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Abstract

The two-component ion distribution observed with active charge-—exchange
measurements on. PDX are explained wusing the Fokker-Planck drift-kinetic
equation and assuming ion self collisions - are dominant for energy
scattering. The energetic tail of the distribution, which is diffusing
outwards in radius and down in energy, must retain an approximately constant
- effective temperature T (-3 #n fi/mae)'l. The discontinuity in the slope
of 4n f; is shown to be the boundary between the inward and outward

diffusion parts of fi and 1is a form of contact discontinuity. Energy

\

scattering collisions with electrons or circulating beam ions, when

important, modify the constancy of TH.




I. INTRODUCTION

Measurements of the ion distribution function (fi) in tokamaks by
analyzing the charge exchange neutrals emerging along a line of sight have
often produced 4nf; versus energy (me) plots with two straight lines.! The
original explanation by Russian workers? has generally been accepted. The
lower energy particles, which exhibit a low effective temperature Ti =
(—aznfi/mae)_l, are assumed to come from the outer regions of the discharge
where neutrals are plentiful and T; is low; the higher energy particles with
higher T; are assumed to come from the hot core. However, recent charge
exchange measurements3 on PDX using a modulated diagnostic neutral beam as
the neutral source, with discharge conditions I = 495kA, Bp = 22.5kG,
n, = 2.9x1013cm'3, Zoff = 2.5, Ty, = 5keV in hydrogen with deuterium neutral
beam injection, have shown that f;, even for a single minor radius (away
from the magnetic axis), exhibits the two straight lines on a 2nf; plot.
The steeper slope at lower energies gives an effective temperature
decreasing with radius as expected, but the higher energ& part retains an

approximately constant temperature close to the central ion temperature Tioe

An earlier charge exchange measurement showing strong evidence for a
non-Maxwellian f; was made by Goldston® on ATC. Analyzing charge exhange
particles emerging along lines of sight which were tangential to the
magnetic surfaces in a toroidal sense, he found the temperature of ions
moving antiparallel to the current, designated by Tm, decreased with ; with
an approximately parabolic dependénce, whereas the temperature for ions

moving parallel to the current remained constant out to near the wall. This

was for I = 65kA, By = 15k¢, m, = 2x10%3em™3, Z_cc = 4, T; = 220ev with
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only ohmic heating in deuterium. Changing to I = 85kA and hydrogen, some
fall off in T" was observed but it was only by 22% at r/a = 0.75. Similar
toroidally tangential measurements m;de by Goldston et al.d on ohmically
heated discharges in PDX (I = 150KkA, Bp = 20kG, T, = 2<1013cm'3, Zegg = 1,

T;o = 600eV) showed only a small difference between T, and Tm, the

difference being within the experimental error.

A common property of the above two experiments exhibiting local
non-Maxwellian ion distributions is that the Larmor radius in the poloidal
magnetic field (pe) for a typical thermal iomn is a significant fraction
(30.2) of the minor radius (a). One can trace to this fact the discrepancy
between experiment and the initial argument of neoclassical theory, which is
that in lowest order f£; must be Maxwellian because the terms in the
drift—kinetic equation which act to make fi non-Maxwellian are small in the
parameter (pe/L) compared with the collision term, as seen in Eq. (23) in
Section TIITI. (L is the characteristic radial gradient scale length). That
a substantial departure from Maxwellian must\ occur can be seen by
considering the published ion temperature profile for a discharge in PLT
with similar conditions to the 5keV ion plasma in PDX referred to above. In
Fig. 9 of Ref. 6, the ion temperature measured from the Doppler broadening
of impurity spectral lines, falls from 4keV at r = 8cm to 330eV at r = 32cm.
Assuming fi were Maxwellian at both radii and that n; is proportional to

[1—(r/a)2], the ratio of fi at the two radii for the particle energy 4keV

would bé
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f;(r=32cm, e=4keV) ng9 T8)3/2 I3y Tg
= e
fi(r=8cm, e =4keV) ng T32
=2.3x 1074 = e78+4 (1)

Assuﬁing fi varies exponentially between the two radii, i.e. £; 0~
exp(-r/L), which gives a uniform scale length L, then L must equal 2.9cm.
Since pg for 4keV and I=500kA is approximately 6cm then pe/L = 2 which is a
long way from the basic neoclassical assumption pe/L < 1. Clearly a
substantial departure from neoclassical theory can be expected under such

conditions.

In this paper the problem of ion heat conduction is reconsidered
without making the assumption that fi is Maxwellian in lowest order. In
Section II an equation is developed for fo, the lowest order part of £4
which is even in v; and independent of the poloidal angle, v, being the
component of v parallel to the magnetic field B. The Rosenbluth potentials
needed for the collision operators and the appropriate derivatives are also
determined. The resultant integro-differential equation for fo will, in
general, require computational methods for solution. 1In Section III, the
limited problem is considered in which the low energy part of fo is assumed
known - it is taken to be a Maxwellian with temperature falling off with

radius as observed experimentally - and a solution is sought for the tail of

fo' Because of the assumption that most of the total ion demnsity is
contained in the known part of f , simple analytic approximations can be
taken for the Rosenbluth potentials in the collision operators. The

resulting partial differential equation is solved approximately for the case
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of ion heat conduction between two minor radii with the assumption that the
tail particles are in the banana regime and that energy scattering
collisions with electrons and circulating beam ions can be neglected; i.e.
all significant heating of the ions is assumed to occur within the smaller
?adius. The tail of £, which is diffusing outwards in radius and down in
energy, is found to preserve the same effective temperature (-anfo/mae)"l.
This result occurs only because of the particular velocity dependence of the
banana regime diffusion and the coefficients in the energy scattering
collision operator for the tail particles. f0 falls off comparatively
rapidly with radius but nowhere near as rapidly as would be required to

satisfy Eq. (1).

The modifying effects of energy scattering collisions with electrons
and beam ions 1is comnsidered in Section IV. In Section V the case 1is made
that the observed discontinuity in the slope denf; /3e 1is the equivalent in

the phase space r,v of the contact discontinuity known in gas dynamics in

" real space.7 Finally, in Section VI, the temperatures T", Tm observed with

toroidally tangential lines of sight on ATC are identified in terms of the

two component fi'

II. THE EQUATION FOR fO

A. The Drift-Kinetic Equation

The problem to be considered is that of steady state dion heat
conduction between an inner radius r,, such as the edge of the sawtooth

region where the ion temperature T; = T, is large, and an outer radius ry

(o}
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which is taken to be somewhat smaller than the wall radius so that charge
exchange collisions and ionization source terms can be neglected. The
heating of the ions is assumed to occur withing the radius r  and energy
scattering collisions with electrons and beam ions are neglected in the
region ry to ry. In other words self collisions of the hydrogen ion species
- are assumed to be dominant for energy scattering. The modifying effect of
energy scattering collisions with electrons is considered in Section IV.

A reference frame is chosen in which the mean toroidal veloéity of the
ions 1is zero; this is the frame in which fi would relax to a Maxwellian if
processes other than self collisions were absent. Since to a good
approximation in Tokamaks the mean toroidal velocity 1is V", the mean
velocity parallel to B, the radial electric field in the moving frame
becomes Ei = E. - V; By, but the magnitude of V, is assumed limited such that
centrifugal force terms are higher order and can be neglected. The

electrostatic potential is assumed constant on a magnetic surface. Taking

f; in the form f(e ,u,r) where ¢ = v2/2 + e0™/m, u = VE/ZB and ° = —fE?dr,
the drift-kinetic equation for f has the standard form

B,

0 of

—_ -+ of=Cf 2

B e "l () (2)
where C is the collision operator, the components of vq are

1/2

Vir =(mq/er)d(q/B)/38, vgg = ~(mq/e)3(q/B)3r and g=vy= [Z(e-uB—eQ*/m)] .

The usual Tokamak assumptions have been made that EB<<B and B¢ =~ B,
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Multiplying Eq. (1) by Bdu/|gq|, dintegating over u and taking the

f~average, one obtains

1 3 a 21 do (e—etb*/m)/B By
v arTe ™ [ Tar 99 )
where
o 8 (e~ed™/m)/B Bay
e =l =} Tqr (War ©) )

and h = 1 + (r/R) cos 8. Note 4ﬂP€ds is the 8 -averaged radial diffusion for
particles in the spherical shell 4 V2 de (=tmv2dv). The integral of 4mT,
over all velocity magnitudes yields the net ion neoclassical diffusion I'inG

8 must equal the

which, from the principle of detailed ambipolar balancing
neoclassical component of the electron diffusion denoted by reNC‘ Since
PeNC is small in the parameter (me/mi)l/2 compared with the component parts

of I'iNc» the condition is imposed

tr [ Te d& =Tinc =Tenc® O : (5)

w de Bdu
= — | == £
or W m ow 2% [q] C(£) (6)
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It can be mnoted in passing that if Eq. (6) had been derived for the
laboratory frame of reference, the V, By part of the Ei term would appear via
the collision operator which yields a term (a/aw)(FWV“) where MmF dw is the
friction force experienced by the particles in the spherical shell dw.
Since PW = -FW/eﬁa, the same contribution is obtained. The Ei term when
multiplied by 4mmw and integrated over all energies, yields the neoclassical

energy transfer between electrons and ions when riNC is non-zero .’

B. Expansion of fi

fi is first separated into the parts f+, f~, which are respectively
even and odd in v, and, in fT, the part F¥ which is independent of 6 is
distinguished from ¥t ) which is § ~dependent and has zero §-average. The
part Tt is now expanded in the even Legendre polynomials Pz(g) %here g 1is

the cosine v"/v
Ft =
f - aOPO + asz + LI ] (7)

From considerations of the collision term in Eq. (6), since the pitch angle
scattering part of C will not be zero for the P, and higher order terms in

Eq. (7), the magnitude of the coefficients of these terms should satisfy
ag ~ 2a,/Zzee L(AFL),

which even for &=2 1is ao/Bngf. Here Zéff = (ni+nz22)/ni. The

approximation is therefore made




Ft o -
fr = aoPo‘: fO (8)

Since V; is zero in the chosen frame of reference, £7 Willlbe small compared
with £, in the parameter (r/R) 1/2  and the dominant contribution to the
collision term in Eq. (6) will be from C(fo,fo) with the contribution from
'C(f~,f”) smaller by the factor (r/R). After performing the py-integral in

Eq. (6) only the energy scattering part of C remains and Eq. (6) reduces to

*
1 orr'y, eEs aPW=-Y—3—V2 (f éﬂ-PLE)fO (9)
r 2dr m ow ow °3d3v 2 dv :

where Yy = 47w e gn A/mz, D" = aZG/av2 and G, H are the Rosenbluth

potentialslO defined by
¢ =[ &y’ £,(v))iv -yl

(10)

f,(v")
B[ &y o
~ o lyevi

Since f  is spherically symmetric, taking ¢ as the angle between v’ and

® ’ ’ ’ Tr 2 ~. d
H =f £ ,(v)v 24y f 5 21rs:.n¢ b 73
0 0 | (v%+v’4-2vv’cosd) /4|

— Zm' v ’ /2 ’ ® d z ’
——v—{) fo(v Yv/edv’ + 4m {7 fo(v/)vidv
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and
QH _ & (Vs (v v lav (11)
oV v2 0 -
Similarly,
6=t [V (v )vi2dv'(v + V'z)
0 o 3v
+ b £ vV’ dv’(— + v’)
- 3v
and
D 2 o
oL 38 I (Ve (yryvrhavi B [TE (v )vidv (12)
22 5y 3v3 0 3 v

C. The Derivation of PW

The determination of I'; in terms of the gradients of £, follows the

o
usual neoclassical procedure with the unknown function f (r,w) replacing the

usual Maxwellian form of £ . T is derived for both the banana and plateau

regimes.
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(a) Banana Regime

In this regime, the collision term is small and, in lowest order, the

drift-kinetic equation requires fi(e,u,g) to be constant along a particle
e

orbit for fixed e, y. (In this sub-section we are temporarily reverting to

€, 4 velocity space coordinates.) Hence, if £; = fo+f,

2 3
~ of 2 3°f 3 3°f
Fo s ao _8r o _Gr o cee t g
r 2 31.2 6 31'3

where §r measures the change in the minor radius r along a particle orbit
and g is constant along the orbit being a function of € and y. Taking §r=0
where g=0, thgn for trapped particles, 8r = mhq/eﬁao and for passing
particles d8r = (mhq/eBB - constant). Hence, for the f part of £ only the
terms with odd powers of d&r will contribute. Also since the maximum
magnitude for d&r is (Zr/R)l/zpe, the ratio of the cubic term to the linear
term is at most (1/3)(r/R)(pe/L)2. Here we will assume that the parameter
Py /L, although not small compared with unity, is limited such that this
ratio is sufficiently small to permit the negléct of the cubic and higher

order terms. In this case

3 f
£~ = - mR4 "0 . (13)

eﬁa ar

which is the standard neoclassical form. Also from the solubility

condition, g must have the standard form
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of B
g =B 2 "thax B (1)
or 3 hq

[0}

\

1

where the overbar denotes the 6-average. Eq. (14) is obtained wusing only
the pitch angle scattering part of C(f",fo). Because of the imposed
condition Eq. (5), the momentum restoring approximation to the contribution
C(fo,f') given in Ref. 12 can be shown to be zero. Equation (5) determines
the unknown Ei. Energy scattering collisions cause only a weak friction

force parallel to B for the trapped particles and can be neglected.

Substituting the formula for Vqr in Eq. (4) and integrating by parts

with respect to 6

I = - ff dé  Bdu mq2h 3 ¥t
€ M |ql eB 138

= - [ mah gegmy Bdw dO
I& ) o (15)

using the drift-kinetic equation, Eq.’(Z). (Here a viscosity term of the
form
252 g~ Bdu d0

Vdr Tal om

1 3
T 5z /) ma al on

has been neglected because it is smaller by the factor (r/R) compared with

the term in Eq. (15). See Ref. 11).
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In Eq. (15), once again only the pitch-angle scattering part of C makes
a significant contribution. The required integrals have been determined by

Rosenbluth et al.lz; one obtains

e == vl -5 %
o}

2, 43

1/2 m“vpav” 3 f

= - 0.49 (3 £A > (16
R esz ar
0

o

and for 'y, the gradient 3f,/dr must be replaced by (Bf,/or + eEzafo/maw) to

allow for the change of coordinate. In obtaining Eq. (16) qh has to be
taken as zero for the trapped region in the first expression. Vpp is the

pitch-angle collision frequency in the collision operator given by

(%]

Y G
PA 3 dv ( )

with the Rosenbluth potential G defined in Eq. (10).

(b) Plateau Regime

Here, since the transport is independent of the collision frequency and
a collision term is needed only to interpret the singularity at v, =0, the

collision operator is replaced by the simple Krook model-vf. If £ is
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expanded in powers of (r/R), from the drift-kinetic equation, Eq. (2), the

first order term in coordinates w, &, r, where gzv"/v, is given by

*
9f, eBy 3%,
+

£ oo mw(1+g2)r cosf
or m ow’

v(g -\;)eBe R

where v = Bvr/BGv and

) +1
T, = 2 fl V2 wl/2 vy £ d

or

2 *
r o= — n2wlr sind f+1 (142 2) “cosd dt (3fo + ek, afo)
W = e ~
2e2B6 BR2 -1 [E _ iV] 9r m ow
of EX of
_ 1 o¥’r o, ey 0y (18)
- 7 )
4 ezBe BR2 oY m ow

The equation to be solved for fo is thus Eq. (9) with I'; chosen to be
the smaller of Eq. (16) or Eq. (18) and with the coefficients in the

collision term given by Egs. (11) and (12).
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ITI. Approximate Solution for the Distribution Tail

A. Assumptions and Boundary Conditions

The presence of the Rosenbluth potential integrals in Eq. (9) makes it
intractable except for computer solution. However, for large v, these
integrals can be replaced to a good approximation by simple algebraic
formulae and in this section an approximate solution of Eq. (9) will be
obtained for the tail of the ion distribution function. The.assumption will
be made that for v less than the magnitude V, the distribution f, is known
and has the Maxwellian form fc related to a known temperature Tc(r) which
decreases with r. This assumption is, of course, based on the experimentally
observed distribution in PDX referred to in the Introduction. The limited
problem to be solved is the diffusion of the distribution tail in radius and
energy in ﬁhe presence of f,. Since the net ion diffusion has been taken to
be zero [Eq. (5)], the remaining diffusion process is the ion heat
conduction which dinvolves particles above a critical velocity magnitude
diffusing outwards (PW>0) and those with lower velocity diffusing inwards
(FW<O). The wunknown tail £y will have I' >0 and in fact in Section V the
velocity magnitﬁde V will be identified with the critical velocity where T

w

changes sign.

Equation (9) will be solved for the radial range r. to ry. The inner

o
radius r,, which could be the edge of the sawtooth region, has been chosen

greater than =zero so that, in the simplified problem considered here, all

the heating of the ions can be assumed to have occurred within r Energy

O.
scattering collisions with electrons and circulating beam ions have been

neglected in the range r_ to ri. The outer radius r; is chosen to be
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somewhat less than the tube radius a, so that the neglect of charge exchange

and ionization is justified.

The chosen boundary conditions are

1. For v < V(r), fO =f = (nc/n3/zv%c)exp(—v2/v%c) where V%c = 2T.(r)/m.

c

2 At r =1 f

02 ~O

Ty somewhat larger than T.(r,) = T.qe

3. At v=V, fo is continuous.,

4. £, is small at large r and large v.

The justification for assuming that the tail of fo has already a higher
effective temperature at rj is that this part of f, has arrived by diffusion
from an inner hotter region, whereas much of the lower energy part of fo has

arrived by diffusion from an outer colder radius.
B. The Approximate Collision Terms

The assumption is made that (V/VTC)2 is large so that exp(—VZ/v%c) and
fc(V) are small and, in addition, the number of ions in the unknown tail of
fo is small compared with the number in the known part £,. Hence, in
determining the required Rosenbluth potentials for v>V, the contributions
from the unknown tail can be neglected. (This assumption linearizes Eq. (9)
in the problem considered here.) Starting from Eqs. (11), (12) and (17) and

retaining only the f, contributions in the integrals

(= b4

ﬂ{_z —A_HJ(’)VfCVZdV=——; (19)

]
v V2 v

= £.(r,) for v<V and for v>V, fo =y~ exp(—mvz/ZTH) with
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where

‘(V)_ 2V
c ) VTC Tr1/2VT vZ

D
. J@L-fvfcv4dv
2 3y3
&2
eV, 20,3 : Vz)
= - p L —
2v3 3nl/zv3v V2
Te Te
chTc
2v3 -
(
Y 9G
AY) 2 e —
PA
v3 oV
— Y v ’ 12 ’ v’z 8"V *©
=X {um [T£ (v )viedvi (1 - 25 +Tf £,
v3 0 3v2 v
’2
= Y (Ve (viyveZavi(1 - )
v3 0 3y2

(20)

(V')v'dv'}
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~ 2
Vi on_v3 2
= -—S(l— 9+ ¢ exp(—l-)
v3 2v3 3ﬂ1/2v5VT v%
c c
Y e
> 21
3 (21)

since v> V. (The expression for G given above Eq. (12) has been used in

determining vp,).

At this stage it is an easy matter to generalize the limited problem
being considered to the case where impurity ions are present. In the ehergy
scattering coefficients in Egs. (19) and (20) the modification is an extra
factor [1 + Z (nzzzmi/ﬂcmz)].which is assumed to be sufficiently close to

z

unity so that it can be neglected. In the case of the pitch angle

scattering frequency, Eq. (21), the modified expression is

Yﬁ nzZ2

<
N3
= 1B

(o4

(22)

where Zlc. = (n; +1) n,2%) /n; .
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C. Solution of the Approximate Equation.

Making the reasonable assumption that the tail particles are in the
banana regime, Eq. (22) is substituted into Eq. (16) for ' and Eqs. (16),

(19) and (20) are substituted into Eq. (9), yielding

L8 o~ g f, eEp 3f, eEp o ., 3f, e, 3f,
— rn.a ( ) + — a ( )
- ar ' C dr m oW m 0w or m aw
c
T of
9 o}
=2 (f — 23
aw( o™ m BW)’ (23)
where

1f ﬁc(zni) is assumed to have a typical parabolic dependence on r, i.e.
ﬁc ~ 1-(r2/a2), the expression r3/2[1-(r2/a2)] is found to be weakly

dependent on r over the range of interest. Also, By is weakly varying with
r provided q, is not too large. Hence the radial dependence of the factor

r ﬁc a? is neglected compared with the strong dependence of f . At the same
time, since no explicit functions of w are present in Eq. (23), it is

convenient to return to the original energy coordinate e = W+e®*/m.

Equation (23) becomes




) O=..3__(f + & _____) (25)

since 8/8w1r = 8/8e|r .

To obtain an initial approximate solution of Eq. (25), the weak radial

dependence of T, is temporarily neglected, whereupon a solution by the

separable coordinates method is possible. Taking k2 as an example

separation constant, fO must satisfy

2
9 “f

DA ] (26)
ar2

and
T of
3 £ -2 2f =
5w (fo +— ) + K%, =0 (27)

The general solution for fj is an integral over all possible values of k2.
Here it is convenient to follow a single k2. 0f the two solutions to
Eq. (26), fdvéikr/“, the one which is small at large r is chosen to satisfy
the boundary condition 4; the solutions to Egs. (26) and (27) then combine
to give

—_—— _B le

fo=e @ (Cje + G, e-BZE) (28)

where B and B o satisfy




T
282 +x2=0
m

However, the boundary condition at r, requires fdvexp(—mw/TH), so that B

-21~-

(29)

m/TH and Eq. (29) becomes an equation determining a unique value of the

separation constant k2. The approximate solution satisfying the boundary

conditions is then

where

Ao = (049 zhee/2)1/2 (3)

/

with vy = ( amy/m)L/2 .

1/4

(30)

(1 - h’_)‘l/z My

Ty eBy

A more accurate solution allowing for the radial dependence of T, is

obtained by retaining the same

c

dependence of fo on e as in Eq. (30) and

using the WKBJ method. On substituting f ~exp(-me/Ty) in Eq. (25), one

obtains

2
22,

ar2 A2

(148)E, = 0

(31)
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where § = (Tco T.)/(Tg - TCO). Assuming a solution of the form fve—¢(r),

then

02 -9 - L) = 0 (32)

where the prime denotes 3/dr. Solving Eq. (32) iteratively, after two

iterations

T AW TR 1
¢-—£ T+Zzn(14<s).

Using this result and changing back to the energy coordinate w, the more

accurate solution is

TpeT T
£o= ¢ (=) oo e B (33)

© TH - T

where C is a constant, Tco is the value of T, at r, and

C
2o1- =3
ey | en ( TH) 1/2 5 1/4 (0

Thus the equating in Eq. (25) of the divergence of PW and the

divergence of the flows in wvelocity space under the assumed conditions,

requires the tail of f  to maintain an approximately constant effective
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temperature (—'()Jz,nfo/maw)"1 as it diffuses outward in r and down in energy.
The important conditions are, firstly, banana regime diffusion and,
secondly, ion self-collisions dominant for energy scattering. The resulting
particular energy dependence of T and of C;; for the distribution tail
require the constant effective temperature. Under other conditions the
constant effective temperature will not occur, as discussed in the next

section.

Iv. Effect of Electron Collisions.

A. The Electron Collision Term

In the preceding two sections the effect of energy scattering
collisions between the ions and other particle species was neglected. If
these interactions are important, the extra collision terms which must be
added to Eq. (9) will, in general, have velocity dependence different from
the high energy approximation for the C;j term. Hence the solution in
Eq. (33) with constant effective temperature will no longer be wvalid. In

this section the effect of electron collisions will be considered. The

extra term which must be added to the right-hand side of Eq. (9) is
3
VCie(fp) = Vei(E;J = Vv (fo t— ) (35)

and on the right of Eq. (23), this will take the form




Assuming T, ~ T,, the magnitude of this term is smaller than the Cji term by
the factor (me/mi)l/z, larger by the factors (ne/ﬂc) and (mivz/ZTe)3/2, and,
for the parameters of the experiments considered in the Introduction, is
typically a fraction of the Cii term. But the important difference from the
Cii term is the presence of the extra factor v3. (As in the proceeding

section, only the tail of the ion distribution is being considered.)
B. A Physical Model

Since an analytic solution has mnot been obtained with the Cie term
included, its effect will be estimated as a perturbation to the solution
obtained in the _preceeding‘ section. This will be done by introducing a
physical interpretation of Eq. (9), namely, the flow of the '"fluid" f, 1in

the phase space r, v. Introducing the unit vectors i

1., iy parallel to the r

and v axes, respectively, the "velocity" of the "fluid" f, is

Vo= Vel +oay Iy (36)

where

<
il

r =Tyu/vEs,
(37)

o
it

v = Jy/ %
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Here, JV is to be identified with the acceleration flow in velocity space

such that, after averaging over the pitch angle

*
eE. T
r W o_ 1 ) 2
C(f) -—= Y=L 9 (425 38
e i b i T AN (38)

and 4ﬂ(Vrf0)V2dV = T dw is the radial diffusive flow for particles. From

Eqs. (16), (22), (33) and (34)

oXyn, 8f, eE;

of
r o)
Vr = vE, ( or * m aw)
A %
aZYnc 1 ek, '
= — (7+—TE) (39)
and from Egs. (9), (35) and (38)
v eE* yﬂ T m, T
=8 Y c e e
& =y "v—z(l ‘EE) = VeiV (El—l')(l 'T—H) (40)

In Eq. (40) the second and third terms come from C;; and C;,, respectively.

N "

In the coordinates r, v Eq. (9) is simply

or
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Brvr 1 ov a,

3T 2 T av (41)

where d/dt is the mobile operator 3/3t + Vv « V. Introducing the time At for

the "fluid" to flow from position, r,v to r+Ar, viAv then At = Ar/vr and Av

= ajAt. Also

af,
fo(r,v) + At ETS (xr,v)

fo(rthr, viAv)

fo(r,v) (1 + ALY » V)

so that

¢n £ (r+8r, vHAvV) =2n £,(r,v) + AtV * (42)
treating At as small.

If the energy at r+Ar is denoted by w’, such that w = %(V+Av)2 =

w(va Ar/v,) and

then




2 gn fo(r+hr, viAV) = [1 +T—

va,, -]
ow’ ar 2 ( M (43)

—] 5% (&n £,(r,v)HLVev)

Considering first the case where the C;, term is absent in Eq. (40), then

a ~v~2, v

v ~v_l, Vea,i,=0 and both (vav/vr) and AtVev,.i,. are independent of

r ~ Ve r

v. Equation (43) reduces to

(' -
9 _ 9 __m
'5—W—,- in fo(r-I-Ar, V'I'AV) = ﬁ Ln fo(r,V) = TH . (44)

which reproduces the property found in Section III, that f, diffuses in r

and v maintaining constant effective temperature.

With the C;, term retained in Eq. (40)

Ar 5 Bvy Ary Te Te
L+ — 5;(-;,?) =1- 3"e1(§)(§)(1 ’T—H)
and
3v s
3 ei m T
— . i = - A
aw LAy > (;ﬁ)(f)(l ‘7;‘)
v r i H
so that
3v . m T
N R [T
3 TH v2 vy my Ty
~—4n £, (rHAr, vHAV) =
oW Ary, Do T
1 = 3vgy (V—r)(gl‘)(l ——ITI;)
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and the effective temperature at r+Ar is

. Ary e Te Ty
e = o[- eHEI( - D1+ ]
or
3Ty Nei Mg
ar v, (;§ﬂ<TH - Te) (45)

since TH/mv2 is small for the tail ions. To give an average temperature
gradient for the tail, v, should be the average value of the velocity

dependent v, given by Eq. (39).

C. Comparison with Experiment

From Eq. (45) it follows that the effective temperature of the ion
distribution tail should increase with r out to the radius where Te = Ty and
then decrease with radius for larger r. Assuming Te is less than Ty the fall
off of Ty with radius can be compared for different experiments by
considering the fractional change in Ty in a given fraction of the discharge

radius a. From Eq. (45)

a BTH B 3a\)eime ! - TE)

TH or Vmg TH

which, using Eqs. (34) and (39), is found to be proportional to be

23/2070  \=1/2.~1
I 1y 153/2(28 )71 27l
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Comparing first the ATC experiments in deuterium and hydrogen referred

to in‘the Introduction, the factor ITimzl is found to be increased by 3.2 in
changing to hydrogen and hence significantly more fall off of Ty is
expected. Using the T, profile reported for ATC by Suckewer and Hinnovl3,

for the hydrogen case, T, = T;. = 273eV at r = 8.7cm and at r = 0.75a =

e io

12¢cm, T.

jo~Te = 173eV. Using these values and the mean parameters for this

radial range, namely n, = 1.6x 1013em™3, T, = 187eV, pgy = 2.6cm and a mean
value for v, from Egs. (39) and (34), one finds Ty should decrease by 23%
between r = 8.7cm and r = 0.75a for hydrogen. For the deuterium experiment
the decrease by r = 0.75a is found to be 3.2% allowing for the lower value
of Tio‘ The figure for the hydrogen experiment is in close agreement with
the experimental observation for the decrease of T, with radius and the
small figure for deuterium is probably equivalent to zero within the

experimental error (T" is shown to be approximately equal to Ty in Section

VII.)

Comparing the Ohmic heating case in PDX referred to in the Introduction
with the deuterium discharge in ATC, the factor I T; T;3/2(Zéff)"1/2 is
increased by 13. Thus a large fall off of Ty with radius is expected in
this PDX experiment, substantially larger than the hydrogen case in ATC.

This explains the observed approximate equality of T" and Tm.

In the case of the beam heated PDX experiment, the parameters are such
that substantial cooling of the ion distribution tail by electrons should
occur but in addition there will be substantial heating of the tail ions by

the circulating beam ions. Approximate numerical estimates of these two
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effects show that they are nearly equal, so that the observed small decrease

of TH with radius is somewhat fortuitous.

Lastly, turning attention to the inward-flowing part of fi’ namely £,
since the particle density ﬁc associated with f, is 4 or 5 times larger than
the particle density of fy, it follows that the mean value of v,. for £, is
smaller by this factor compared to Ve for fy. From Eq. (45) the interaction
with the electrons is correspondingly more important by the same factor
because of the greater time taken to cover awgiven radial distance. In fact
the electrons will piay a substantial, if not major role in heating the
inward flowing ions in ohmically heated discharges. This greater importanée
of the C;, term for £, is only one of the factors which makes the diffusion
of £, different from that of fg. Even if these lower energy ions are in the
banana regime, the velocity dependence of the various collision terms will
be different from that applicable to the tail ions. In many ohmicall&
heated discharges much of f, will be in the plateau regime, causing a still

larger change in the velocity dependence of T Also, in general, the

W.
smallness of v, for £, will cause the Cj; term to Dbe correspondingly more

important in the drift-kinetic equation so that in lowest order, fc must be

Maxwellian.
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V. The Contact Discontinuity

One of the striking features of the active charge exchange measurements
on PDX3 is the abrupt change in the slope 8£nfo/aw between the two parts of
fy; 1.e. 3f,/3w is discontinuous within the accuracy of the measurements;

N
The critical particle energy associated with the discontinuity, denoted by

W o= 1/2 V2, decreases with the minor radius r. Hence, for a given value of

w, the gradient Bfo/ar must also be disconinuous at a particular radius.
The only way large values of 82f0/3w2 and azfo/ar2 can occur and still

satisfy Eq. (9), namely Vefoy = 0 in the phase space r,v, where parts of v

~

are proportional to df, /dw and 9f,/9r, is if the flow f_u is tangential to

the locus of V(r). In Section III and IV, the high energy part of fo, to be
denoted by fy, was found to have v, positive (outward radial diffusion) and

a, negative (downward diffusion in energy). Hence the signs of v, and a

v v

are correct for v to be tangential to V(r) on the high energy side; only the

relative magnitudes of v., a, remain unchecked.

On the low energy side of V, to determine a one must calculate the

v

collision operator coefficients more accurately than in Section III in order
to obtain a non-zero value. From Egs. (11) and (12) one finds for v = V and

neglecting the Cie terms

e
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and >

| (46)

3/1_1'- VT Tc‘ )

where f, has been assumed Maxwellian on either side of V but with the

different effective temperatures TC, Ty . (The continuity of f at v=V

(o}

determines the unknown coefficient ng in fy). From Eqs. (46) and (38)

*
I - VrceErf, 4o f 9H _'YDH If,
v mv T+o ov 2 v

%
VrceErfo . AYncvfo TH

v
= _— - 1) T,
mv — T
B/WV% c
c
VrceEr
= (= *8J5 (47)
where Vee 1is the mean radial velocity I‘W/Vf0 on the low energy side of V.

Applying the condition that Vv must be parallel to V(r) on either side of V,

for vV
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and substituting from Egs. (40) and (47)

* A
VrceEy rEEr T ) To
mv + 8 _ mv v2 Ty
Vre Vel
or
. 2 ~ Tc
Vrc = _VI'H v Gc/ync (1 - -IE) . (48)

Thus for v to be tangential to V(r) for'v<V requires that v,.. be negative.
In other words, if the experimental results and the drift-kinetic equation
Eq. (9), are both correct, the boundary V(r) must be the dividing line where

I'; changes sign; f, is the part of f diffusing radially inwards in the heat

conduction and fy is the part diffusion radially outwards. (It can be noted

. . . . . . *
in passing that for v_., to be negative the effective electric field E, must

rc

be sufficiently negative such that the net "force" driving the diffusion of

fc is negative for w less than W; i.e. taking w= W,

*
eE n’ T/
_T_r—_c—_lrﬁ(%‘}l—%)<0. (49)
c e c
This net force will be only weakly negative for w = W, since SC is only

weakly positive).
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From analogy with gas dynamics it seems appropfiate to call the
disconinuity at v = V a "contact discontinuity". A contact discontinuity in
gas dynamics7 is the sharp boundary surface which occurs between two regions
of gas having a difference in one or more of the properties; density,
temperature or tangential velocity magnitude, there being no velocity
component‘perpendicular to the surface. To the extent that diffusion, heat
conduction and viscosity are neglected, the discontinuity is infinitely
steep in one or more of these three properties. The contact discontinuity
in phase space discussed here is analogous to a discontinuity in tangential

velocity in real space in gas dynamics.

VI. Identification of T, )

A. Estimate for T, T

The charge exchange measurements made with lines of sight perpendicular
to the dischargé tube, or at a small angle to the perpendicular, will detect
ions with small vy and large velocity perpendicular to B, i.e. EEv"/v=0.
The measured distribution function Will therefore be f+, with the lowest
order approximation being fo' Hence the two component distributions
observed experimentally with such lines of sight can be identified directly
with the two components predicted for fO by the theory in Section III,
namely fc and fy. In the case of the toroidally tangential lines of sight,

ions will be sampled which have £ = *1; hence ft 4 £~ is being measured.
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In the banana regime, f is constant on a banana orbit apart from a
small collisional correction: hence, considering ions which are just
trapped, f[r,w,& = i(2r/R)1/2] will be the same as f(r ¥ 0ry, w7 SrveEi/m,
§=0), where §r_ is half the width of the banana orbit given approximately by
Grv 2 (2r/R)1/2mv/eﬂ3. Also, if pitch-angle scattering is strong compared
with energy scattering (Zéff >> 1), the gradient of f from £ = t(Zr/R)l/2 to

£ = %] will be small. Hence, from standard neoclassical theory?

£ = £(r,wE = +1) = £, + £7[r,w,8 = +(2r/R)1/2]

%
of §r.ek of
- f -&r o _°ivTTr o

o\ "V 3r m ow (50)

Also, if the particle energy for the discontinuity between f, and fy is W(x¥)

for & = 0, it should be observed at radius r for £ = %1 at W= 1/2{\72 given

by

~ - %
W= Wr*F Sry) * SrVeEr/m (51)
where 6rv is the value of Grv for v = V.

Hence for v > V and § = +1, from Eqs. (33) and (34) for the case where
the interaction with electrons and beam ions is weak, the observed f given

by Eq. (50) will be



1-'_<
1/4 T 1/2
(= )

v i

in f" = fn fO + 2(%)

and

L nf“ -1

T" (V);f) = (" B ) = TH[ 1+ (%) (52)

For v < V, it is convenient to write 8r, = Sry + (2r/R) l/Zm(v—;l)/eB ;

then £, for & = +1, v < V is

’ ’ *
ory 12 mev=v) (% Te mw 3 ek,
£, = £ (rSry)| 1+ (&) [—+ — (- =
I c v R eBy c T, T, 2) Tc] } .
and
- 1,2 c
L) = (- —) = Tele=sr){1- 5(5) hv




* ~ ,
e eEp 20y 1/ 2 pev-v)Te
lorsly, -2 -1+ % ~g ! (53)
Similarly for £ =-1 one obtains
TC
1- =
- . 1/4. VT Ty L2
Ty (v>V) = Ty 1- () 2 )] (54)
) H R v i
0.49 71,
\
1/2 mv% n, T/ eES
o 1 2r c cmw _ 3y _ T
TD\(V<V) = Tc(r+6 rv){ 1+ E(?) EBeV [‘_c‘ + Tf'c" (E‘—c' 2) Tc]
1/2 p(y-v) Te |
- (& () ey (55)

In summary, Egs. (51 - 55) predict that for the case of high Zéff the
observed ion distributions for tangential observation should show two
effective temperatures, the values being modified somewhat from Tc’ Ty as
given by these equations. The discontinuity energy W will be displaced to
lower energy for parallel observation and to higher energy for anti~parallel
observation. This follows from Eq. (51) and the condition of Eq. (49) which

. . %
requires a large negative value for E,.

i
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In the case where Zéff is close to unity, theory indicates that the
magnitude of f] will decay appreciably between £ = i(2r/R)l/2 and £ = %1 due
to energy scattering. This cén be seen in Figure 2 of Reference 14 which
shows a 66% reduction for Zéff =1 and r/R = 0.1. For such clean discharges

the observed f" and fm will be much closer to f,.

B. Comparison with Experiment

The only set of experimental measurements which can be compared with
the above predictions are the ATC measurements. Since Zeff for electrons
was 4 and oxygen was the main impurity this gives Zéff = 7, and the
requirement Zéff >> 1 is well satisfied. The only other tangential
measurements, the observations with ohmic heating on PDX giving T“ = Tm’
have already been explained in Section IV on the basis of the stfong

interactions of fH with the electrons.

In order to compare the above predictions with the ATC measurements
approximate estimates are needed for the two pafameters Ei and W. These
quantitites can be determined from the two conditions: (a) =zero net
diffusion for the ions, Eq. (5); and (b) the requirement that the flows in
phase space on either side of the discontinuity be anti-parallel, namely

Eq. (48). Substituting for Vey a@nd vy, from Eq. (39) and its equivalent on

the low energy side of V, Eq. (48) becomes



* ’ ’
eEr_nC_T (mW_B) EEr+l
T, E ?c— T 7 T_H Y (569
= - 5
T T
e G I CL R 1g P
3 v% Tc c v2 TH
c

An example solution of Egqs. (5) and (56) for the ATC parameters

n, = 2 X 1013cm"3, Tio = 220eV, I = 65KkA, Zogg = 4 and r = 5cm, assuming

both n, and T, have parabolic radial profiles, (Doppler broadening

measurements for ATCl2 gave such a profile for ch gives T, = 198eV, 1/X

0.34cm™!, eE/T, = 4.5 nf/n. = 0.19cm ! or By = 37V/cm and mW = 4.6T,
910eV. (The details of these calculations will be published elsewhere. The
effect of electrostatic trapping has been included. éS(e)/Tc was found to
be 0.6r/R, being caused by the non-uniforminty of the impurity ions due to

their poloidal rotation velocity - E?/B.)

Since the poloidal Lérmor radius for 910eV is 6cm giving Srv ~ 2cm, the
discontinuity should be observed with parallel observations at the radius
5+ GIV = 7cm at the energy 910—6rveE§ = 836eV. The only example plot of &n
f versus energy shown in Reference 4 is for parallel observation at the
somewhat larger radius of 10.7cm. Although only a single straight line is
plotted, an examination of the data points shows evidence for a
discontinuity at 700eV. The four data points below this energy fall on a
straight line with effective temperature 162eV, whereas the straight line
through the data points above this energy give 230eV (It should be noted

that the departure of the lowest energy point from the straight line for
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230eV is quite small because of the limited energy range involved, namely

400eV to 700eV, and the departure may be within the experimental error.)

Turning to Eq. (52), the value of the quantity in the square brackets
is 1.1 at 700eV decreasing to 1.05 at 2,500eV, which was the highest energy
recorded. Thus the effective temperature for v>V should vary from 242eV to
231eV, which is only a small variation, the mean being close to the
experimental value 230eV. For v<V, the correction due to the second term in
the curly brécket in Eq. (53) will be small since the effective force in the
square bracket has already been seen to be small (see discussidn in Section
V). The third term is zero at the discontinuity and is -.09 at 400eV.
Since Grv for 700eV at r = 10.7cm is 2.5cm, T.(r#8r,) from the parabolic
profile is 163eV so that the predicted effective temperature for v<V is

163eV at 700eV decreasing to 148eV at 400eV. The mean of 156eV is close to

the value for the slope of the lowest four data points.

With anti-parallel observations the discontinuity should be observed at
the energy W= W(r+6rv) - 6rVeE§/m. For v > % the correction factor for. Ty
given by Eq. (54) is now less than uﬁity and varies from 1.0 at r = 0 to 0.8
at r = a. For v < V the effective temperature will be Tc(r+6rv) for v = %
and increase with decreasing v because the third term in the curly brackets
in Eq. (55) is now positive. The best single straight line fit should
therefore be some weighted average between the reduced TH value and
T(r+6rv), This could explain why the observed values for Tm are somewhat
larger than the values for T, from the Doppler broadening of impurity

1

spectral lines.12
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VII. Conclusions

The conclusions which can be drawn from the results of the preceding

sections. can be summarized as follows.

1. For the case of simple ion heat conduction between two minor radii,
where ion self-collisions dominate for energy scattering and heating or
cooling of the dion distribution tail fH due to electron or beam ion
collisions can be neglected, this tail, which is diffusing outwards in
radius and downwards in energy, maintains a constant effective temperature
Ty 5‘(—agnfo/mag)"1. This result applies when the tail ions are in the
banana regime. The magnitude of f  decreases exponentially with radius with
a scale length of the order of the ion Larmor radius using the central ion
temperature; but this 1is not as rapid a decrease as would be required for

the tail to match the decreasing temperature of f., the lower energy part of

f, which is diffusing inwards.

2. Collisional interaction of the tail ions with the electrons will

cause a gradient of Ty with radius given approximately by

oT ;. m
H ei e
— - (=) (T - T

ar V. “my , e

where v, is the average radial velocity associated with the radial diffusion
of the tail ions. The gradient of TH will be larger in hydrogen than
deuterium and in Section IV, this effect was shown to explain firstly, the

-observed decrease of T; with radius in the hydrogen ATC experiment, T, being
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closely related to Ty as explained in Section VI and secondly, the
approximate equality of T, and Ty observed in the ohmic heating PDX

experiment.

3. In Section V it was shown that the observed discontinuity in
agnf /3e which separates the two components fo, fg of the ion distribution,
can only be reconciled with the Fokker-Planck drift-kinetic equation if this
is the boundary where the radial diffusion of f, changes sign. The
discontinuity is interpreted as a contact discontinuity in the phase space

r,v, which 1is analogous with the contact discontinuities known in gas

dynamics.

4. 1In those discharges where the two component ion distributions
exist, the ion transport properties will be modified and in particular the
ion heat conduction is increased. Hdwever, the heat conduction is no longer
proportional to the temperature gradient (i.e., the apparent temperature
gradient BTC/Br);‘it depends on the values of W, the ion energy where the
discontinuity occurs, Et z E, - V) By, the effective electric field, and the
temperature difference Ty-T.. There is no longer a simple dion thermal

conductivity.

In addition, the ion energy per unit volume will be significantly
larger than that given by the temperature Tc - e.g. 1in the PDX measurements
of Ref. 3, at r = 26cm it is greater by a factor 2.1 - and the rate of
transfer of energy between electrons and ions is not proportional to TC -

Toe
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5. The measurements of ion temperature from the Doppler broadening of

impurity ion spectral lines will monitor the temperature T. of the lower

c

o+ There are many more particles in the f. component than

ene{gy part of £
in fH and their collision frequency is much higher so that the impurity ion

temperature is strongly coupled to T..
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