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Firehose Driven Magnetic Fluctuations in the Magnetosphere
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The nonlinear saturation of the firehose instability in the
high plasma pressure central plasma sheet is shown to pro-
duce a wide spectrum of Alfvénic fluctuations in the range
of Pi-2 geomagnetic pulsations. The wave energy sources
are the small pj/p. > 1+ B?/pop. anisotropies which are
created by Earthward ion convection at constant first and
second adiabatic invariants. In the nonlinear state, the field-
line curvature force is weaker than the linear force. This
weakening of the driving force limits the amplitude of the
Alfvénic fluctuations. Away from the equatorial plane, the
plasma is firehose stable, but carries large magnetic fluctu-
ations.

1. Introduction

Geomagnetic pulsations of the Pi-2 type are defined as
magnetic fluctuations with periods in the range 40-200s with
irregular wave forms. The geomagnetic Pi-2 oscillations are
known to be intimately correlated with substorm growth and
onsets [Sigsbee et al., 2002] and bursty bulk flows [Kepko
and Kivelson, 2001].

During the time of enhanced Earthward plasma convec-
tion, there are numerous nonequilibrium features that de-
velop in the ion phase space density distributions, including
currents and anisotropies, that may serve to trigger low and
ultra-low frequency instabilities. Here we argue that ion
pressure anisotropies p| > p, associated with convection or
bursty bulk flows drive nonlinear Pi-2 type fluctuations in
the geomagnetic tail. We find that the nonlinear firehose
driven fluctuations have a rich kjw-spectrum and that the
local nonlinear firehose stability parameter

po(py —pL)
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fluctuates with only short-lived excursions into the unstable
domain o(t) < 0 occurring at the equatorial plane where the
curvature K = (b - V)b vector has its maximum value.

Kaufmann et al. [2000] use one year of one-minute Geo-
tail data to analyze the firechose parameter A = po(p) —
p1)/B? as a function of 8. Kaufmann et al. [2000] report
A ranging from —0.1 to +0.4 with the values closer to zero
occurring in the high-@ bins. The number of data samples
in the high-beta bins, 8 > 30 and 10 < 8 < 30, is, how-
ever, low. Kaufmann et al. [2000] conclude that while A
from the data is a few tenths, that the methodology used
underestimates the value of A.

Chen and Wolf [1999] develop a model for bursty bulk
flows that follows an Earthward accelerated flux tube that
develops a firehose instability due to the faster increase of p
from the shortening of the magnetic field line lengths than
of pi from B. Ji and Wolf [2002] follow up the Chen and
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Wolf model with a detailed Lagrangian simulation model
that couples the firehose dynamics to the magnetoacoustic
wave dynamics. They find a shock front propagating to the
Earth and the development of the firehose instability at the
largest kj = m/A in the simulation. They pose the problem
of finding the kinetic theory physics that limits the |k;| for
the growth rate and finding the nonlinear saturation level.

2. Nonlinear Firehose Model

In this letter we present a kinetically-modified Eulerian
ion fluid description of the nonlinear firehose instability for
the magnetotail problem. We use a simple field-line model
with an anisotropic pressure.

At latitude 0, the o(t,0) — 1 with the fluctuation en-
ergy wp = (0B3/2u0) and wx = 3p(E;/B?) flowing into
the region from the magnetlc equatorial plane Outside the
high plasma pressure region 8 = 2o p1 /B? > 1 the oscilla-
tions are large amplitude Alfvén waves at finite k| p; where
pi = (myT;)Y?/eB is the ion gyroradius. The finite ion gy-
roradius effects and the finite ion inertial scale c/wp; effects
determine the maximum growth rate ymax = H}Cax[fy(kz)] of

the firehose instability. The calculation of these dispersion
terms is well known and gives rise to the following linear
dispersion relation
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where we neglect the Landau damping contributions from
the warm plasma kinetic dispersion relation [Stiz, 1992,
Gary, 1998]. For kjpi = (kH c/wpi)(Bi)2)Y? < 1 the lin-
ear dispersion term in w/we; 18 negh%lble and Eq. (2) yields
the MHD firehose instability w” = kjjvao with o defined in
Eq. (1). For pH/pl >142/6 the MHD growth rate is
Yk = |kjjlva v/—0o increasing monotonically with kj. From
the kinetic dispersion relation there is a well- deﬁned maxi-

mum growth rate at kyp; = v2(1—T1 /T —2/B;)"/* where
the maximum growth rate
Ymax = Wci(l - TJ_/T‘H - 2/ﬂ2|l) (3)

We have written an initial value code using the dipole mag-
netic field lines and typically taking the mass density p(s) o«
B(s) to study the linear and nonlinear kinetically-modified
Alfvénic-Firehose turbulence occurring in the night-side
magnetotail. The nonlinear equation for the complex dis-
placement field &(z,t) is

2
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where 0, is given in Eq. (1) with B? = B2 (1 + |BZ£|2) and
v = weip; = cTy/eB follows from Eq. (2). The complex
valued fields are £ = &, + i&, and csB/Bn = 0.&; +10:&y
with the real B> = B2 4+ ¢B*6B used in Eq. (1). The
last term in Eq. (4 ) describes the Faraday rotation of the

polarlzatlon vector of the Alfvén Jwave. The phase rotation
d¢ in time At is 0¢p = I/k:HAt = k” (cT;) /eB)At.
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The derivation of Eq.
equation

(4) follows from the acceleration

dve

dt :F:Z:ijz_

e, V-P (5)

where P = (p) — pL)(BB/BZ)—I—pLI B = B,e,+B.€e,,

Jy = ;—Oaéi’” = ﬁgg—zf‘ and 0B, = B.0.£ from Fara-
day’s law 0,F, = 0B,/0t and Ohm’s law E, — v, B, =
E, - B, (85/81&) = 0. The inertial acceleration from the
Jy Bz force gives 82¢ = v402¢. The nonlinear pressure gra-
dient force follows from the calculation of

€. -V-P=(p —pL) [Ez : (B'V)E—szV'E} (6)

which reduces to

0 (B, 0¢
0z (32 87;) Q)
after using B = B, (1+ |8z£|2)1/2 and B, = B, = constant.

The nonlinear driving term F7* at small 6 B, /B =0.£ K
1 is proportional to the field- hne displacement £. At large
amplitudes 6B, /B S 1 the force is %reatly weakened, even-
tually decreasing w1th & as 02€/10.£]?. The effect is familiar
as the decrease of curvature for a strlng y = y(z) given by
the curvature formula 3"’ /(1 4+ y')%/2. This may be called
the magnetic field line crinkling.

The nonlinear partial differential equation (4) devel-
ops mode coupling from the nonlinear curvature force.
The nonlinear partial differential equation for U(Z,7) =
B.&(2/L,tvao/L) with 7 = tB./(uopo)*/2L where L is the
scale length (~ Rg) of the field line variation is

(p — p1)B:
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Wlth boundary conditions U(z = +L,7) = 0. Here v =
H /eBLUA() = plz'l)“,/L'UA

The total energy is

Wr(t) = K(t) + Wg + We(t) )
6o 1 6o
where K = / do ip(aﬁ/at)z, Wp = / do 5B? /2u0
%0 0o B2 8§ 2 %
and Wp = —A/2 —Zn |1+ (‘—D df. We use the
—6g Ko 0z

energy invariant to test the accuracy of the numerical solu-
tions.

The nonlinear potential is of the type that occurs in the
derivative nonlinear Schrodinger equation (DNLS) which
governs dispersive Alfvén waves [Horton and Ichikawa,

1996]. In pZerturbative theory the nonlinear force weakens
as F1t ~ ZBT’S[A —1— A|9.£]?)(82¢). Here we show a typical

example of the solution of Eq. (8). In a future work, we
will develop solutions for the magnetotail that include para-
metric decays of these fluctuations into Alfvén waves and
acoustic waves. A single kj-mode calculation shows that

the saturated amplitude varies as &max = k[l(Al/2 — 1)1/2

and has the nonlinear frequency wa(A4 — 1)'/2.

In addition to the intrinsic nonlinear force derived in
Eq. (8) that saturates the instability and produces the non-
linear oscillations shown in Figs. 1-4, there is the quasilinear
change of the pressure anisotropy due to reaction of the mag-
netic fluctuations on the background ion phase space distrib-
ution function [Gary, 1993, and Sagdeev and Galeev, 1967).

FIREHOSE MAGNETIC FLUCTUATIONS

Here we ignore the quasilinear change of the pressures ar-
guing that on the background evolution time scale there are
processes building up the anisotropy competing with the
quasilinear relaxation of the anisotropy. Thus, the turbu-
lence shown here for a fixed value of A = ,uo(pH —p1)/B2
given here overestimates the amplitude obtained with addi-
tion of the quasilinear background transport. In the simula-
tion we model this effect rather crudely by setting p; = p.
after some number of nonlinear oscillations. There %ollows
a period of large amplitude Alfvén wave oscillations which
may be subject to parametric instabilities for A above a
critical value.

The simulations are performed as an initial value prob-
lem with equatorlal field-line crossing at * ~ 8Rg with
BL(0) =2uop1 /Bi =5and p/p. = 1.44sothat A= 1.1or
o(t =0) = —0.1 and v = 0.01. We use a 4th-5th over adap-
tive RK integrator to advance the finite differential equa-
tions on 129 grid points along the magnetic field line. The
local equatorial field strength is B,, ~ 100nT. The local ion
gyroradius p; = 200 km.

3. Simulation Results

Figure la shows the fastest growing eigenfunction at
10t4 ~ 820s as a function position along the field line.
Figure 1b shows that there is a well-defined eigenmode fre-
quency (w = 2wf ~ 8/ta ~ 5 — 10mHz), Fig. 1c shows
the spectrum of kj = 27n/Ly values in the eigenmode. Fig-
ure 1d gives the profile of o(f,t{ = 10t4). We have not
calculated analytically the eigenmodes. The local equator-
ial plane frequency and growth rate for the most unstable
k| are w ™ Ymax = 10(vao/L), but the observed eigenmode
growth rate is much smaller than ymax due to the localiza-
tion of & (0).

Figure 2a and b show the magnetlc fluctuations § B, (t)
and its frequency spectrum 6 B2(w). Figure 2c gives the elec-
tric field fluctuations Ey(t). Flgure 2d shows the nonlinear
state of the plasma defined by &(t) = &2(t) +1&,(t) for a time
interval At = 15t4 ~ 20 min in the saturated state. There
are several characteristic frequencies in the dynamics. In
this example, there is a short period signal 71 ~ 100s and
a long nonlinear period Ty ~ 300s.

The time series in Fig. 2 for the electric and magnetic
fields show a chaotic structure even though the power is
concentrated in two frequencies. Such spectra are typical
of lower-order dynamical systems suggesting a search for a
low-order model derived from the pde. There are bursts
of energy releases from the nonlinear dynamics that are one
aspect of a self-organized criticality (SOC) system. The sec-
ond aspect of space-scale invariance of an SOC system is not
satisfied due to the key role of the ion gyroradius in defin-
ing the fast-growing linear mode at k| max. The turbulent
fluctuations mode-couple to both shorter and longer wave-
length fluctuations. For ¢ = 1 there are soliton solutions to
the associated DNLS equation [Horton and Ichikawa, 1996]
derived by factoring the Alfvén equation into uncoupled
right and left propagating waves. In the present problem
the driving by the pressure anisotropy disrupts those soli-
tons and couples the parallel (right) and antiparallel (left)
propagating Alfvén waves. For Eq. (8) we find coherent,
localized solutions not unlike solitons for v = 0.03.

Figure 3 shows the three energy components in Eq. (9)
for the solutions in Fig. 2. After the exponential growth
the turbulence saturates with the magnetic fluctuation en-
ergy Wp ~ —Wp the source of instability and both large
compared with kinetic energy K. In the simulation the
total energy is well conserved as follows analytically from
the model. Thus, there is an efficient conversion from the
anisotropy thermal energy reservoir into magnetic energy.
The increase of the magnetic turbulence with the anisotropy
parameter A is shown in Fig. 4. At small A — 1 values the
system shows coherent structures and the error bars may
underestimate the actual error.
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4. Conclusions

In conclusion, the presence of small fractional pressure
anisotropies in the high-beta magnetotail plasma produce
an intermittent spectrum of Alfvénic fluctuations that are
in the range of the Pi-2 signals commonly associated with
bursty bulk flows [Kepko and Kivelson, 1999 and 2001] and
substorm dynamics. The kinetic ballooning pressure gradi-
ent instability [Rouz et al., 1991] remains a possible cause
of these fluctuations. The nonlinear firehose model also pro-
duces candidate magnetic fluctuations and requires the ki-
netic dispersion term to give the maximum growth rate, the
wave dispersion and polarization. The nonlinear model is in-
tegrated and shows irregular wave forms with intermittent
turbulent energy releases. Further research that includes the
driving sources of the anisotropy and the quasilinear velocity
scattering of the ions from the magnetic fluctuations is re-
quired for a more detailed picture of the long-time evolution
of the system.

In a related work [Ji and Wolf, 2003b] argue that the ap-
pearance of the anisotropy is a product of the near-Earth
neutral line formation. Consequently, the observations of
Pi-2 turbulence described here along the auroral field lines
may be a signature of the flow braking from fast Earthward
flows produced by a near-Earth neutral line. It remains for
future 2D theory and simulations to find the balance of the
quasilinear reduction of the anisotropy and its production
by Earthward flows.

Finally, the problem of correlating the observed Pi2 os-
cillations with the various theoretical models remains.
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(a) Fastest growing eigenfunction (solid line real part, dashed imaginary part) for A = 1.1 and

B1(0) =5, (b) the eigenfrequency (solid line) and growth rate (dashed line) in units of v49/Ro where v40 and Ry
are the equatorial Alfvén speed and mirror field scale length, (c) the k-spectrum of the eigenmode and (d) the

initial profile of ¢(¢) in Eq. (1).

FIG. 2. One-hour interval of steady-state turbulence driven by fixed p/p. = 1.44. (a) The magnetic fluctu-
ations §B,(t), (b) the magnetic power spectrum |§B,(w)|?. (c) the electric field fluctuation E,(¢) and (d) the
displacement field £ = ¢, + i, fluctuations (&, solid, &, dashed).

FIG. 3 The three energy components in Eq. (9) for the solution shown in Fig. 2. The total energy Wiota =

Wtotal(t == 0) == 10_30.

FIG. 4 The increase of the mean value of the magnetic fluctuation energy Wp as a function of the anisotropy
parameter A for fixed v = 0.01. The small error bars at low Wy are due to the small oscillations of Wg(t) about

the mean value. The actual errors are larger.
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Figure 3. Figure 4.



