the phase of the wave varies along field lines. The effect of the

diffuse plasma currents is generally to amplify the perturbation by a factor of A compared

to its vacuum value. The resonant current response, by contrast, is of much larger amplitude

but is confined to a thin layer around the resonant surface.

The quantities of interest for comparison with experiment are the threshold amplitude for

field penetration and the braking force. These quantities are determined by the amplitude

of the transverse field perturbation at the resonant surface. We summarize here for future

reference the relevant formulae.[17] The transverse field perturbation is proportional to the

amplitude of the flux perturbation, given by

Ψ =
A2|Ψvac|

|1 + ∆(ω)/(−∆′)|
, (5)

where ∆(ω) and ∆′ describe respectively the response of the layer and the stability parameter

for the tearing mode.[34] We will give a precise definition of ∆ in Eq. (12) below. In the

absence of an imposed perturbation, the only solutions are eigenmodes satisfying ∆(ω) = ∆′.

The phase difference between the current and field perturbation is

ϕ = tan−1

[
=(∆(ω)/(−∆′))

1 + <(∆/(−∆′))

]
(6)

The force per unit area acting on the resonant layer is given in terms of these two quantities

by

F =
k∆′

8π
A2ΨΨvac sinϕ. (7)

In the present paper we will only consider the calculation of the layer impedance ∆(ω).

The amplification factor A and stability parameter ∆′ depend on details of the equilibrium.

Their calculation is best carried out with finite element codes working from equilibrium

reconstructions.

C. Layer equations

We wish to find solutions of (2)-(4) that are independent of time in a frame where the

perturbation is at rest (e.g. the lab frame for an error field). We thus set ∂/∂t = 0 and
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define the plasma rotation frequency in the frame of the perturbation as ω = kyVE. Note

that if the perturbation is caused by a propagating mode, the frequency ω defined here is

the negative of the mode frequency in the frame where Ex = 0.

Recalling that the force is determined quasi-linearly from the properties of the linear

solution,[17] we linearize Equations (2)-(4) and cast them in standard form by eliminating

the density with the help of the continuity equation. We introduce the normalized coordinate

X = x/δ describing the distance across the resonant surface, where δ = (c2Ls/4πσ‖kyvA)1/3

is the the characteristic width obtained by equating the rate of resistive diffusion with

the shear-Alfvén frequency. We normalize the remaining variables according to ∆̂ = ∆δ,

Ξ = φ̃/δφ′0, Ψ = ψ̃/δ2ψ′′0 = Lsψ̃/δ
2B0, and Q = kyvE/γ where γ = kyVAδ/Ls is the

characteristic growth rate for the resistive interchange and kink-tearing instabilities, and φ̃,

ψ̃ represent the perturbed quantities.

The system to be solved is then formed by Ohm’s law and the vorticity equation,

XΨ′′ = Q2Ξ′′ − iPQΞ′′′′, (8)

Ψ′′ = −iΣ(X)(Q−Q∗)(Ψ−XΞ), (9)

where the primes denote differentiation with respect to X, and Σ(X) is the conductivity.

For the cold ion fluid model used here,

Σ =
1

1 + iR2X2/Q
, (10)

where R = ρs/δ.

Eqs. (8)-(9) differ from the corresponding equations for the magnetohydrodynamic

(MHD) model in two ways. First, the frequency appearing in Ohm’s law is shifted by

the electron drift frequency Q∗. Second, the conductivity Σ, which is unity in MHD with

the normalization used here, becomes spatially dependent in the long mean-free path regime.

Specifically, the conductivity peaks in a channel of width Xσ =
√
|Q|/R centered on the

resonant surface X = 0.

We note that Eqs. (8)-(9) conserve parity and admit the trivial solution Ψ = X, Ξ = 1.

We may thus restrict consideration to solutions for which Ψ is even in X. It is convenient

to introduce the quantity

Γ(X) = XΨ′ −Ψ, (11)
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representing the intercept between the ordinate and the tangent to the graph of Ψ(X) at

X. The parameter ∆̂ that serves to match the layer solutions to the external perturbation

is defined in terms of Γ by

∆̂(Q) = −2 lim
X→∞

Ψ′(X)

Γ(X)
= −2

Ψ′
∞

Γ∞
. (12)

We conclude our presentation of the governing equations with a brief review of the known

solutions of Eqs. (8)-(9). In the short mean-free-path limit R → 0, Coppi et al.[35] have

given a complete analytic solution for the inviscid MHD limit P = 0 and Q∗ = 0. Ara et

al. have discussed the generalization of that solution to the case |Q∗| > 0.[36] In the viscous

case, an exhaustive set of solutions describing all four possible orderings has been described

by Fitzpatrick.[37]

In the long mean-free-path regime, by contrast, Eqs. (8)-(9) have only been studied in

the context of finding the growth rates for resistive eigenmodes. In this context the inviscid

limit has been described by Drake and Lee for ordinary tearing modes,[28] and by Drake[29]

and Mahajan et al.[30] for the kink-tearing mode. In the present paper we extend the work

of Drake to include viscosity, and apply the results to the description of rotation braking

and mode penetration by resonant perturbation.

III. ANALYTIC SOLUTIONS

In this section we describe solutions to Eqs (8)-(9) in various asymptotic regimes, and

map the boundaries between these regimes in parameter space. The various regimes are

characterized by the relative dimension of three characteristic widths. The first of these is

the half-distance between Alfvén resonances, XA = Q. The second is the width Xσ =
√
Q/R

of the conductivity channel. The third is the width of the vorticity layer. This third width

depends on the relative importance of viscosity compared to polarization effects, and will

be calculated below.

We first consider the limit of low frequency. In this limit, the width δσ of the conductivity

channel approaches zero. When δσ is smaller than the characteristic width for electrostatic

screening of the perturbation, we may neglect the XΞ term in Eq. (9). Using the constant-Ψ

approximation, we find that

Ψ′′ =
−i(Q−Q∗)Ψ(0)

1 + iX2R2/Q
. (13)
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We recover the result familiar from previous long mean-free-path tearing mode studies that

the current is confined to a narrow channel of width Xσ.[28, 29, 30, 31] The validity of using

the constant-Ψ approximation in the conductivity channel requires that Xσ∆̂(Q) � 1, or

Q(Q−Q∗) � R2. Integrating Eq. (13) yields

2Ψ′
∞ = π exp(−3iπ/4)(Q−Q∗)

√
Q

R
Ψ(0) (14)

In order to evaluate the matching parameter ∆(Q) we must express Ψ(0) in terms of Γ∞

and Ψ′
∞. We note that the conductivity channel is embedded in a broader layer defined by

the resonant response of the ions. While the total perturbed current flowing outside of the

conductivity channel is small compared to that flowing within it, the current outside the

channel may still affect the matching parameter through Γ∞. To see this, note that Γ is

related to the current by

Ψ(0) = −Γ(0) = −Γ∞ +

∫ ∞

0

dX XΨ′′. (15)

The integral of the current in the right hand side is weighted by the distance from the

resonant surface, so that the current outside the channel may contribute to Γ∞ even though

it is too small to change Ψ′
∞ in any appreciable way. When this is the case we may make the

approximation Ψ ' Ψ(0) + Ψ′
∞X to calculate the perturbed fields outside the channel. We

will see however that Ψ(0) � Ψ′
∞X over most of the resonant layer, so that we may make

the further approximation Ψ ' Ψ′
∞X. We will refer to this approximation, due to Drake,[29]

as the constant-Ψ′ approximation. A limitation of the constant-Ψ′ approximation is that it

is invalid in the transition region between the current channel and the outer resonant layer,

so that it cannot be used to demonstrate the smooth matching of the solutions in these two

regions. This is a subject for concern since the contribution of the current channel to Γ(X)

is unbounded. This subject is addressed in the Appendix, where a solution that retains Ψ(0)

is obtained and shown to match smoothly to the channel solution.

To calculate the perturbed quantities outside the current channel, we eliminate the cur-

rent from (8)-(9). This yields the equation for Ξ,

M

(
d

dX

)
Ξ(X) = −(Q−Q∗)

Ψ(X)

X
, (16)

where M is the quartic polynomial defined by

M(λ) = −iR2Pλ4 +R2Qλ2 − (Q−Q∗), (17)
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We separate the displacement into Ξ = Ξ` + Ξt, where

M(d/dX) Ξ`(X) = −(Q−Q∗)Ψ
′
∞, (18)

M(d/dX) Ξt(X) = −(Q−Q∗)Ψ(0)X−1. (19)

One may interpret these parts by thinking of Ξ` as driven by the longitudinal magnetic

field perturbation, proportional to Ψ′
∞, and of Ξt as driven by the transverse magnetic field

perturbation, proportional to Ψ(0). The transverse part is only important in a transition

region between the outer layer and the current channel, and does not contribute to the layer

response parameter ∆̂(Q). It is calculated in appendix A.

The solution for the longitudinal response is

Ξ`(X) = Ψ′
∞[Θ(X)− α+ exp(λ+x)− α− exp(λ−X)], (20)

where

λ2
± = − iQ

2P

(
1±

√
1− 4iP (Q−Q∗)

Q2R2

)
(21)

are the roots of M(λ±) = 0. Continuity at the origin requires that

α± = ±
λ2
∓

λ2
− − λ2

+

. (22)

The outer layer width is thus given by wout = {min[<(λ+),<(λ−)]}−1.

We next consider the first integral of Ohm’s law,

Γ(X) = Q2Ξ′(X)− iQPΞ′′′(X) + Γ∞. (23)

We neglect Ξt and use Γ(0) = −Ψ(0) to find

Γ∞ + Ψ(0) = iQPΞ′′′` (0)−Q2Ξ′`(0). (24)

Using the solution for Ξ given in Eq. (20)-(22) to evaluate the right-hand side of (24) yields

1

∆(Q)
=

1

∆ch

+
1

∆out

, (25)

where

∆ch =
2Ψ′

∞
Ψ(0)

= πe−3iπ/4(Q−Q∗)

√
Q

R
(26)

and

∆out =
2R2

Q(Q−Q∗)

λ−λ+(λ2
− − λ2

+)

λ3
− − λ3

+

. (27)
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Equations (25)-(27) form the principal analytic result of this paper. It is useful to consider

their limiting forms to obtain simple scaling expression for the experimentally relevant quan-

tities. We will use the results of the analysis of the limiting forms to construct a chart of

the parameter space describing the three regimes that are governed by Eqs. (25)-(27), and

will complete the chart with the inertial regime that governs the response at high frequency.

Fig. 1 summarizes the various regimes and their boundaries as a function of Q and P .

A. Semi-collisional regime

In the limit of vanishing frequency, we find that the λ± remain finite, so that ∆−1
out → 0.

It follows that the external layer does not contribute to the matching parameter:

∆̂(Q) = ∆ch(Q) = π exp(iπ/4)
Q1/2(Q−Q∗)

R
(28)

This is the semi-collisional regime of tearing mode theory. The boundaries of the semi-

collisional regime correspond to ∆ch ' ∆out. Inspection of Eq. (21), however, reveals that

∆out takes different forms depending on the relative magnitude of the viscosity parameter

P and Q2R2/(Q−Q∗). We consider the low and high viscosity cases in turn.

B. Kinetic Alfvén Wave regime

In the inviscid limit, P � Q2R2/(Q−Q∗), we may expand Eq. (21) to find λ− '
√
−iQ/P

and

λ+ ' (
√

1−Q∗/Q)/R
(
1 + iP (Q−Q∗)/(Q

2R2)
)
,

where we have kept the small viscous correction term since it determines the real part of

λ+ in the frequency band 1 < Q∗/Q. In this frequency band the lowest-order term in λ+

is purely imaginary, indicating that the response of the plasma is spatially oscillatory. The

outer layer width is

wout =

 R/
√

1−Q∗/Q, Q∗/Q < 1

QR3/(|1−Q∗/Q|3/2P ), 1 < Q∗/Q.
(29)

Eq. (27) yields

∆out =
2R

Q3/2(Q−Q∗)1/2
(30)
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Comparing this to the contribution of the current channel given by Eq. (28), we see that for

Q2(Q − Q∗)
3/2 � R2, the contribution of the current channel is negligible and ∆ ' ∆out.

The constant-Ψ′ approximation also requires that wout > Q. The regime described by this

ordering is similar to the ideal regime aside from the effect of ρs or R. For this reason we

will refer to it as the Kinetic Alfvén Wave (KAW) regime.

C. Visco-inertial regime

In the viscous regime, P � Q2R2/(Q − Q∗), the limiting form of the parameters in the

outside layer are λ2
± ' ±

√
i(Q−Q∗)/R2P . The layer width is thus

wout = [R2P/(Q−Q∗)]
1/4

and the matching parameter

∆out =
2
√

2 ε eiπε/8R3/2

Q(Q−Q∗)3/4P 1/4
, (31)

where ε = sign(Q − Q∗). The contribution of the viscous layer dominates that from the

current channel when P � R10/Q6(Q−Q∗)
7.

D. Inertial regime

Lastly, we review for completeness the solution in the high frequency limit, where the

resonance separates into two Alfvén wave resonances at X = ±XA = ±Q. Neglecting

nonideal and drift effects, we find

Ξ′(X) =
1

X2 −Q2
(32)

Due to the first-order nature of the separated resonances, the precise nature of the non-

ideal mechanism becomes unimportant since the resonances can be resolved by analytic

continuation. The solution is thus independent of P and of R. It is indistinguishable from

the solution for the short mean-free-path case. The matching parameter in this regime is

∆̂(Q) = i
π

Q
(33)

This is a familiar result.

The boundaries between the four regimes described above are sketched in Fig. 1.
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IV. NUMERICAL RESULTS

To evaluate the matching parameter ∆(ω) numerically we make use of the fact that

Fourier transformation of the equations (8)-(9) reduces the order of the problem from six

to two. Before extracting the matching parameter from the solution of the Fourier trans-

formed problem, however, we must address the fact that the layer solution exhibits a secular

divergence at large distances from the resonant surface, so that the Fourier transform of the

solution is ill-defined.

To obtain a well-defined Fourier transform we multiply the equation by the step function

Θ(x) before applying the transform. The transform is then well-defined for =(k) > 0, and

can be defined for real k by a limiting process. This procedure is equivalent to taking a

Laplace transform, and leads to the inhomogeneous differential equation

d

dk

[
k2

Q−Q∗ + ik2

dΥ̂

dk

]
+

(Q+ iPk2)Qk2

Q−Q∗ +R2k2(Q+ iPk2)
Υ̂ = S(k). (34)

The inhomogeneous term S(k) in (34) is a rational function of k2 related to the conditions

at the origin Ξ′(0), Ξ′′′(0), and Ψ(0). It is analytic in the neighborhood of the origin. The

divergence of the original solution at large x manifests itself as a singularity of the Fourier-

transformed equation at the origin. Our task is to find the simplest way to calculate the

matching parameter ∆(Q) from the solution of the Fourier transformed equation.

The general solution of Eq. (34) may be expressed as the sum of a particular solution of

the inhomogeneous equation and of the general solution of the homogeneous equation. It

may easily be seen from the series solution of the inhomogeneous equation near the origin

that the equation admits a solution that is regular at the origin (aside from inconsequential

logarithmic singularities). This solution must be combined with solutions of the homoge-

neous equation in order to construct a solution that is well-behaved at large k. The solutions

of the homogeneous equation, however, are singular at the origin. It follows that the singular

behavior of the Fourier-transformed solution at small k is entirely determined by the solu-

tions of the homogeneous equation, and that the matching parameter may be determined

by matching the solutions of the homogeneous equation to the small-k expansion

Ξ̂(k) ∼ ∆(Q)

πk
+ 1 +O(k) (35)

The numerical procedure is then straightforward. The solution is initialized at large k

with an asymptotic solution of the homogenous form of Eq. (34). It is then integrated
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inwards until it matches the form given by Eq. (35). The starting and end points for the

integration are adjusted based on analytical estimates of the mode width and current channel

width. The island response parameter ∆̂(Q) is then extracted by taking the ratio of the

Wronskians of the solution with the small (Ξ ∼ 1) and large (Ξ ∼ 1/k) solutions of the

homogeneous equation found through a Fuchs series expansion.

In order to interpret the force curves, we briefly review the theory of mode penetration.

Recall that the equilibrium plasma rotation is found by balancing the electromagnetic force

given in Eq. (7) with the viscous force resulting from the tendency of the resonant layer to

be entrained by the bulk plasma motion. The equilibrium frequency is thus found to be

given by the intersection between the graph of the electromagnetic force and that of the

viscous force. The graph of the electromagnetic force can be made universal by normalizing

the force to the square of the vacuum perturbation amplitude (the force thus normalized is

simply =(1/∆(Q)). The viscous force is proportional to the difference between the actual

rotation frequency Q at the resonant layer and the rotation frequency Q0 that would be

found in the absence of perturbation, termed the “natural” rotation frequency. It is thus

represented by a straight line going through the point (Q0, 0) and with a slope inversely

proportional to the square of the vacuum field perturbation (Fig. 5).

Mode penetration can be seen to result when the slope of the viscous force line decreases

until its intersection with the electromagnetic force curve disappears at the point where the

two curves are tangent. At that point, marked A in Fig. 5, the rotation makes a rapid

transition to the only remaining intersection point between the electromagnetic and viscous

force curves, marked B. Due to the steepness of the electromagnetic force curve at the

resonant frequencies ω = 0 and ω = ω∗e (see Figs. 2 and 3), the resulting rotation frequency,

characterizing the locked state, is almost indistinguishable from the resonant frequency.

Note also that the steepness of the electromagnetic force curve at the resonant frequencies

implies that a root to the force balance equation exists for all values of the viscous force up

to the critical penetration force.

The normalized electromagnetic force curve for R = 4, Q∗ = 1, and P = 5 is compared

in Fig. 5 to that for the short mean-free-path case R = Q∗ = 0. We see that the main

difference between the two curves is due to the emergence of a resonance at Q = Q∗ in the

drift-MHD calculation. The long mean-free-path corrections are typically a factor of two or

less for the moderate values of R encountered in fusion experiments. These moderate values
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of R also account for the poor fit between the analytic and numerical result for the phase of

the perturbation at low frequency, as can be seen in Fig. 4. Fortunately the analytic result

for the force is in much better agreement with the numerical result, even for moderate R.

The presence of two roots where the electromagnetic force is resonant suggests that low-

density locked modes (LDLMs) could appear at two different plasma rotation frequencies

depending on the direction of the natural plasma rotation. We note however, that stability

requires that

F ′EM(Q) > F ′V(Q),

where the primes denote derivation with respect to Q. When this stability condition is

violated, a small acceleration (caused by turbulence-driven zonal flows for example) will lead

to a continuous acceleration of the plasma away from the equilibrium solution. Inspection of

the roots near Q = 0 shows that only one of the two branches satisfies the stability condition,

but since the two roots are extremely close together (Fig. 3), the entire Q � 1 region may

be considered unstable. We conclude thus that the final rotation after mode penetration

will be Q ' Q∗: that is, after mode penetration, the plasma velocity will adjust so that the

electric drift balances the diamagnetic drift, leaving the electrons at rest in the frame of the

perturbation.

The scaling of the force and penetration threshold with machine size is of interest in the

context of the burning plasma experiment being planned. We have examined the scaling

using the model of Fitzpatrick for Ohmic discharges.[17] We find that of the three dimen-

sionless parameters governing the resonant force, only P varies significantly with the size

of the plasma. Surprisingly, the penetration threshold turns out to have virtually the same

scaling with plasma size as predicted by the MHD model. It follows that long mean-free-path

effects do not modify the previously calculated symmetry requirements for burning plasma

devices.

V. DISCUSSION

We have shown that magnetic perturbations exert a force near resonant surfaces that is

such as to bring the electrons to rest in the frame of the perturbation. It follows that in an

axisymmetric device where poloidal rotation is damped, static perturbations (error fields)

will induce plasma rotation in the direction of the electric current (co-rotation). Since
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the electromagnetic force imposed by the perturbation is highly localized, one infers that

significant local modifications to the rotation profile may result from the brief application

of small resonant fields. This could be achieved with the use of internal coils, such as those

presently being installed on the DIII-D tokamak.[38]

Our results also suggest that for finite ion temperature, a new root with vanishing force

is likely to appear at the ion diamagnetic frequency. The direction of the force in this case

is unclear but is likely to depend on the plasma velocity. This will be the subject of a future

investigation.

Lastly, we have shown that long mean free path effects have a quantitatively modest

effect on the force and penetration threshold for parameters typical of fusion plasmas. This

is due to the approximate compensation between the effect of decreasing ρ∗ = ρi/L, the

ratio of the gyroradius to the system size, and the effect of increasing the Lundquist number

S = δ−3.

Acknowledgment This work is funded by the US DoE contract number DE-FG03-96ER-
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Appendix A: Matching of the inner and outer layers:

In this appendix we extend the analysis of section III to include the effect of the resonant-

surface flux Ψ(0). This makes it possible to demonstrate the smooth matching of the so-

lutions in the current channel and the vorticity (outer) layer. In order to do this we begin

by solving Eq. (19) for the response to the inductive field at the resonant surface. To solve

this equation, we eliminate the inhomogeneous term by multiplying by X and taking the

derivative. We then look for solutions of the resulting equation in the form

Ξ(X) =

∫ p2

p1

dp e−pXΞ̂(p). (A.1)

where the integration bounds p1 and p2 are specified later. This leads to∫ p2

p1

dp pe−pX d

dp
[M(p)Ξ(p)]−

[
pe−pXM(p)Ξ̂(p)

]p2

p1

= 0 (A.2)

where the quantity in brackets represents boundary terms left over after integration by parts.

The integral vanishes for

Ξ̂ = Ξ0/E(p), (A.3)
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where Ξ0 is an integration constant that will be determined later so as to satisfy Eq. (19).

The boundary term in Eq. (A.1) reduces then to [Ξ0pe
−pX ]p2

p1
. This can be made to vanish

by choosing p1 = 0, p2 = ∞. Carrying out the integral in Eq. (A.1) with the solution in Eq.

(A.3), we then find

Ξ(x) =
(Q−Q∗)Ψ(0)

2R2P (λ2
+ − λ2

−)

[
E(λ+x)

λ+

− E(λ−x)

λ−

]
(A.4)

where

E(z) = ezE1(z)− e−zEi(z) (A.5)

and where we have calculated the constant Ξ0 so as to satisfy Eq. (19).

It is now a simple matter to match the inner and outer solutions. Substituting the solution

for the outer layer given by Eqs. (A.4)-(A.5) into Eq. (23) and using the small argument

expansion of E ,

E(z) ∼ −2(γ + ln z) +O(z ln z),

where γ is Euler’s constant, we find

Γ(X) = Γ∞ −
Q(Q−Q∗)Ψ(0)

R2

(
γ +

λ2
+ lnλ+ + λ2

− lnλ−
λ2

+ − λ2
−

+ lnX

)
(A.6)

We next integrate Ohm’s law over the inner, current channel region to find

Γ(X) = −Ψ(0)− Q(Q−Q∗)Ψ(0)

2R2
ln(1 + iX2R2/Q) (A.7)

The logarithmic singularity of the inner and outer solutions clearly match. Eliminating Γ(X)

between these two equations leads to a corrected formula for the layer response parameter

∆̂(Q):

1

∆̂(Q)
=

1

∆out

+
1

∆ch

[
1 +

Q(Q−Q∗)

2R2

(
γ +

λ2
+ lnλ+ + λ2

− lnλ−
λ2

+ − λ2
−

− ln
R2

Q

)]
(A.8)

The correction can be seen to be small in all regimes of interest.
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LIST OF FIGURES

FIG. 1: Map of the various regimes as a function of the viscosity parameter P and of the normalised

frequency Q for R = 1.

FIG. 2: Frequency dependence of the force exerted by the resonant perturbation on the plasma.

The solid line represents the numerical results, while the dashed line represents the low frequency

analytic result for the low-frequency regime described by Eqs. (25)-(27). The thin straight line

represents the hig-frequency analytic result given by Eq. (33). The parameters are R = 1 and

Q∗ = 1.

FIG. 3: Detail of the force acting on the plasma in the resonant layer as a function of the normailized

frequency Q near the ion resonance for the parameters of Fig. 2.

FIG. 4: Phase shift of the resonant reponse as a function of the normalized frequency Q. The solid

line represents the numerical results and the dashed line the analytic result for the low frequency

regime described by Eqs. (25)-(27). The dotted line represents the asymptotic phase in the high-

frequency ideal-inertial regime given by Eq. (33).

FIG. 5: Comparison of the force computed with the MHD (dashed) and long mean-free-path drift-

MHD (solid line) theories. The viscosity parameter is P = 5, and the drift-MHD result is for

Q∗ = 1. The line labeled FV represents the viscous force before mode-penetration and the dashed

line labeled FV p represents the viscous force at the point of mode-penetration.

FIG. 6: Variation of the characteristic parameters according to the Ohmic discharge scaling of

Fitzpatrick.[17]

FIG. 7: Scaling of the critical field error for penetration with the Major radius R0 for Ohmic

discharges according to the Ohmic discharge scaling of Fitzpatrick. [17]
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