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The purpose of this thesis is to examine various characterizations of
nonmaximal rank in dynamical systems for which a generalization of the Pois-
son bracket generates the dynamics. In particular, for systems with symme-
try, there is a connection between Goldstone modes of spontaneous symmetry
breaking induced by any G-invariant polynomial potential (G being the sym-
metry group of the system), and subcasimirs that define nonmaximal sym-
plectic foliations. The connection is made explicit using ideas from invariant
theory, orbit space geometry, Poisson geometry, and work already done in the
area of patterns of symmetry breaking. Examples illustrating some of these
ideas are given in both finite and infinite dimensions. The moment algebra of
an ideal fluid in 2 + 1 dimensions is an example where some ideas from invari-
ant theory can be profitably used. Finally, it is indicated how a unified bundle
description might be given of all these phenomena using the notion of princi-

pal bundle reduction, and of submaximal distributions and their integrability.
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The nature of the infinite dimensional analog of the above characterizations is

also indicated in the conclusion.
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Chapter 1

Introduction

1.1 Symmetry in Mathematics and Physics

The role of symmetry in physics has traditionally been that of a device
to simplify the problem at hand. Using hints from the symmetry constraints
it is often possible to guess at the correct solution from amongst the infinitely
many plausible solutions, without actually solving the problem. It may thus
be regarded as a tool to study the behavior of a system, be it composed of a
collection of differential equations, or a space of solutions from extremizing an
action; or even to probe the geometry of a manifold on which the symmetry
acts. In physics, the role of symmetry has been central to the formulation of
quantum mechanics, as pioneered by Wigner (who introduced the term ‘little
group’, which plays a central role in this thesis), and of gauge theories, which
form the backbone of the so called ‘Standard Model’ and its generalizations

(like supersymmetry and string theory) to include gravitation.

The pioneers of the subject of classical and celestial mechanics were
quick to appreciate the virtues of symmetry in solving complicated systems
of differential equations that arose in their work, but it took a long time for

the methods of modern Lie group theory to become established within the



subject of mechanics (but see [1] for an early pioneering work). The histori-
cal developments [2] dealt with symmetries in the context of the mechanical
systems being studied, and their evolution dynamics. It must be pointed out
that the vision of symmetry that S. Lie had was much more general than the
sense in which the concept is commonly used today. Group theory as used in
most of contemporary physics is the theory of finite groups, or Lie groups, and
their generalizations to infinite dimensions. Lie first discovered differentiable
groups in a more general setting, as transformations induced simultaneously on
the dependent and the independent variables of an infinite dimensional (con-
tinuum) system. The nugget of Lie group theory was then isolated from its
rich context by later workers such as F. Klein, who had elementary geometric
considerations to motivate him, rather than the complex situations that Lie
had in mind. Thus, classical and celestial mechanics proceeded relatively old-
fashionedly, while the new stylistic developments in formal Lie group theory
and representation theory were intensely worked out; it is this latter theory

that physicists find fit to apply to their work today.

Motivated by the success of Lie group theory in other branches of
physics, a revival was made during the latter half of the 20th century to apply
them to classical (Hamiltonian and Lagrangean) mechanics. The technique of
restricting to the isotropy subgroup (or ‘little group’) gave rise to the impor-
tant procedure of reduction, or reducing the number of degrees of freedom in
a system with symmetry. In essence, this was well known to the workers of

yore (such as Lie, Cartan and Poincare), when they used reduction to reduce



the order of the differential equations that governed the evolution of a physical
system. Reduction (in the modern sense) first required stringent assumptions
on the type of action (the associated moment map had to be weakly regular),
which was later relaxed to include singular variants. Now, the methods of
Lie groups and representation theory are well embedded within the mechanics
community; the next step, of incorporating the full vision of Lie in modern

terms, has yet to be completed [3].

Most of modern mechanics is modeled on a phase space of physical
variables, such as positions and momenta, as an even dimensional symplectic
manifold. A dual point of view, which regards the algebra of functions as
fundamental, is found to be a generalization of phase space. The advantage of
this view is the possibility of having odd dimension, as is often required when
the symplectic manifold is acted upon by an odd-dimensional group, or if the
restriction to a nondegenerate symplectic form is far too restrictive. Thus, we
take our dynamical systems to be modeled on phase spaces that are Poisson
manifolds, and at times assume that the phase space arises as a quotient space
of a symplectic manifold by a group action (by a procedure known as Poisson

reduction).

A Poisson manifold is endowed with an (in general) degenerate Poisson
structure (or Poisson bracket), and this plays an important role when analyzing
the equilibria of a system. Equilibria can be found, on the one hand, by
extremizing the action, which gives equations of motion whose time evolution

is set to zero; on the other hand, they could also be found by simply setting the



gradient of a suitable governing Hamiltonian to be equal to zero. The problem
with degenerate (or noncanonical) Poisson brackets is that these two methods
do not commute: that is to say, more equilibria can result from the action
principle because of the extra submanifolds along which the Poisson structure
could itself vanish. Similar considerations apply in attempting to ascertain the
nature of stability of the equilibria. The usual methods developed (such as the
‘energy-Casimir’, or Arnol’d method ') work only for regular points, where the
rank of the Poisson tensor is maximal. At singular points, where the rank is
nonmaximal, additional Casimir functions (called subcasimirs) arise, and these
have to be taken properly into account to study stability. The problems in the
infinite dimensional (or functional) setting are even more complex, as function
spaces are more complicated than finite dimensional manifolds. (We shall,
aside from illustrating with some examples, only touch upon the functional

issues in the final (concluding) chapter.)

Symmetry enters in the following way in the study of the geometry
of Poisson manifolds. Given a C*° manifold M, the largest group that can
act on it is the infinite dimensional group of diffeomorphisms, Diff (M), of all
differentiable maps that take M to itself. This group is too vast for many
purposes, so we restrict to subgroups of the full diffeomorphism group that
preserve certain additional structures on M. In this way [5], we arrive at Lie
group actions on the manifold, © : G x M — M, where G C Diff (M).

With additional restrictions on the type of action (proper, for example), orbit

1Similar stability methods had been developed earlier, see for instance [4].



spaces with Hausdorff quotient topology can be defined. We can therefore use
subgroups of the diffeomorphism group to probe the structural details of M. In
particular, if M happens to be a Poisson manifold, one of these is the Poisson

structure. (The action is then assumed to preserve the Poisson structure.)

In the second appendix to Chapter 2, it will be shown how the orbits
of the diffeomorphism group and subgroups thereof define generalized folia-
tions on M, which for a Poisson manifold are generated by the characteristic
distribution that its Poisson structure defines. In this view, any vestige of
symmetry left over from restricting to the various orbits reflects in an obvious
way the geometry of the orbit. One of the aims in this thesis will be to give a
dynamical interpretation for these orbits, both regular and singular, using the
tools of symmetry breaking and invariant theory. The extrema of potentials
that are defined as G-invariant functions (or polynomials) on M are intimately
related to the orbit geometry, which in turn is governed by the characteristic
distribution. In this manner, we find a connection between the extrema of

arbitrary potentials, and the subcasimirs that pin down a given orbit.

An infinite dimensional counterpart of this problem would involve mod-
eling an infinite dimensional phase space, which is usually taken to be a Banach
manifold, and the Lie groups acting on the phase space could be defined on a fi-
nite dimensional subspace (local regularity assumption) in much the same way
as the finite dimensional case. However, essential functional analytic aspects
of the problem arise, which we do not encounter in the finite dimensional case.

The actions and functions we consider are C*°, or those functions that can



be extended from closed sets to C* functions on the whole domain, and this
rules out potentially physical phenomena such as leaves of a foliation that are
singular at arbitrarily many points, and are supported by singular integrals.
In the final chapter we shall return to these issues, and point out generaliza-
tions of the thesis that could be made with reasonable straightforwardness to
the functional setting. A few ideas such as anti-selfadjoint index theory could
be applied to detect rank change of the infinite dimensional Poisson structure,
which in the functional case is a cosymplectic operator and not a tensor as it
is in the finite dimensional case. A proper functional setting for noncanonical
Hamiltonian dynamics (whose phase space would be modeled by the infinite
dimensional Poisson manifold) would first need to be laid [6] before investigat-
ing these questions with the aim of explaining phenomena already seen, and
predicting those that haven’t yet been seen. Although every Banach manifold
is locally diffeomorphic to a Banach vector space, the calculus of functionals is
obviously more varied and complicated than the ordinary calculus of invariant

polynomials and functions that are used in the thesis.

The roles played by invariants in physics and mathematics are too myr-
iad to even state here. In general, in both mathematics and physics, one is
interested in objects that are left invariant with respect to a certain operation,
or that characterize a situation globally. For example, in classical Hamiltonian
dynamics, the invariants of a symmetry are guaranteed by Noether’s theorem,
and by Lie’s theorem for the case of a system governed by differential equa-

tions [3]. In the geometry of the associated symplectic and Poisson manifolds,



the various integral invariants of a system of vector fields or differential forms
give rise to the theory of foliations (c.f. Appendix 2 to Chapter 2), and of dif-
ferential forms [5, 7]. Cartan exploited the role of invariants to set up various
equivalence problems, which characterize the general properties of the mani-
fold in terms of its differential germs. Invariant theory, both in its classical
and geometric forms, seeks to display explicitly elements of tensor spaces that
are invariant under group actions, and then interprets their geometry as be-
ing “universal” on the orbits of the group action. Later, we shall use these
results applied to the problem of spontaneous symmetry breaking, which is
also similar in spirit to their use for characterizing bifurcations in equivariant
bifurcation theory [8]. Finally, we note that invariant polynomials play a big
role in defining characteristic classes of a principal fiber bundle; indeed several
results used here in the context of semisimple algebras and their invariants
find their generalizations in the guise of the properties of the Weil algebra and
Weil homomorphisms in equivariant cohomology theory. (We shall return to
this in the appendix to Chapter 4, and in the concluding chapter, where a

fiber bundle setting is proposed.)

1.2 Main ideas and results

Firstly, we note the important caveat: All orbits, both regular and
singular, are assumed to be closed. This means that group actions that are
designed to produce a dense orbit (by the expedient of using an irrational

parameter on a torus component, for example) are purposely excluded. Oth-



erwise, it can be shown that even for proper actions of a compact group on
a compact manifold, the Casimirs (and hence subcasimirs) do not determine
the orbits [9]. For the ideas used and developed in this thesis, it will prove
imperative that Casimirs and subcasimirs do determine the orbits; if there is a
way of getting around this caveat, then it is one that the author is unaware of.
This, of course, poses a stringent restriction on the types of Poisson structure

we shall be able to tie up with a dynamical interpretation.

The main ideas and results of the thesis are the following:

1. Given a Poisson manifold, linearization of the Poisson structure makes
it possible to look at a Lie-Poisson foliation. Then, using the embedding
theorems of Whitney, it is sufficient to consider a linear (hence orthogo-

nal) action on a finite-dimensional vector space.

2. The leaves of the characteristic distribution defined by the Poisson struc-
ture become orbits that are fully transitive with respect to the orbit
group action, with different isotropy subgroups characterizing orbits of

various dimensions (always even, since they are symplectic).

3. Assuming these orbits are (locally) closed, invariant theory may be used
to characterize the Casimirs and subcasimirs that appear as functions
whose level sets define the orbits. This phenomenon is shown to be gen-

eral in a series of examples from finite dimensions to infinite dimensions.

4. The passage from a larger isotropy group (associated with a thinner

orbit, or a more degenerate leaf) to a smaller one (associated with a



fatter orbit, or a less degenerate leaf) is related to the appearance of
extra Goldstone modes, that in turn become leaf coordinates of the bigger
orbit. The reverse process, called symmetry restoration, maps a suitable
functional combination of these Goldstone modes into the (differentials

of ) subcasimirs that pin down the thinner orbit 2.

5. Since the breaking and restoration of symmetry requires a Hamiltonian
(or a potential) which may depend on control parameters, by varying
the controls, it is possible to move from generic to nongeneric orbits.
At the same time, by looking at the invariant theory of the situation, it

becomes possible to see new subcasimirs come and go in the process.

The main task of the thesis is to outline a synthesis of the above ideas and
results, using notions already developed in the literature of Poisson geome-
try, group actions on a manifold, invariant theory, geometric mechanics, and
patterns in hadronic symmetry breaking. These ideas are then applied to

characterize rank-changing events in Poisson dynamical systems.

1.3 Organization of the thesis

In the next chapter, we begin with a short introduction to the local
structure of Poisson manifolds. Symmetry enters in when we consider the

orbits of the characteristic distribution to coincide with those of a certain Lie

2Weinstein [10] calls the generic orbits symplectic leaves, and the thinner orbits ‘sym-
plectic bones’.



group action. The physical interpretation of Casimirs, functions that specify
these orbits, is next outlined with examples. The two appendices are concerned
with the generalization of the classical integrability result of Frobenius, to
distributions of nonconstant rank. At the end, we indicate how these ideas

find an application in the global foliation of a Poisson manifold.

Next, in Chapter 3, we consider examples in finite and infinite dimen-
sions. We begin with the standard example of a 3-dimensional rigid body (the
simplest nontrivial example of a noncanonical system) and its generalization
to n dimensions. The latter provides an opportunity to work in some stan-
dard facts about semisimple Lie algebras, which we duly record. Semi-direct
products (and their special case, direct products) are considered next, first in
general, and then in the guise of two examples, one from finite dimensions
(rigid body under the influence of a constant gravitational field) and the other
from infinite dimensions (a 2+1 field theory of fluids, involving the algebra
of moments). In the appendix, we outline a brief description of the classical

invariant theory procedure that is utilized for the ideal fluid example.

Chapter 4 is concerned with actions of groups on manifolds, and the
important constructs that appear therein. Some of it is standard textbook
fare, save for an occassional example or generalization that hearkens to the
purpose at hand. Among results of this type, mention may be made of the
singular reduction procedure, which generalizes the clean reduction theorem of
Marsden and Weinstein, and the result of Whitney, which permits any action

to be embedded as a linear action (or representation) on a vector space. It is

10



the latter result that we will invoke when we restrict our attentions to a local
neighborhood of a point which sports the Weinstein linearization outlined in
the Chapter 2. Next, we consider the various orbit types and their associated
strata. In Section 4.3, the methods of invariant theory are used to connect
the geometry of orbit strata with the algebra of invariant polynomials and
invariant functions. This is followed by an appendix which describes two
equivalent approaches to the characterization of regular and singular leaves

using some cohomology theory.

In Chapter 5, all the threads of ideas in the previous chapters are
now collided with the notion of spontaneous breaking of symmetry, as used
in bosonic field theory. The work done in the late 1980s and early 1990s on
patterns of symmetric breaking (that is, variation of the isotropy group of
solution space with variation in control parameters) is first outlined, and later,
used in the Poisson context to make a statement about connecting certain
types of Goldstone bosons with the functions (Casimirs and subcasimirs) that

determine the level sets of the orbits of the characteristic distribution.

We conclude the thesis with an overview of topics that have not been
treated at all, like the fiber bundle setting, or infinite dimensional Poisson
manifolds, and conjecture how some of these results might go over to those
cases. At this point, we review what the thesis was about, and also indicate

some future work in progress.

A Bibliography is set up with references to authors of books and articles

and private communications, in the same order that they were invoked in the

11



text of the thesis (read linearly from start to finish).

Finally, here are some general notations assumed throughout:

e X(M): the space of all vector fields on a differentiable manifold M.

e A*(M): subalgebra of forms (antisymmetric covariant tensors) of arbi-
trary degree in the tensor algebra of M. For instance, A°(M) are the
functions C* (M), A*(M) are 1-forms, etc.

e A™*(M): subalgebra of antisymmetric contravariant tensors of arbitrary
degree in the tensor algebra of M. For example, AY{(M) = X(M),

A=%(M) are 2-covectors, and so on.
e (G is a Lie group, g its Lie algebra, and g* the dual, or Lie coalgebra.

e We adopt the following convention in dealing with manifold and vector
space dimensions: with the first mention of an m-dimensional manifold
M, its dimension will be indicated, as in M™, but after that will mostly
be referred to as M, as in T, M, or M/G. In case we do not wish to
emphasize the dimensionality until later, there shall be no dimension
superscripts at first mention. (The obvious exception to this rule is R",

Cr, etc.)

e We do not adopt any consistent convention with regard to upper and
lower indices, whether the summation convention (summing over re-

peated indices) is invoked or not. In this regard, we also note that

12



the structure constants of a semisimple Lie algebra are assumed to be
antisymmetric in the indices chosen to represent the Poisson structure,
regardless of the positions of those indices; eg., C;k, C’,ij etc. have the

same skew-symmetry properties.

e If K denotes a field (for example, K = R), then K* is the field with zero
element (the origin) excluded. (K shall always stand for a field of zero

characteristic.)

e V = ‘for all’; 3 = ‘there exists’; 3! = ‘there exists (a) unique’; dim =

dimension; s.t. = such that.
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Chapter 2

Poisson Geometry

2.1 Symplectic and Poisson manifolds

2.1.1 Preliminaries

It is a theorem of Darboux that any symplectic manifold can be pro-
vided with local coordinates about any point that reduces the symplectic form
to a canonical one. A symplectic manifold is an even dimensional differen-
tiable manifold M?* with a closed 2-form w € A%*(M) such that dw = 0,
called the symplectic form, that is nondegenerate (i.e., w(X,Y) = 0 for all
X € X(M) =Y =0). Let local coordinates guaranteed by Darboux’ theorem
about a point zy € M be given by (¢1,... ,n,P1,--- ,Pn). Then the symplectic

form has the following canonical form:
w(x)|z, = dgi A dp;

(Here, and throughout, the summation convention — summing repeated in-
dices over the appropriate index range — is in force, unless otherwise noted.)
The symplectic form w(z) (= w;;j(x)dz® A dz?) can be represented as a 2n by

2n matrix
0 1
(wij)|$0 = ( -1 0 ) :

14



Since the above matrix is nondegenerate, it has a well defined inverse, de-
noted by J% such that wyJ* = 6. In a neighborhood of x,, the covariant

antisymmetric bilinear tensor that this defines has the canonical form

wm=%A%. (2.1)

The tensor J can equivalently and completely characterize the symplectic man-
ifold. If f € C*°(M), then the Hamiltonian vector field corresponding to it is
given by df = w(Xy,-), or by J(df, ) = X;.

For a pair of C'™ functions f, g we therefore have the relation
J(df,dg) = w(Xy, X,). (2.2)

This isomorphism between the symplectic form and the J tensor (also called
cosymplectic form) breaks down in the context of a general Poisson manifold,
P. A Poisson structure is specified by a Lie algebra structure on C*°(P) by

means of an antisymmetric algebra operation called the Poisson bracket [11]
{,:}: C®(P)x C®(P) — R
It satisfies two properties, aside from antisymmetry,

{f,gh} ={f, gth+g{f h} (2.3)

{£: {9, hi} +{g,{n, f}} +{h.{f. g}} =0, (2.4)

which are called Leibniz’s rule and Jacobi identity, respectively.

15



In a coordinate neighborhood {z'}, and for f,g € C®°(P) the above

properties imply the following form for the bracket:

;i 0f Og
={z' 2 —Z
Setting
{z*, 27} == JY,

we see that the Poisson bracket of coordinate functions completely determines

the cosymplectic form,

. 0 0
= Jv . 2.
J(z) = JY(z) py /\ 52 (2.5)
We shall call it ‘Poisson tensor’ or ‘Poisson structure’ in what follows.

By definition the Poisson bracket induces a Lie algebra structure on the
space of Hamiltonian vector fields. Since J(df,-) = {f,-} = X, the Leibnitz
rule is just the derivation property of vector fields on the function algebra, and

the Jacobi identity expresses the anti-homomorphism between the Lie algebras

(C>=(P),{+-}) and (X(P), [, -]),

Xirgy = —[ X5, Xgl- (2.6)

A Poisson manifold with its Poisson structure is a generalization of

a symplectic manifold equipped with a symplectic structure.! For one, the

! Another way to generalize a symplectic manifold is by a presymplectic structure, where
the manifold is even dimensional with a closed 2-form w, which is now allowed to be degen-
erate.

16



former 4s defined on an odd dimensional differentiable manifold. Secondly,
while a symplectic form implies (by nondegeneracy) a Poisson structure, the
converse is not generally true. It was known to Lie (for instance) that a
modified version of Darboux’ theorem held when the Poisson structure matrix,

(J¥) had constant rank (the regular case).

If dim (P) = m and the rank of the matrix is [, then firstly [ = 2n, and
moreover local coordinates (¢i,... ,qn,P1,--+ ,Pn,C1,.-. ,Ck) €xist about any

point zy € P such that the Poisson structure has the noncanonical form

) 0 1 0
JNw=1] -1 0 0 |, (2.7)
0 0 0

which would be a canonical form except for the 0. Here, m = 2n + k, and

zeros appearing in the matrix have the appropriate dimensions.

(In terms of the Poisson brackets, we have the following commutation

relations:
and ¢;’s commute with everything.)

Clearly, det(J¥) = 0, and so this is not the inverse of any symplectic
structure. However, by the Frobenius’ theorem, it is possible to find leaves of
a regular foliation generated by a system of vector fields of rank 2n, which are
symplectic with the symplectic form coming from (roughly speaking) the part

of the matrix (J¥) that is an invertible 2n by 2n submatrix. The remaining k

dimensions are transversal to the leaves and comprise the transverse structure
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to the foliation. For a regular foliation, the transverse structure is trivial,
and is simply generated by the complementary dimension subspace of 1-form
(Pfaffian) fields of rank k, from amongst the space of all 1-form fields, A'(P).
(Precise statements are given in Appendix 2.) The Figure 2.1 below indicates

the geometry of the regular case.

The leaves are regular submanifolds of P that are locally just level sets
of the k functions in a neighborhood with generalized Darboux coordinates,
{cx = const.}. These are called Casimirs (or Casimir invariants), and play
an important role in both the physics and geometry of Poisson dynamical
systems. The Casimirs form the center of the Poisson function algebra, that
is, {cx € C®°(P)|{ck,f} =0 Vf € C®(P)}. Geometrically, as indicated
above, the differentials, {dc;} generate the transverse foliation of complemen-
tary dimension to the symplectic leaves. Physically, these are precisely the
leaves where dynamics, specified by a Hamiltonian, would be constrained to

lie within.

2.1.2 Nonconstant rank

Let p(J) denote the rank of the Poisson structure. If p(J)(x) is not
constant as x € P varies, then the distribution of vector fields generated by
the invertible part of J¥ is integrable in the generalized sense, with leaves of
foliation of varying (even) dimension. (In the second appendix to this chapter,
some facts about generalized distributions and their foliations are included.)

The Figure 2.2 below shows a variable rank Poisson structure, with maximal
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Figure 2.1: Regular Poisson manifold showing foliation by symplectic leaves
(here 7 runs from 1,... ,n).
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Pm

Figure 2.2: Singular Poisson manifold showing foliation by symplectic leaves
of various dimensions (n > n’).

dimension leaves labeled €2 and the nonmaximal ones by Q.

If the generalized distribution is differentiable, then p(J)(x) is lower
semicontinuous (cf. Appendix 2, Section 2.4), so its rank is constant in an
open neighborhood of z € P, and in the generalized sense, the distribution of
symplectic leaves is integrable (the leaves are always even dimensional since J
is skew symmetric), both for maximal and nonmaximal leaves. However, the
corank is upper semicontinuous, and so the complementary Pfaffian distribu-
tion fails to be integrable in the generalized sense. Thus it becomes important

to study the transverse structure where rank changes occur. (Semicontinuity
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is reviewed in Appendix 1, Section 2.3.) Since J is skew-symmetric, it follows
that its rank is even, so the leaves of a generalized foliation drop in dimension

by even integers, when rank of J decreases.

2.1.3 Local structure of Poisson manifolds

The structure of a Poisson manifold in the local neighborhood of a
point zy € P was studied in a paper by Weinstein [12, 13]. Essentially, the
Poisson structure decomposes into a symplectic part and a singular part for
which various germs can be postulated. The one that shall be used in this
thesis is the ‘linear structure’, which entails zero rank at the origin. Other
germs, such as quadratic, are used in quantization and computation of L-P

(Lichnerowicz-Poisson) cohomology, and we shall not touch upon these.

The generic points are those for which the symplectic part of the Pois-
son structure has maximum dimension. Points other than generic are called
singular — at these points, the symplectic part falls in dimension, and the

singular germ is one that incorporates the coordinates that have disappeared.

In terms of the structure matrix, we have in a neighborhood of z,

- 0 1 0
TN=[ -1 0 0 (2.8)
0 0 79(y)
where (q1,... ,Gn,P1,--- »Pn, Y1, - ,Yx) are coordinates of P?"** in the above

neighborhood, and
m(y) ={y' '}, 7(0) =0
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is the transverse Poisson structure. In tensor notation, we have:

"9 0 <~ . .0 )
J(x)\%:;a—qi/\a—m+ﬂ2wﬂ(y)a—yj/\a—yl.

The transverse structure is governed by the 7% part. There are some

theorems and conjectures as to what form it could assume. If
J9(z) = P,

the Poisson structure is said to be a linear one. Weinstein conjectured that the
germ of the transverse structure about the origin is linearizable, that is, coor-
dinate transformations may be made whereby the Poisson structure becomes
a linear one. (This is akin to Morse theory [14] where a Morse function in
the neighborhood of a nondegenerate critical point, can be given a quadratic
germ.) With some restrictions that were noted later, a version of the conjec-
ture is true. Without getting into the details, here is a short sketch of the
theory ([13]; see also [15]).

A. Splitting theorem

In the neighborhood of any point of zy € P, the Poisson manifold
P™ is a product of a symplectic part and a degenerate Poisson part (in local
coordinates, the expressions given above). The regular part of P is an open
dense subset of P, and here the symplectic factor arranges in leaves of locally

constant dimension. The degenerate factor or transverse structure is defined
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Figure 2.3: The transverse structure to a leaf at two points.

up to its isomorphism class, which is the same for all points along the leaf, see

Figure 2.3.

B. Linearization

In a neighborhood of the point where rank is zero, the Poisson structure

has a Taylor series expansion of the form

T i, 0 9
Tallo= 2 G5 N gy *ole)

i =1
where Clij are structure constants of a Lie algebra g of dimension m and rank
k (where k is the corank of the generic foliation by symplectic leaves). If terms
of o(z?) vanish, we could locally take P™ to be a vector space V™ such that

its dual, V* of linear functions on V is the Lie algebra g, which means, locally,
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V = g*. Thus, linearization happens when the degenerate Poisson structure
at the point of total degeneracy is isomorphic to a Lie-Poisson structure.

[ d

T 5um) the corresponding

If (u!,..., ™) are coordinates of g*, (
coordinate basis of g, and ( , ) the g—g* pairing, then for any pair of functions

f,g € C*(g*), the Lie-Poisson bracket is defined by 2

of dg i 19f 99
= L2y =CP 2.9
where [ , ] is the Lie bracket on g, and C,ij the structure constants of g*.

C. Conditions for linear structure

When can a Poisson structure be made linear about the point of zero

rank? Here we give some results gleaned from the literature on this topic [13] [15].

1. A given Poisson structure is formally linearizable at a point if the as-
sociated tangent Lie algebra (defined as the algebra of differentials of

functions in the cotangent space at that point) is semisimple.

2. A C® structure is C* linearizable if its tangent Lie algebra is of compact
type. (A semisimple, compact, Lie algebra g is said to be of compact
type if there exists an involutive automorphism s (i.e., s # e, s = €)

whose fixed point set is compactly imbedded as a subalgebra of g.)

2Throughout the thesis, we ignore the (+) convention for the Lie-Poisson bracket. The
difference arises in using left-invariant (—) or right-invariant (+) vector fields for the iso-
morphism between TG and g.
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3. Let P = g*. Then the transverse Lie algebra to u € g* is g, the stabilizer
of ;1 in g with respect to the coadjoint action. (These terms are explained
in Chapter 4, Subsections 4.1.1 and 4.1.4). Essentially, the orbits of the
dual to any Lie algebra are coadjoint orbits, whose symmetry group is g,,.
On the tangent space to the orbits, the vectors are spanned by elements
of g, since we could identify (g*)* ~ g. Then the Lie algebra itself splits
into two parts: the tangent to the coadjoint orbit, spanned by m, and

the transverse to it, spanned by g,.
Linearizable transverse structure is possible only if the complement to
the stabilizer is an ideal of m in g, that is

g=9,Ddm,

[glw m] g m.

Several counterexamples for which these conditions are not met are
given in the above cited references. In an interesting paper by Oh [16],
it is shown that the isomorphism class of the transverse structure in
some of these counterexamples admits a quadratic structure. (Quadratic
transverse structures come into play during quantization, see for exam-

ple [17].)

2.2 Kinematics and Dynamics

Casimirs, being functions that commute with every function, form the

center of the Poisson algebra, (C*°(P),{,}). In the case P = g*, they are
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closely related [18] to the Casimir operators in the universal enveloping algebra
(where monomials in algebra elements form an associative algebra), S(g) [19].
It was in this context that the term ‘Casimir’ was first applied, in representa-

tion theory.

For a regular Poisson manifold, the leaves of the symplectic foliation
are level sets of the Casimir functions (in suitable local coordinates). For the
example of P = s0(3)*, the Casimir in coordinates (u!, u?, u?) is simply equal
to c= (') + (12)? + (1®)?, and the level sets are 2-spheres about the origin.
(See Figure 2.4 below.)

The symplectic form on the leaves can be found, see the first example
of the next chapter for details. (In Figure 2.4, the coordinates to the tangent

plane m; and my stand for the canonical leaf coordinates, cf. Subsection 3.1.1.)

Away from the origin, the leaves are 2-dimensional, and the rank of J is
two. At the origin, the singular leaf is a point, and the rank of J there is zero.
At that point, any set of functions of the three coordinates that intersect in
the solution set of a point can be used as good Casimirs. Such eztra functions
that pop up whenever rank change occurs are called subcasimirs. Part of the
thesis is concerned with characterising them, and pointing out a dynamical

interpretation of these functions.

Subcasimirs, by definition, are functions that separate singular leaves,
where the rank of J is less than maximal. By the theory of generalized dis-

tributions (Appendix 2, Section 2.4), it is clear that these cannot have a nice

26



are 2-spheres

n

Figure 2.4: Rigid body in 3-D as a Poisson manifold
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differential geometric interpretation. In the regular case, the gradients of the
Casimirs simply generate the transversal distribution to the symplectic distri-
bution, and the geometry is clear: the gradients fill out the remaining direc-
tions. At the singular points, there is no neighborhood about them where rank
(being lower semicontinuous) stays constant, and hence no means of associat-
ing gradients to the corresponding point. (In the example of P = s0(3)*, this
reduces to the observation of there being no well defined notion of tangency

and hence gradient at the singular origin.)

We take a cue from the fact that in the case of P = g*, the Casimirs of
the transverse structure are related to the algebraic geometry of the coadjoint
orbits. By imposing some symmetry group G acting on the manifold (which
we take to be a linear vector space), and a G-invariant potential on it, the
‘gradients’ at various points, both regular and singular, can be defined in the

sense of algebraic varieties.

Since a Poisson structure is purely kinematical while a choice of Hamil-
tonian is dynamical (for example, for the Lie coalgebra to SO(3), the rigid
body Hamiltionian is only one of infinitely many possible, but no matter what
the choice, the norm of angular momentum is always conserved), thus through
the algebraic geometry of orbits, it is possible to make a connection between

kinematics and dynamics.
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2.3 Appendix 1: Upper and Lower semicontinuity

Let S be a topological space and f a real valued function f: S — R.
The notions of upper semicontinuity (u.s.c) and lower semicontinuity (1.s.c)
are less restrictive than continuity, and are useful in several situations in anal-
ysis, such as maxima and minima problems or variational principles. Here,
we define them, note a couple of results of importance, and give two simple

examples [20] [21].

fisus.cifforalla € R, f~'(—o0,a) is open in S.

fislscifforall a € R, f~!(a,00) is open in S.

Equivalently, f is u.s.c if the set {z|f(z) < o} isopenin S forall o € R
(or {z|f(z) < a} is closed in S).

f is Ls.c if the set {z|f(z) < a} is closed in S for all @ € R (or

{z|f(z) > a} is open in S).
Some properties

1. If S is compact, then a u.s.c function is bounded above and achieves
its maximum, while a l.s.c function is bounded below and assumes its

minimum.

2. A real valued function on S is l.s.c iff its negative is u.s.c.
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3. A function is continuous iff it is both u.s.c and l.s.c. On a compact set

such a function attains its extremum (could be max. or min.).
Examples

1. Let E C S be measurable. Then its characteristic function is defined by

1lif zek
0 otherwise

Xe() = {

From the figures 2.5 below it is easily seen that xg(x) is 1.s.c on an open

set and u.s.c on a closed set.

2. Let P™ be an m-dimensional Poisson manifold, p(.J)(z) the rank of the
corresponding Poisson structure, and p(J)(z) = m— p(J)(x) the corank.
Then from Property 2 above, it is clear that the former is l.s.c and
the latter is u.s.c on P. Since the foliation is by symplectic leaves,
jumps down (or up) in rank occur by even integers. Hence the rank

may be taken as a function from P onto the set of even integers, 27Z,

p(J): P — 2Z.

2.4 Appendix 2: Generalized Distributions and their
Foliations
The classical theorem of Frobenius states that a distribution is inte-
grable iff it is involutive. As stated and proven in most treatments, the dis-
tribution is assumed to be of constant rank. Here, the corresponding gener-

alization of the theorem to the case of variable rank distributions is briefly
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Figure 2.5: Upper and lower semicontinuity
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indicated. These were first sought in the context of Riemannian Foliations,
and the so called reachability problem in control theory [22]. The general
theory was worked out in a series of papers by Sussmann, Stefan, Hermann,
Molino and others [23] [24] [25] [26]. Subsection 2.4.1 deals with the topologi-
cal aspects (global), and Subsection 2.4.2 treats the differential aspects (local).
Subsection 2.4.3 applies the theory to the case of Poisson manifolds, which was
cursorily indicated in Section 2.1 (see also [15], [27]). There is a different, al-
gebraic approach to these issues, pioneered by E. Cartan, for the case that M
is a cotangent bundle of some configuration space. (We refer to [28] for this

development.)

2.4.1 Completely integrable distributions: global theory

Let M be a differentiable manifold. A generalized distribution (hereafter
simply, distribution) on M is a subset A C T'M such that Vo € M, A(z) =
ANT,M is a vector subspace of T, M. Dim A(z) is called the rank of A at
z. In other words, a distribution is a map that assigns to each point a linear

subspace of the tangent space to M at that point.

A differentiable section of A is a vector field X € X(M) on a neighbor-
hood U, C M, such that for y € U,, X (y) lies in the fiber A(y).

The distribution A is said to be differentiable if Vo € M and v € A(z)
there exists a differentiable section X of A defined on a open neighborhood

U, such that X (z) = v.

Let A be a distribution on M. A Pfaffian system A" is canonically

32



associated to it. The fiber A%(z) is the annihilator of the fiber A(z) of A at

A(z) ={a e Tr(M)| (a,v) =0 V v e Ax)}

We have the relation rank (A) + rank (A%) = dim (M).

The rank of a distribution A is a lower semicontinuous function (see
Section 2.3) on M, so the rank of its annihilator A° is a upper semicontinu-
ous function. Thus the latter is not a differentiable distribution according to
the above definition unless its rank is constant in a neighborhood and hence

constant everywhere.
An integral of a distribution A on a manifold M is a pair (S,7) of a
connected manifold S and an immersion ¢ : S — M such that
di,(T,S) C A(i(x)).
If equality holds, the integral is said to be of mazrimal dimension at that point
z€eSs.

An integral manifold of A is an immersion by canonical injection of an
integral of A. The integral manifolds are in general not embedded submani-

folds, so the subspace topology will not usually apply.

A differentiable distribution A is called completely integrable iff for ev-

ery x € M there exists a maximal integral manifold of A which contains x.

Theorem (generalized foliations)
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Let A be a completely integrable distribution on a differentiable manifold M
that is differentiable in the sense defined above. Then at every point z € M
there is a unique integral manifold S of A which is maximal (i.e., has maximal
dimension everywhere and contains no other maximal ones). The maximal
integral manifolds of A form a partition of M into disjoint leaves and form the
generalized foliation of the given distribution. Further, if (S, %) is an integral
of A of maximal dimension, then 7 is a local diffeomorphism from S onto an

open subset i(S) of a leaf of the generalized foliation defined by A.

Corollary (constant rank case)

For constant rank A, if (S’,4') is an integral manifold of A (not necessarily of

maximal dimension®) then 4’ is an immersion of S’ in a leaf of A on M.

2.4.2 Local conditions for complete integrability

Now, let us consider the manifold M acted upon by the group of local
diffeomorphisms G' = Diff (M). Closure and other group properties shall then
imply infinitesimal conditions on the vector fields that generate the group along
the leaves of the generalized foliations. This leads to a natural extension of
Frobenius’ criterion for integrability of a distibution to the case of generalized

distributions.

3For example, a contact manifold is 2n + 1 dimensional with leaves of constant dimension
<n.
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Let D C X(M). If Gx is the one parameter group of local diffeomor-
phisms generated by X € D, then there is the smallest group Gp that contains
the union of {Gx} VX € D. This is the group of local diffcomorphisms gen-

erated by D (a subgroup of G).
G p-equivalence defines orbits. The orbits have the following topology:
Let T = (t1,...,t), t; € R, z € M, X € D" and ®x, the map
T — Xr(z) (the flow map giving flow curves), with some 2x , C R" as do-

main for the flow times ¢;. Then the orbit of D through z, S, has the topology

that makes the flow map ®x , continuous.

Let A be a distribution on M. Let x — ¢ -z denote the action of the
group of local diffeomorphisms G on M. Then A is said to be G-invariant if
dg : A(x) — A(g - ), on the same orbit. Dim (A(z)) is constant along a
G-orbit.

The following constructs aid in distinguishing the variable rank prop-

erty of A.

1. Let D C X(M). Then there exists a distribution A which is spanned by
D (that is, any section X of A can be written as a linear combination of
vector fields from D), call it Ap. A distribution that is of the form Ap for

some everywhere defined subset D C x(M) is called a C* distribution.

2. The smallest distribution that is Gp-invariant and contains Ap will be

denoted by Pp. Dim (Pp(z)) is called the rank of the orbit S.
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3. D C X(M) is involutive if whenever X € D|Y € D, then [X,Y] € D.

Let D* be the smallest involutive set containing some (in general non-

involutive) D. Then the following inclusions hold:

Ap C Ap- C Pp. (2.10)

4. Recall from Subsection 2.4.1 that an integral manifold S C M for A
has its tangent space at any x € S evaluated by the distribution, that
is, TS = A(z). A C* distribution A that is integrable (has integral
manifolds through every point) must be involutive. (The converse is
not true; see example below.) Also recall that a completely integrable

distribution has integral manifolds of maximal dimension.

5. The set Pp has more “directions” so that flows can move away from
and come back to the orbit in question, upon the action of the group
of diffeomorphisms. Thus we can expect it to characterize variable rank

distributions.

1. Theorem I
Let M be a differentiable manifold, D a set of C'* vector fields.
(a) If S is a Gp-orbit of D, then S admits a unique differentiable struc-
ture such that S C M is an immersed submanifold. The dimension

of S equals its rank, and its topology is the orbit topology (defined

above).
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(b) Every orbit of D is a maximal integral submanifold of Pp.
(c) Pp is involutive.
2. Theorem II

Let A be a C* distribution on M, D a set of C* vector fields which
spans A. The following are equivalent:

(a) A is integrable.

(b) A is completely integrable.

(¢) A is Gp-invariant.

(d) Forevery X € D, t e R, x € M, dX; maps A(x) to A(X; - x).

(e) Forx € M,3 X' ... X* from D such that A(x) is the linear hull
of X1(z),...,X"*(x). Further, if X € D, there is an € > 0 and C*°

functions f; (1 <4,j < k) may be found for t € (—¢, €) s.t.
- k . .
X, X (Xi(2)) = Y [iO)XT (Xi(x), i=1,... k.
j=1

3. Theorem III

Let D be a set of C'™ vector fileds that satisfy the property of local

finiteness: for x € M, 3 X',... , X* € D such that

(a) X(z),...,X*(x) span Ap(x)
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(b) X € D= 3 U, and C™ functions f} satisfying

k
X, X)) =) fi@) X (@), i=1,....k 2 €U,

J
j=1

If D is of local finite type, then the distribution Ap is completely inte-
grable. If dimension & of A(z) does not change with z, then the distri-

bution is completely integrable iff it is involutive.
An Example

This example is taken from Sussmann [23]. Let M = R2?, (z,y) € M,
D={X,Y}, XxX=2 Y=g/>(x)6%, ¢(r) =0, x <0 and ¢(z) >0, z > 0.

ox’
Pp(X,Y) has dim 2, z > 0. Every (x,y) € M can be joined by a

piecewise integral curve of D. So Pp has dim 2 everywhere. But Ap. has

dim 1 when z < 0.

Also, note that the above distribution is involutive:

do(z) 0
XY =——=—=0
[ 7 ](x7 y) dl‘ ay 3
since d‘ZEf) = 0, < 0. This implies that D satisfies involutivity, although

it is not integrable. Thus, an involutive generalized distribution violates the

classical Frobenius’ theorem, and is not necessarily integrable.

Constant rank distributions (Frobenius’ theorem) [27]
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Let M™ be an m-dimensional differentiable manifold, and A a differ-
entiable distribution of constant rank 2n. Then A’ the annihilator of the
distribution A is a regular Pfaffian system of rank £ = m — 2n. Clearly, A
is a differentiable vector subbundle of TM, while A° is a differentiable vector

subbundle of T*M.

The following are equivalent:

1. A is completely integrable.

2. If X,Y are differentiable sections of A, [X,Y] is also (that is, A is

involutive).

3. For every differentiable section n € A° the 2-form dn belongs to the
ideal of the algebra of exterior forms on an open set U, generated by the
differentiable sections of A%, That is, 3 (a1, ... , ao,) sections of A, and

(Bi,- .., Bon) Pfaffians defined on the open set U, s.t.
2n
dn = Z a; N ;.
i=1

Geometrically, about every point z € M there is a “box” neighborhood
U, with chart coordinates (z!,...,2™) s.t. A and A® in U, are generated by

2n vector fields 5or, ... , 52+ and m — 2n = k Pfaffian forms dz>"*', ... da™

respectively. The vector fields generate maximal integral manifolds for A, and
the exact 1-forms generate the complementary dimension maximal integral

manifolds for A°.
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2.4.3 Application to Poisson manifolds

Let (P™, J) where m = 2n + k, be a Poisson manifold with Poisson
structure J. Using the notion of a Hamiltonian vector field, we can define
the following generalized distribution for J called the characteristic distribu-
tion [15]. It is defined by setting the spanning vector fields to be precisely the

Hamiltonian vector fields,
psx)={veT,P|3 feC®P) st. Xs(z)=r1}, (2.11)

Vz € P.

The main result is that A% ; is completely integrable in the generalized
sense. The proof of this is simple: from the anti-homomorphism between the
Poisson algebra and the algebra of derivations of Hamiltonian vector fields (2.6)

it follows that the distribution is involutive
Xirgy = — X5 Xl

Vf,g,h € C®(P), and the X/’s generate the orbits of infinitesimal Poisson
automorphisms (which fact follows from £y, (J(df,dg)) = 0, by using the ele-

mentary properties of the Lie derivative & Leibniz’s rule for J, cf. (2.3), (2.4)).

Hence the hypotheses of the previous subsections apply, and the char-

acteristic distribution is completely integrable.

Furthermore, noting that dim (A% ;(z)) = rank (J(z)) = an even integer,
we see that symplectic structures which are nondegenerate can be given on

these leaves of invariance of the distribution under Poisson automorphisms.

40



(This can be formally done by restricting the Poisson bracket to be that of
coordinate functions defined on the leaf locally, and then extended to a local

neighborhood in P.)

Conversely, given a differentiable manifold and a generalized foliation
defined by A% ; such that each leaf is symplectic, the Hamiltonian vector
field tangent to each leaf can be extended (by extending the Hamiltonians),
to globally defined vector fields on P, which can then be used to assemble a

Poisson bracket out of all the leaves:

This is the Poisson structure (independent of the extension) that con-

tains the symplectic foliations of varying dimension.
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Chapter 3

Examples in finite and infinite dimensions

In this chapter, we shall consider some examples of dynamical systems
where rank change of the Poisson tensor J manifests in physically important
contexts. The first example is that of a rigid body, which has already been
mentioned in the previous chapter. In many ways, this example is the proto-
type for the orbit geometry we need later; in some ways it is not, for example
it has no partial degeneracy (where rank of J is less than full but at the same
time not zero). The next example generalizes the first one to the case of
an arbitrary semisimple Lie algebra. We mention the obvious direct product
with the product Poisson structure, as well as the semidirect product with the
semidirect product Poisson structure, before launching on to the next set of
examples both from finite dimensions and a two degree of freedom infinite
dimensional system of stratified flow in an ideal fluid, and its resulting mo-
ment algebra. A brief appendix outlines the rules involved in computing the
Casimirs using methods of invariant theory. This is one indication that the
methods of invariant theory and orbit geometry shall play a role in charac-
terizing rank-changing events, which was one of the results announced in the

Introduction (see Section 1.2).
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3.1 Rigid bodies in n dimensions
3.1.1 3-D rigid body

In 3 dimensions, a rigid body is pictured as rotating freely in space
about its center of mass, under no external force. The symmetry group is
SO(3), acting on configuration space of three positions (the three Euler angles,
for instance) or a phase space of six dimensions, with three positions and three
conjugate momenta (defined to be the product of angular velocity and moment
of inertia). The group action is pictured as the coadjoint action of SO(3) on the
space of angular momenta, p* € s0(3), for i = 1,2, 3. The equations of motion
are the standard three Euler equations (see, for instance [29], [30]). These
equations of motion follow most expeditiously by considering a noncanonical
formulation involving the momenta alone, which comprise a phase space that

is now a Poisson manifold.

We use the linear Poisson structure J suggested by the structure con-
stants €;;; of the Lie algebra of SO(3). As was indicated in Section 2.1.3, this is
called the ‘Lie-Poisson’ structure. For two functions of the angular momenta,

f,g € C*(g*), it is given by

af o
1f, 93 () = eiﬂ'k“ka—z;a—; = J(df,dyg),

a construct that is quite independent of the actual form of the Hamiltonian.

To recover Euler’s equations, the Hamiltonian of choice would be

H= %i ()" (3.1)



with Iy, Iy, and I3 the principal moments of inertia of the body. Using Hamil-

ton’s equations, the three Eulerian equations are given by:

po= {u,H}
= eijk,ukfj_l,uj, fori=1,...,3. (3.2)
We notice that the norm of the angular momentum (norm evaluated

with respect to the inner product of the vector space g*) is a conserved quan-

tity; that is to say,
=2 30 (3.9
24 ’
has null time evolution,
C={C,H}=0,

and is called a Casimir for the Lie-Poisson bracket. Actually, more is true:

From the properties of a Poisson bracket (2.3) and (2.4), it follows that

{C,f}=0

for any function f € C*(g*). Thus, Casimirs are constants along the orbits
of the Poisson structure itself, without any reference to the chosen Hamil-
tonian. (In other words, Casimirs are kinematical, while the Hamiltonian

equations (3.2) are dynamical.)

As shall be seen in Subsection 4.1.4, these orbits coincide with those of

the coadjoint action of a general Lie group G on its Lie algebra dual g*. The
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coadjoint orbits (cf. Figure 2.4) in this case are 2-spheres of constant angular
momenta, spreading out from the origin y* = 0 Vi, and the dynamics governed
by (3.2) intersect these spheres in ellipsoids of inertia. The six points where
ellipsoids of various energies might be tangent with a given angular momentum

sphere, form the equilibria of the system.

Writing out the Poisson structure of the rigid body, we find a 3 by 3

antisymmetric matrix

B 0 /,63 —,Lt2
=1 - 0 u |. (3.4)
p> —pt 0

We observe that away from the origin p* = 0, the rank of the above
matrix is 2. (It has to be an even integer, and less than 3, because an odd
antisymmetric matrix has zero determinant.) At the origin, the rank is 0. The

equation for null eigenvalues (away from the origin) can be solved by setting
J-v=0,

which results in a system of three linear equations. Now, we assume that
the null eigenvector v; = 9;C, so that the system of equations can be writ-
ten in terms of their partial characteristics [31] and integrated to give the
Casimir (3.3) (up to a numerical proportionality, which is chosen by conven-

tion to be 1/2).

At the origin, we could no longer possibly assume that v; = 9;C, since

the gradient of a function is well defined only in a neighborhood of a point,

45



whereas the rank, being lower semicontinuous, has no neighborhood of the
origin of rank zero. So in this totally degenerate case, any function of the
three momenta whose graphs have in common the origin would qualify as
Casimirs. (For this reason, in most of what follows in this chapter, the totally

degenerate point will be excluded from consideration.)

It is also easily seen that the leaf coordinates, that lead to a canonical
symplectic structure away from the degenerate origin (the so-called Kirillov
Kostant form, cf. Subsection 4.1.4), are given by [30] the (non unique) pair
(my = p3,mg = tan_l(ﬁ—;)).

Then the leaf symplectic form (which is easily verified to be closed) is

given by

w(my, ma) = dmy A dms.

(We note that the Jacobi identity reduces to the well known tensor
identitiy for the €;;; symbol, € ek 4 eileli 4 €l et = 0.)
These coordinates also effect the transformation that is guaranteed by

the generalization of Darboux’ theorem (2.7). That is, the (noncanonical)

coordinate transformation
(/1’17 :u’27 /’1’3) L (m17 ma, C)

allows the Poisson structure (3.4) to be written in the (nearly canonical) form

- 0 1
Jiy=| -1 0
0 0

0
0
0
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As a prelude to what is to come in the later chapters, we note that the
two dimensional leaf tangents coincide with the two roots of the Lie algebra
with respect to the adjoint system, while the Casimir is an invariant — that is,
it forms the central element (one that commutes with all other elements) of the
enveloping algebra to the Lie algebra. The value for the Casimir invariant is in
fact simply equal to itrJ 2 where the 1/4 normalization is purely conventional.
(Also, we note that the first invariant, trJ = 0, by construction (likewise for
all odd invariants), while the even dimensional invariants are simply a function

of the quadratic Casimir.)

From the symmetry viewpoint, we note that each point on the leaf is
invariant not under the full SO(3), but rather only a U(1) factor. This makes
physical sense, as all SO(2) rotations about an axis through the origin leave
the point (and its antipodal point: which reflects the fact that there is also a
Weyl symmetry, Sy ~ Zs in this case) invariant. Also, any two points on the
same sphere are related by conjugate rotations, with the conjugate element

coming from SO(3).
Stability

Adding a term linear in the momentum to the rigid body Hamiltonian (3.1),
allows us to see the relevance of rank change to stability of the solution [32].

Let us assume the rigid body is charged and placed in a uniform magnetic
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field. This gives a modified Hamiltonian:

H= i:( + By ) (3.5)

(with B' the 3 components of the magnetic field). We choose the Poisson
structure to be the same ! as the one before (3.4), so that there is one Casimir
invariant, given by (3.3). The equations of motion (3.2) now take the modified

form:
it =, HY = e (1717 + BY). (3.6)

To determine equilibria, we set the time derivatives of the dynamical
variable in the above equation (3.6) to zero. One such equilibrium is the
stationary one, ' = 04 = 1,...,3. It can be shown [29] that the correct
function to extremize in the presence of a Casimir invariant (that is, for a
noncanonical system) is the free energy, defined to be F' = H + AC, with
the Casimir C given above (3.3), and A is an arbitrary Lagrange multiplier.
Extremizing this function would yield all the equilibria of the system, as it
takes into account the constraint imposed by the Casimir. Clearly, thanks to
the additional term \C, variation with respect to the momenta u* do not yield,

for any value of A, the stationary equilibrium.

'While the choice of a different Hamiltonian may change the dynamics, the kinematics
depends on only the Poisson structure chosen. For example, the norm of the angular mo-
mentum is known to be conserved, and the above choice correctly reflects this fact. (One
of the aims in Chapter 5 will be to relate kinematics and dynamics using the notions of
patterns in symmetry breaking.)
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This inequivalence between the equilibria implied by setting the time
evolution equations of motion to zero, and those obtained by setting the free
energy variation to zero illustrates why rank change is important. The sta-
tionary equilibrium corresponds precisely to the point where the rank of the
Poisson structure falls from two to zero. This information is captured by the
equations of motion, but not by the extremization of free energy. Thus, the set
of equilibria obtained by considering constrained variations through varying
F is a subset of the full set of equilibria. (This is a general symptom of the
rank change phenomenon.) We also note that the new equilibria obtained by
extremizing F' alone are not to be found via the equations of motion (3.6) with

H in the evolution Poisson bracket, but can be obtained by substituting F' for

H.

Similar considerations apply when considering stability of the solutions.
The second derivative of the free energy (which arises from a variation of the
equilibria) is the quantity considered to ascertain whether the equlibrium point
is a stable one. Again, conditions for stability that result from adding the
appropriate Casimir invariant break down at the origin, where rank change
of the Poisson structure occurs. This is because, in order to correctly guage
stability at these points, the subcasimirs that arise upon rank change have

also got to be taken into account.

49



3.1.2 n-D rigid body generalization

Now the group is taken to be SO(n), or as a generalization, any semisim-
ple Lie group, G (in which event the term ‘rigid body’ ought not to be taken
literally). As in the 3-dimensional case, we write the Lie-Poisson bracket (2.9)
to be the one suggested by the structure constants of the Lie algebra g; for

any functions f,g € C*(g*) we set

{f.0}(0) = <u, [ of %9 ]> . [ of 99 ] 57)

S’ o o’ o
where % = (%)le(l), g—z = (%)me(m), where {e(;} is a basis for g*, and the
inner bracket [, | stands for the Lie algebra bracket,

leqy, em)] = Crim€n)

and C),;,, the structure constants of the Lie algebra. The Poisson tensor now

becomes

Jim = ¢gbmyn, (3.8)

(Although not explicitly stated, use has been made above of the natural

identification of g with g* using the (nondegenerate) Killing form.)

We note that the origin is once again a point of total degeneracy, where
rank of the Poisson tensor is zero. Elsewhere, it is equal to the corank of the Lie
algebra, which is also the codimension of its Cartan subalgebra. In fact, the
Cartan torus is generated by the duals of the differentials of the Casimirs, which

are each responsible for one U(1) ~ SO(2) factor. These various U(1) factors
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commute, as they must for a torus, and this fact is captured in one of the orbit
theorems that distinguish between regular and singular points. (When rank of
J is less than full, the differentials of the Casimirs of the reduced dimensional
orbit (which now include new functions called subcasimirs) no longer commute,
and hence form a nonabelian subalgebra of g. These considerations are echoed
in Chapter 4, where orbit geometry is used to relate the invariants of the orbits

to the Casimirs and subcasimirs of the Poisson structure.)

Elsewhere, away from the origin, the leaves have the dimensionality
given by the difference between dimension d of g and its rank r, which is
always an even integer, as it also equals the number of roots (which are none
other than weights of the adjoint representation). So the orbits are always
even dimensional, and there is in fact a nondegenerate symplectic form (4.16)

that inverts (3.7) away from the origin 2.

The symplectic structure on the coadjoint orbits of a Lie coalgebra
to a Lie group can also be shown to arise from a symplectic reduction of
the cotangent bundle M = T*G by G (further modded out by the isotropic
subgroup G, at u € g*). That is, Q(u) = M/G/G,, :== M//G. The symplectic
structure on the leaf Q(u) is none other than the Kirillov Kostant form, while

the Poisson structure of g* = p~'(u), with p : M —» g* the moment map, is

2We emphasize the distinct usage of the word ‘rank’ for both the Lie algebra and the
Lie-Poisson structure on its dual: the former refers to the number of Casimirs, while the
latter refers to the coadjoint orbit dimension. We continue using the commonly used term
‘rank’ for either case, taking care to note that rank of a Lie algebra is numerically equal to
the corank of the Lie-Poisson structure on its dual.
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the Lie-Poisson structure (3.7) above. (The Lie-Poisson structure itself can be
shown to arise from a single Poisson reduction of 7*G by G. For more details

on reduction in general, see Subsection 4.1.6.)

For examples, let us consider a few semisimple Lie algebras. G = SU(n)
has dim G =d=n?-1,rank G=r=n—1,s0d—r = n(n — 1), which is
always even. SO(n) has d =n(n—1)/2 and r = (n—1)/2 (n odd), or r = n/2
n even). In either event, d—r = (n—1)%/2 (n odd), or d —r = n?/4 (n even).
Below is a short list for the various classical and exceptional Lie algebras, of

dimension n and rank r, illustrating the above general fact:

A, =SU(r+1): n—r = r+1)2—1—r
= r(r+1)

B, =SO2r+1): n—r — r(2r +1) —r
= 2r?

C, = Sp(2r): —same as for B,—
D, =5S02r),r>3: n—r = r(2r—1)—r

= 2r(r—1)
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Go:n—r = 14-2

Fy - = 52—-4
E - = 78—-6
E;: = 133 -7
Eg - = 248 - 8.

All semisimple Lie algebras in the adjoint representation have the Casimirs
determined by the adjoint action [33]. There are r of them, omitting the first
order one, which is always zero. Let g be a semisimple Lie algebra, and
any representation operator. Then for &,... &, € g, let [&;,&;] = Cf&. The
Killing form (which is always nondegenerate for a semisimple g), is defined by

B = B(&m, &) = C),C . Transform to a new basis,

= (B7);i&;.

Then the Casimir operators are given by the relation

n

Ci= Y CCE . Ol () Ip,) .. D1,

P1=QI;P2,Q2,---=1
. .
or, since Cp, = (ad&p)rqs

n

C; = Z tr{ad(&y,) - - -ad(gpj)} I (71py ) I(py) - - -79(771);)-

P1,q1,...=1

where the index on the Casimir runs from 1 to rank g.

Let us now consider what happens when one of the Casimirs becomes

zero. This is the same as having one dot on the Dynkin diagram erased [34],
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and we have a so called S-subalgebra g’ C g. The rank drops by 1, and the
leaf dimension is now reduced by an even integer. For example, for A,_;, the
difference d — 7 = r? — r, so the change in leaf dimension is by 2r. For B, and
Cy, the change is 2(2r — 1), for D,>3 it is 4(r —1). (For exceptionals, Dynkin’s

list [35] must be consulted.)

In Chapter 5, some of these considerations will be used in the notion
of symmetry breaking. When symmetry breaking occurs from a group G to
a subgroup H, then there is the question of whether the rank changes [36],
and if so how it does. In general, from a purely dynamic viewpoint, it is
unclear if a breaking of symmetry always entails rank change and if so, by
how much. But in the case of the Poisson manifold foliation, we see that rank
always changes by an even integer; so symmetry breaking patterns modeled
on a Poisson manifold are always required to be rank changing. (In practice,

this would require a suitable choice of potential and control parameters.)

Finally, there is the question of parametrizing the various singular or-
bits (defined as those whose dimension is less than what is generically the case)
that arise as orbits of the coadjoint action of Lie groups on the corresponding
Lie coalgebras. Again, by methods close to invariant theory, several of these
have been classified, and orbits that are representable as homogeneous spaces
have a natural parametrization in terms of algebraic geometry, as the inter-
section of certain algebraic curves. For details of this type of work we refer

to [37], [38], [39], [40]. For more details on this aspect, see also Subsection 4.1.4.
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3.2 Semidirect product case

One source of examples for subcasimirs are semidirect products, and
their special case, direct products. We first define the bracket in general, and
give a simple example of a rigid body in a gravitational field, followed by an

example taken from [41] with more degrees of freedom.

3.2.1 Definitions and Properties

Let G and H be two Lie groups with their product operations denoted
by o and %, respectively. Let ¥ : G x H — H be a C'* action, so that for
g € G fixed, we have 9, : H — H € Aut (H) ~ GL(H). By the hypotheses

of an action (cf. Subsection 4.1.1),
Yg(h*h') = 04(h) *94(h") (3.9)
for h,h' € H.
Define a composition rule on G x H by
(g,h)-(g", 1) = (gog's hxdy(H)) (3.10)

for g,¢' € G and h,h' € H.

It can be easily seen, using the properties of the action ¥ in (3.9) that
the product ‘-’ defined above (3.10), is a legitimate group operation on G x H.

That is, it is
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1. Associative:

(9,h)-[(g", ) -(¢", h")] = (g,h)-(g"0 9", ' x Iy (h"))

gog og" hx¥,(h'x9y,(h")))

(
(
= (909 09" hxdy(I)*9,(Iy(h")))
(909 0g" hxy(h') * g0y (h"))
(

gog ,hxdy(h))-(g", h")

= [g,h) (¢’ )]-(g", h").

for g,¢',¢" € G and h,h',h" € H.

2. Unit is (eg, en):
Since ¥y(hxey) = Vg(h) = I4(h) xVy(en), we have Jy(ey) = ey. Using

this we verify:

(9,h) (e em) = (goeGah*ﬁg(eH)
= (9,h)

= (eg,en)-(g,h).
3. Inverse exists and is unique:

(g’h)'(g’h)_l = (eGaeH)
= (g’h)'(glah’l)’ say,

= (909, hxdy(I)) = (eq, en)
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= ¢ =g 'and ' =9, (h"). Since Iy kg1 = Vog = ;" = Vg1,

(g.h)™" = (g0, (R

= (97" 91 (h7)).

Uniqueness follows easily.

G x H with the above product structure (3.10) is called semidirect
product, and the homomorphism ¥ from G to GL(H) is denoted G Xy H.

For the special case that ¥ is trivial, that is, ¥, = Idyg Vg € G, we get
(97 h) '(glv h,) = (g og, h*hl)

or, a direct product bracket, G X4, H ~ G x H.

As an example of the semidirect product, let G be a matrix group and
H a vector space (with x = + as the Abelian group operation), and ¥ a (linear)

representation of G on H = V.

The product (3.10) then becomes

(9,v)-(g',v") = (go g’ v+ Jy(v)) (3.11)

where g,¢' € G, v,v' € V. If G is a subgroup of the orthogonal group (and

hence norm preserving), this is the Euclidean group of motions.
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3.2.2 Infinitesimal version of Semidirect Product

Let G and H be Lie groups, with g and h their Lie algebras, isomorphic

to their respective tangent spaces at their identities, e and eg.

For every action ¥, : H — H € GL(H) we define the corresponding tangent
map,

dv,: T.,H — T., H € GL(b)

by writing, for a 1-parameter family curve g(t) = exp tX, with g(1) = ¢,

d

(V) = ddy(V) = =
t=0

Jexp tx(Y), (3.12)
for X eg, Y eb.

¥ is a homomorphism from g into the derivations of b, namely Aut (), i.e.,
it satisfies the following two properties:
ﬁf:leXﬂg = 19{)(1 *19’)(2 - 19{)(2 *’19;(1’

Py (Y1, Yaly) = [Ix (Y1), Yoly + [V1, 9y (Y2)]s-
Define the semidirect product of Lie algebras g > X;5 and h 3 Y75 by

(X1, Y1), (Xa, Y2)] = ([X1, Xalg, [Y1, Yol + Ok, (Y2) = O, (V1)) (3.13)

It can be shown that the semidirect product defined above satisfies the
usual properties of a Lie algebra, namely skew-symmetry, bilinearity and Ja-
cobi’s identity; further, using the defining relation (3.12), that the product,
denoted by gy b is the Lie algebra of G xy H. Further, the dual to the semidi-

rect product algebra, denoted by g* Xy« h* , has the structure of a (degenerate)
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Poisson manifold. The semidirect representation then occurs via the coadjoint

action of the first Lie algebra upon the second (see, for instance, [42]):

(60 = {F,Ghp+ (0t (5) 50 ) = (av (57) f;F(> .,
3.14

where F,G : g* X9« b* — R, and F, € g, F, € b by identification with the
dual. The term subscripted ‘L-P’ stands for the direct sum of the Lie-Poisson

structures on g and b.

Examples of such semidirect Lie-Poisson structures will occur through
the rest of this chapter. Many other examples of semidirect products and their

extensions may be found in [43].

3.2.3 Examples of rank change

The finite dimensional examples below illustrate how subcasimirs result
by restricting oneself to lower dimensional orbits from the generic orbits. In
the spirit of the main idea, this process may be imagined to occur via certain

control parameters present in a potential or Hamiltonian.

Rigid body under gravity

Departing from the notation of the rigid body a bit, we denote by
i = (p1, po, 13), the angular momentum of the body, and by z' = (z1, 22, 23),
the (constant) gravitational vector from the center of mass. The configuration
space is the 6-dimensional vector (fZ, Z). SO(3) acts according to the semidirect

product bracket (3.11), so we write W = (SO(3) xyR?), where ¥ is the Adjoint
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representation (cf. Subsection 4.1.4), and define the product rule at the group

level
(R,v) - (R',v") = (RR', Rv' + v)

with R, R' € SO(3), v,v' € R3.

The dual of the Lie algebra of the semidirect product group is w* =
50(3)" X9+ R3, where 9" is the coadjoint representation, with the semidirect

product Poisson structure given by

( 0 pus pe : 0 2z 2z \
—ps 0 —p : —z3 0 —2z
—po 1 0 1 =z oz 0
J(,2) = | oo : (3.15)
0 2z3 2 0 0 0
—23 0 —2z 0 0 O
\ =2 = 0 0 0 0 )

iz
s 0 ) ; (3.16)
where the hatted entries correspond to the subblocks in the above matrix (or

in other words, [ could be viewed as the isomorphism between a cross product

and its antisymmetric matrix representation in the semidirect algebra).

The rank of the matrix (3.15) is easily seen to be 4. There are two
Casimirs, C; = ji- Z and Cy = ||Z]|? generically, which means that in Darboux’

coordinates, the maximal symplectic leaves have dimension 4. When z; =
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0 Vi, then the matrix reduces to the one examined in the previous subsection,
namely that of a free rigid body. A new subcasimir function that arises is
Cs = ||j|%, in addition to a trivial subcasimir that says that z coordinate
dependence does not exist, Cy = f(z) = 0. The leaves are 2-spheres, as in the
rigid body case, with a totally degenerate origin when all subcasimirs collapse

to arbitrary functions of p and z which intersect at zero.

Underwater vehicle dynamics

This example is taken from [41]. It is the extension of the preceding
example to include one more force that operates on an underwater vehicle,
namely buoyancy, so there are more rank changes here. Denote the buoyancy
vector by b= (b1, bo,b3), the phase space vector by (i, Z, 5), the semidirect
product group by W = SO(3) x (R*,R?) ~ (SO(3) x R*) x R?, (for simplic-
ity, we supress the adjoint homomorphism) with the group product operation

defined as:
(R,v,w) - (R',v",w") = (RR, Rv' + v, Rw' + w).

The coadjoint space is given by tv* = s0(3) x R® x R3, with the Lie-

Poisson structure (in the condensed notation of (3.16))

=

J(fi, Z,b) =

[SOPEE S N Y
O O W
o O o

which is now a 9 by 9 matrix. At a generic point the coadjoint orbit has
dimension 6, as there are 3 Casimirs C; = b- Z, Cy, = ||Z]|2, Cs = ||b]|%

Nongeneric orbits come about in two stages:
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1. 4-dimensional orbits that occur when Z || b, which leads to two sub-

casimirs, Cy = fi- 2, Cs = i - b.

2. 2-dimensional orbits (akin to free rigid body) that arise when Z' = b=0,
with the nontrivial subcasimir Cg = ||fZ]|*>. As before, the origin in all 9

coordinates is a totally degenerate point.

3.3 Moment algebra for (2 + 1)-D Ideal Fluid

This example [44] is in essence an infinite dimensional one 2, but pro-
ceeding by stages in the order of the moments, it is possible to examine the
semidirect Poisson bracket like in the previous examples. The details of this
example might appear in some future publication with the persons referenced
above; in the interests of brevity, we shall state the bare minimum to illustrate

the ideas of the thesis.

A stratified fluid is a modification of an incompressible ideal fluid, so
we consider the latter first. It is by now well known that the ideal fluid
flow has a noncanonical Hamiltonian structure in function space [29]. For the
purpose at hand, we consider the dynamics of the scalar vorticity, w(zx,y,t) =
Z-V x v, where v is the Eulerian (i.e., spatial and not co-moving, or material)
velocity, assumed to be divergence free, V-v = 0. The latter condition permits

introduction of a streamfunction v (z,y,t)) such that its skew-gradient is the

31 thank Tom Yudichak for many useful discussions on the invariant theory aspect of this
example, as well as help with Maple and Mathematica.
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velocity:

oY oY
(vwavy) = <_8_y’ %) .

The Hamiltonian is specified over a domain D C R?, as the kinetic
energy of the vortex (finite if the vorticity is chosen to vanish at infinity suffi-

ciently rapidly),

1
Hw] = E/DUdedy

1
= E/wada:dy. (3.17)

In infinite dimensions, the Poisson bracket is defined in a functional

setting. If F,G € C*(B), with B some Banach space, are functionals of

variables {w'}, i = 1,... ,n, which are real-valued functions, then
OF _.. 6G 0F _0G
F pry —.~Z'7—, = — ~—.
{F. G} /D(Suﬂ‘j 5uﬂd'u <5w’d(5uﬂ>

is the Poisson structure. (It satisfies the Leibnitz rule (2.3) and Jacobi identi-
ties (2.4), besides — owing to integration by parts — being manifestly skew-

symmetric.) For the scalar vortex, there is a Poisson bracket (cf. [45, 46], [47])

0F 4G OF G
FGoY= | w ={w, |—,— 1
ey /D [&d,(sw}dxdy < ’{6w’6w}>’ (318)

which has a form that resembles the Lie-Poisson bracket (3.7), with the inner

given by

Lie bracket being a function space tangent algebra bracket. Any arbitrary

functional of the form [, C(w)dzdy is a Casimir for the above bracket (which
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is related to the fact that all dynamics are constrained to rearrangements,

cf. [48], [49], [50]).

The equation of motion for the vortex is governed by Hamilton’s principle,
dH[w] = 0, which yields, upon use of the above bracket,

Oow

> = {w, H} = [, vl

One of the interesting facts about the scalar vortex is that the evolution
dynamics can be studied entirely in terms of its projection down to a finite
dimensional space of moments [51]. This process is akin to the reduction in
variables of a phase space due to the presence of a symmetry. (In this case
the symmetry group is that of all volume preserving diffeomorphisms.) The
reduced dynamics can be studied in its own right and projected back onto
the original (infinite dimensional) space to recover the full dynamics. One of
the main problems of plasma physics is to see if reduction by moments could
obtain for a large class of theories that are describable through a Lagrangian

or an Hamiltonian.

We supress the integration measure and domain of integration in what

follows. The moment description involves a space of moments, (ai,as,as),

1

a; = /—wa,
2

as = /xyw,

as = /§y w. (3.19)

where



The moments could easily be shown to satisfy the following commutation

relations, where we use the Lie-Poisson structure (3.18) to evaluate them:

{a17 a’2} = 2@1,
{a27 013} = 2@3,

{as,a1} = —ay, (3.20)

which is the standard commutation algebra of the Lie algebra of SO(2,1) ~
SL(2,R). The Casimir for this Lie algebra (where the metric induced by the
Killing form has signature (1, 1, -1)), is C = a? + a2 — a2 (whose level sets
are now noncompact hyperboloids, and so the symplectic leaves they define
have mild orbifold singularities). In physics, when a field theory system is fully
describable by a finite set of moments, it is said to have the property of closure.
This moment algebra reduces the infinite dimensional scalar vortex dynamics

to that of a three parameter vortex patch, known as a Kida vortex [51, 29].

Now, let us consider adding a term proportional to the density, p(z,y)
to the Hamiltonian (3.17). This procedure is called stratification, in the event
that the density varies in the vertical direction alone. (In experimental situa-
tions [52] the flow is in the x — z plane, with the y direction being considered
‘infinite’). Adding a term proportional to py would amount to adding grav-
itational potential energy to the pure kinetic model of (3.17). (Other terms
could be added with no loss of generality to the considerations to follow, but

their physical meaning is obscure.) We consider a moment expansion for the
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density profile 4,

p(z,y) ~ Zbija
with b;; representing the moments for density:
bij = /xiyjp, (3.21)
where 7,7 =0,1,....
We note that b;; are essentially monomials in z and y, so we form a
series of vector spaces, {V*} consisting of all moments of homogeneous degree

k. (For example, V2 = (bgg, bi1, bg2) for quadratic order. In general, V¥ has
k + 1 elements.)

The algebra of homogeneous polynomials under the Poisson bracket

like (3.18) would display the following derivation rule,
{,}: VP xyr — ytm=2)

so that only the tensor product of all these spaces V! @ V2 ®- - - is closed under
the bracket (except for n = m = 3). The situation however changes when we

define the following semidirect generalization of the Lie-Poisson bracket (3.18)

(F.G) = [ [Py Gul + p([F,G,) - (G F)), (3.22)

with F, G arbitrary functionals of both the vorticity and the density, and the
subscripts on them with respect to these arguments stands for the operation

of functional derivative.

4A similar moment expansion obtains for the vorticity, but we restrict the vorticity
moments to be the same three quadratic ones as before.
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It turns out that [44] the moment algebra of the stratified fluid with
the above semidirect algebra, is actually closed to any order of truncation
of the density moments (3.21). That is, the space of monomials given by
{ay,a9,a3} U {VF} for any k, is closed with respect to the above bracket.
Hence, the dynamics of the stratified fluid may be projected down to its space
of moments order by order, to any desired level of approximation. (It is as yet
unknown if the evolution of the moments with time according to the above
semidirect Poisson bracket algebra faithfully renders, at any level of truncation,

the physical dynamics got from the equations of motion directly.)

We note that the above bracket (3.22) represents the dual to the semidi-
rect product of s(2) with V¥ via the adjoint action. That is, we collect together
the moment algebra and take their Poisson brackets mutually to get a struc-
ture matrix representing the semidirect product of the dual algebra. For the
case of £ = 1, we would get a 5 by 5 matrix of quadratic a; moments, and
linear bg1, b1gp moments. There is one Casimir. For the case of £ = 2, we
would end up with a 6 by 6 matrix that is virtually identical to the semidirect
product of the rigid body in gravity (3.15) (except for scaling, signature, and

a linear transformation to diagonal coordinates [51]), and is given below:
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J6:

—2611 0 2&3 —2620 0 2b02
—a9 —2(1,3 0 —2b11 —602 0
0 2b20 2b11 0 0
—bao 0 bo2 0 0
—2b;y —2by, O 0 0

Here, we have used the cross-commutation relations:

{a1, b} = Jburyg-1)
{a2,bi} = (5 — )by

{as,bij} = —iba-1)G+1)-

(3.23)

There are two quadratic Casimirs, just as for (3.15) (except with one

minus sign in each), and similar comments regarding rank change and sub-

casimirs apply (although now, with the moments as vectors in a vector space

V8 = (a1, a9, as, bag, b11, bag) there is no physical meaning to the interpreta-

tion of parallel vectors, as with the rigid body in gravity). The Casimirs are

Cé = b%l - b20b02 and 062 = 0,1602 - a/2b11 —+ 6113[)20. (Compare with Z% + Zg + Z%

and p121 + pgze + 323 for the case of the rigid body in gravity.)

Things get more interesting in dimensions greater than 6, or £ > 3.

It turns out that the spaces V', V&, and so on ®, actually all have as many

5In a Mathematica computation, we have gone up to dimension 12, but saw no reason

to push it further.
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Casimirs as are needed to carve out a 6 dimensional manifold. What’s more,
while the Casimirs of Js and less are determined by integrating the null cov-
ectors, those of J; and higher, can be obtained from the methods of invariant
theory. This is signalled by the fact that the Casimirs for J; and higher are all
(1) determinants, so that the sum of coefficients of the terms in the Casimir
expression is identically zero; (2) the Casimirs do not depend on the vorticity
moments (a1, ag, as) at all; (3) the invariants of the representation of SL(2) on
the vector space V¥ for k > 3 are quadratic, cubic, quartic, and so on, without
repetitions. (Note: One Casimir, namely the quadratic in b’s, also arises in

the 6-D case by invariant theory methods outlined in the appendix below.)

For instance, the Casimir for J; on V7 is a quartic, given by C; =
4b3,b30 + 4b3,boz — 6bozbiabar bag + b33b3, — 3b2,b2,. The two Casimirs of Jg are
a quadratic and a cubic, given by Ci = bosbsg — 4bizbg1 + 303, and CZ =
— b3y +2b13b99b31 — boab3 —b23bs0+boabazbsg. (In general, the number of Casimirs
that appears in any dimension can be easily found by determining the number
of null covectors of the given J,3 matrix, using Mathematica or Maple; inte-
grating them is however cumbersome. It would seem that once it is known how
many null covectors exist, invariant theory methods — see appendix below —

would provide a combinatorial algorithm for computing the Casimirs.)

The Casimirs at any given moment truncation will bring the system
down to a certain 6 dimensional manifold. Many interesting questions arise:
Is this the same manifold for every choice of £ > 37 Would a subsequent

rank change from the class of 6 manifolds give a four manifold that would
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resemble the generic leaf of the 6-D case (carved out by the level sets of a pair
of homogeneous polynomials Cg and C7 in R®)? (For k = 1, a similar question
arises.) As of this writing, these questions are yet under investigation. The
author hopes to return to the investigation of these and other related matters

with the initiators of this particular approach [44].

Finally, we mention that the functional setting for the pure ideal (i.e.,
without the density term, cf. (3.17)) fluid requires the phase space to be the
dual of all divergence free vector fields (or the Lie coalgebra of all volume
preserving diffeomorphisms), where point vortices, vortex filaments, patches,
etc. comprise the singular orbits, and their individual vortex strengths are the

subcasimirs [53].

3.4 Appendix: Some Invariant theory

In the computation of the Casimir invariants of the compressible fluid
semidirect product bracket, use was essentially made of the combinatorial rules
for determining the tensor invariants of the representation of SL(2) on vector
spaces of arbitrary dimension. Here, by means of a simple example, we indicate
the procedure for a low dimensional case. The higher order moments need
more and more tensor powers to be considered, a combinatorial task that

can prove tedious. The main reference for this book-keeping is the paper by

Mihailovs [54].

Consider the action of SL(2) on its defining vector space V', a 2-D space,

according to fractional linear transformations: v = (z,y) € V by  — az + b
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b
d

The work of finding a basis for the subspace of SL(2) invariants of V& =

and y — cy + d, where the matrix ( CCL > € SL(2), (where ad — bc = 1).
V®---®V was done by numerous authors ([54] and references therein); it is

a basic problem of invariant theory to do this for any classical Lie group (cf.

Subsection 4.3.1).

The action extends naturally to tensor products. All classes of irre-
ducible representations are parametrized by nonnegative integers £k = 0,1, ...,
and can be represented by the actions on the symmetric powers of V., S¥V.
Let 9y denote the representation on the (k + 1)-dimensional linear space of
homogeneous polynomials in the two coordinates of V', with basis formed by

the monomials (the b;; moments in our case), (z*, z* 1y, ..., y*).

Using various combinatorial techniques, it is possible to determine ten-
sor invariants for arbitrary tensor products of the symmetric powers of V. For
example, in the case of Jg above, we would have k£ = 4, and a basis of 5 mono-
mials, (bgo,b13,b22, b31,b04). The quadratic Casimir comes from considering
SV ® S*V, which has exactly one invariant, given by

a_a_z'a' a—i, i i, a—i
@ane =31 (4 ) et ety

=0
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and so for a = 4, we get the terms

(zAy)? = +lztey
—4z3y @ xy?
+62%y? @ x2y?
—dxy’ @ 2Py

-i-ly4 Q T4,

which, upon symmetrizing (a process called restitution (see, for instance [55], [56]),
or getting to polynomial invariants from tensor invariants) and collecting to-
gether the terms according to the definition of the moments available, yields
the quadratic Casimir, C3. The cubic casimir is found by considering the cubic
tensor product S* V®S5*V ®5*V, which again has exactly one invariant under
the action 94, which is given by ((zAy)?’®1)(z®10y—y®1®z)*(1® (zAy)?).

A straightforward if tedious computation yields Cz.

Two points are worthy of note. First, since any such tensor product
of symmetric powers has only one invariant, we would need to consider as
many tensor products for a given moment truncation as there are Casimirs.
But, if there is no independent way to ascertain where to stop, one could go
on considering higher tensor products, only to realize that the new invariants
are functionally dependent on the previous ones. So, while the methods of
invariant theory are useful for determining Casimirs directly, without having
to perform integration by the method of characteristics (see, however [57],

where a method based on Pfaffian distributions is used) they are most effective
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when one knows in advance how many Casimirs are expected. Secondly, from
the general statement of the First Fundamental Theorem of invariant theory
(invariant theory is covered in more detail in Section 4.3), it is clear that these
polynomial invariants are determinants. That they are is seen by the fact that

the coefficients in the Casimirs add up to zero.
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Chapter 4

Orbit Geometry and Invariant theory

Manifolds with symmetry are one way to obtain Poisson manifolds with
the linear Poisson structure at the origin. This is done by considering the
level sets of a moment map for the group action. Some general constructions
involving the moment map are given in this chapter. The Poisson manifold
is next assumed to be a linear vector space V acted upon by a symmetry
group G, which is assumed to be a Lie group. Using Whitney’s embedding
theorem for actions on arbitrary manifolds, this can always be done. For
proper actions, we can define the notion of orbit space, which is to say the
quotient V /G the rest of the chapter gives the invariant theory description
of the strata (defined below) of both V and the orbit space V /G. The results
needed for later use in Chapter 5, involve what is called “classical invariant
theory”. Here a connection is made between orbits of a group action and
the invariants that parametrize the orbit, which are related, via the notion of
symmetry breaking (cf. Chapter 5), to the Casimir and subcasimir invariants.
The leaves of a Poisson manifold P are orbits of the characteristic distribution
defined using its Poisson structure, J. There is a way to characterize the
structure of the leaf using a bigger cohomology (called L-P cohomology) of it

which encompasses both the leaf and its surroundings (the transversal to the
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leaf), and which depends on the J chosen. This, and the related notion of
equivariant cohomology, shall form the subject of the appendix. In particular,
for the case of P = g*, there is a simple relation between the Lie algebra

cohomology, the Casimir algebra, and the L-P cohomology.

4.1 Manifolds with Symmetry

In this section, we let M™ be a differentiable manifold, and specialize to
the case of symplectic and Poisson manifolds by adding or relaxing additional
structures. There is a wide variety of reduction procedures available in the
literature, so only a small selection of them is presented here. The main idea
is the following: if a manifold is acted upon by a group of transformations
preserving some structure (as stipulated), then it is possible to go to a lower
dimensional manifold, where the group action is not visible. In physics terms,
the group action reduces the number of degrees of freedom by providing a priori
conserved quantities which reduce the original system to a smaller system, one

that is left invariant under the symmetry.

4.1.1 Basic notions

The references for this section are the excellent texts by Bredon and

Duistermaat & Kolk ([58], [59]; see also [60], Appendix B).

Let G act on M. That is, there is a C* map, called the (left) action
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map,
O:GXM—M (4.1)
satisfying the following properties,

Oe,r) == (4.2)

O(9192, %) = ©(91, O(92, ) (4.3)

Vg1, g2, € (the identity element) € G, and x € M. The action above may be

viewed as a transformation group taking the manifold to itself,
Oy: M — M. (4.4)

Then the properties above can be written ©, = Idy; , and Oy, 4, = O, - Oy,.
The map O, is said to be a realization of g € G' on the space M. If the action
is linear, and M a vector space, then it is called a representation of G on M.

(The action then becomes that of the group of automorphisms of M.)

[Every left action determines a right action z — x - g and vice versa.

Set ég = ©g4-1. Then ég satisfies the hypotheses of a right action, namely,

691 : 692 = 69291']

An action is effective if O(g,z) = © Vx € M = g = e. That is, an

effective action moves at least some points on the manifold.

The action is said to be free if it is free of fixed points, ie., g # ¢ =

O(g, ) # x.
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If any two points of M can be connected by the action, then it is said

to be transitive. For z,y € M, 3 g € G so that ©(g,z) = y.

The orbit through a point x € M is the set of points in M which are in
the image of ©4, Vg € G. We denote the left action  — ¢ - x, and the orbit
through z by Q(z) =G -z ={0(g,z)| g€ G} .

[Thus, the action is transitive if the only orbit is M itself. In this case,

M is called a homogeneous space.|

4.1.2 Invariant points and subspaces

The most interesting actions are those that are effective and not free.
In this event, there are subgroups of GG that leave fixed certain points and
subsets of M. The significance of fixed points is that in a neighborhood of a

fixed point x € M , the action ©, can be linearized for g € G.

1. The set of elements of G' that leave a point x € M fixed forms a closed
subgroup, and hence a Lie subgroup of GG, and is called variously the sta-
bilizer, isotropy subgroup, ‘little group’, or residual symmetry of the point

x. We shall use these terms interchangably in what follows. Formally,

G, ={g9€ G| ©(g,2) =z} (4.5)

Since ghg ! - (g-z) =gh-z =g-(h-x) = g-x, for h € Gy, it follows

that

Ggz = gGygt (4.6)
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Vr € M, or stabilizers of points in the same G-orbit are related by
conjugacy. The conjugacy class of stabilizers of a given orbit is said to
constitute its type, denoted by (G;). For the example of the rigid body
in Subsection 3.1.1, at generic points the orbits of the coadjoint action
of SO(3) on so(3)* have residual symmetry SO(2), and those of two
distinct points on the same orbit (a 2-sphere) are related by a conjugate

rotation, as is easily seen (cf. also Figure 2.4).

Conversely, if H C G is a stabilizer of a point x € M, then so are all its

conjugate subgroups.

. A subset N C M is G-invariant if g-y € N, for any y € N, g € G,
and ©|gxn is an action on N. A function f: M — R is G-invariant if
flg-z) = f(x) Vg€ Gand z € M. If M and M’ are two G-manifolds,
with G-actions © and ©' respectively, and F' : M — M’ a differentiable

map, then F' is called G-equivariant if

F(O(g, 7)) = ©'(g, F(z)).
Ve € M and g € G.

Finding an explicit description in terms of invariant polynomials, of G-
invariant objects is one of the main functions of classical invariant theory.
Both invariant functions and equivariant maps turn out to be expressible
in terms of a minimal number of polynomial invariants; for the case of a
linear action, this is in turn expressible in terms of the Casimirs of the

associated enveloping algebra of the Lie algebra g of G.
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3. Define
Gy = () Ga

reM

It is a closed, normal subgroup of G consisting of all the elements of
the group that fix all the points of M. If this is a finite dimensional Lie
subgroup H, then the quotient G= G/H is a Lie subgroup such that Gu
is a discrete subgroup of G. The action is called almost effective if Gy
is a discrete subgroup I' C G different from the identity, and effective if

it is exactly the identity.
Theorem

The orbit through z € M, Q(z) = G - = is a smooth submanifold of M, and
G+— G-z by g— O(g,x) Vg € G is a smooth submersion. Further, there

is a homeomorphism of differentiable manifolds,
Nz) =G -2~ G/G,. (4.7)

Thus, orbits through € M may be regarded as images, via the action map,

of the homogeneous space got from modding the group by the stabilizer of .

4.1.3 Infinitesimal actions, flows

The action of a group on a manifold constitutes a higher dimensional
generalization of a flow, where the various flows in general do not commute

with each other (they would, if the group were abelian).
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To every action © : G x M — M, and for every Lie algebra element,
¢ € g, the flow generator corresponding to the 1-parameter group g(t) = exp t£

is given by

Ev(z) = % ) O(exp t&,z) € X(M). (4.8)

These vector fields generate the orbits of the action. In other words, the action

O :G X M — M induces a linear anti-homomorphism,

0. (€, nlg) = —[0:&, Ounlzan) = —[En, N, (4.9)

where &y = ©,&, etc., so that ©,(g) is a finite dimensional subspace in the
space of all vector fields (an infinite dimensional Lie algebra) on M, X(M).
Note:

1. The Lie algebra of GG, the isotropy subalgebra, is simply the kernel

of this derived action, that is, g, = ker ©,(z) Vz € M.

2. The minus sign in the homomorphism between the Lie algebras
of the group and the flows on M occurs because conventionally, left-invariant
vector fields on G are chosen to be isomorphic to the Lie algebra g. Were right-
invariant vector fields chosen instead, this minus sign would not appear. As
such, it has nothing to do with the minus sign in the homomorphism between
the Poisson algebra and the algebra of vector fields, which comes because of
the Jacobi identity. (The similar minus sign that is conventionally added for
the same reason to the Lie-Poisson bracket (cf. (2.9), Subsection 2.1.3) shall

be ignored in this thesis.)
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4.1.4 Ad, ad, Ad*, ad*

The important case when M = G itself, and the action that of conju-
gation, gives rise to the most studied Poisson structures, namely the one that
gives rise to the leaves of the foliation by coadjoint orbits. The adjoint action
is primarily an organizing tool in representation theory, to keep track of the
non-commutative (in general) nature of G. We recall the definitions first, and
follow with some facts about the orbit structure of the adjoint representation
and its contragredient cousins. As seen in Subsection 3.1.2 the structure the-
ory of Lie groups and Lie algebras are intimately related to the orbit structure
of g*. Also, the image of the moment map of a group G acting on a manifold
M is seen to be the union of coadjoint orbits. The Casimirs of the Lie-Poisson
structure of the coadjoint space are related to the Casimirs of the orbit space

P/G of a Poisson manifold P (cf. Subsection 4.1.5).

The Ad, ad, (and dual, Ad*, ad*) actions are defined in two stages of

linearization, one on the Lie group and another on the Lie algebra levels.

Let G be a Lie group. Define the conjugation operator, C, € Aut (GQ)
by Cy : G — G such that

Cy(h) = ghg™" = LygoRy-1 - h (4.10)

Vh € G, and where L, and R, denote the left and right translation operations,
Ly-h=gh, Ry-h = hg.

The Adjoint representation Ad : G — Aut (g) ~ GL(g) by Ad, : g — g is
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defined by the relation

Ady€ = C'é &= (LygoRy1)'|e- & (4.11)
VéEecgand g e@.
[For matriz groups, this is g€g~! itself, with ¢ € GL(n,R) and £ € gl(n,R).]

The adjoint action, ad : g — End (g) ~ gl(g) by ad, : g — g is given by
differentiating the Ad operator at the identity of a 1-parameter curve g(t) =

exp in,

d
ad,§ = at . Ady€ = [1,€]g- (4.12)

The Coadjoint representation Ad* : G —— GL(g*) by Ad} : g* +—— g" is

contragredient to the Adjoint one,

(Ady (1), &) = (1, Adg-1(£)), (4.13)
with pe g, g, ged.

The induced homomorphism of Lie algebras defines the coadjoint action, ad* :

g* — End (g*) by adg : g* — g*,
(adip, ) = —(p, adgn) = —{p, [£, 1)), (4.14)

for the 1-parameter group g¢(t) = exp t&.

The orbits of the natural G-action on g*,
Qp) =G - p={Ad,u| Vg€ G} (4.15)

are called the Coadjoint orbits.
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Kirillov - Kostant construction

Fix p € g*, and consider a Coadjoint orbit through it, G - u. The tangent
space to the orbit at p is spanned by vectors of the form adip = X;, i =

1,...,corank (G). Then the unique symplectic form on the leaves is given by
wN(Xi’ XJ) = <:u’ [Xb XQ]B)? (416)

where the identification 7,g* ~ g has been made. The fact that this is a
symplectic form follows from the observation that the corank of a group is the
number of roots, which is always even. The rank of the group is the number
of Casimirs of the Lie-Poisson bracket (cf. Subsection 3.1.2) whose dual away

from the origin is precisely the above symplectic form.
The Annihilator theorem [61]

Let g be a Lie algebra, u € g*, and

9 = £(Gy) = {€ € g| adgp = 0}

the annihilator of yx in g (or the Lie algebra of the isotropy group of the

coadjoint action of G on g*, at the point pu).

The linear approximation of the transverse Poisson structure to the orbit of the
coadjoint action at the point y is canonically isomorphic to the linear Poisson

structure on the dual space of the annihilator g,, namely g;,, i.e.,
g"/adp — g,

83



as isomorphism of spaces. Recall that the coadjoint orbit itself is isomorphic
to the orbit space of the group with respect to the isotropy subgroup (i.e.,

G-p~G/G, ), so the above identification is justified on dimensional grounds.

As a corollary to the above result, since the rank of a Lie algebra is the
same as the corank of its Poisson structure, the rank of g, at © € g* is not less
than rank g; it follows that a semisimple Lie algebra of rank r is contained in
an r-dimensional commutative subalgebra. This is one of the many results in
representation theory of semisimple Lie groups that are easy to see from the
viewpoint of adjoint orbit geometry. (Kirillov [62], [63] pioneered a method
of using orbit geometry in representation theory as follows: Define the dual
G of G to be the equivalence classes of unitary irreducible representations of
G. Then his idea was to identify G with the set of orbits in g*, namely g*/G,

where G is simply connected and nilpotent.)
Duflo & Vergne’s theorem [61]

The following result gives a criterion to distinguish regular points of a Poisson
manifold that is locally isomorphic to the coalgebra to a semisimple Lie algebra
(the linearizable ones according to Weinstein’s criterion), from the nonregular

points.

If the annihilator of u € g* is commutative, then the rank of the Poisson
structure at that point is locally constant (and hence, by lower semicontinuity
of rank, maximal). Thus, a nonabelian g, signals a change in the leaf genericity

from regular to nonregular (which includes exceptional and singular leaves).
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This criterion is obvious in view of the above two results, as the rank of g is

the same as the dimension of the annihilator at any point.

Coadjoint orbits parametrization [64]

The coadjoint orbits are parametrized as follows. Let t C g be the Cartan
subalgebra, and B the Killing form (G-invariant and positive definite) on g.
Let t* C g* correspond to t via B, which identifies g and its dual g*. Recall that
the Weyl group W is defined as N'(G)/G, where N(H) = {g € G| gHg™' =
H} is the normalizer for H C G. Every coadjoint orbit intersects t* in a Weyl
group orbit. This gives a one to one correspondence between coadjoint orbits

in g* and Weyl group orbits in t*.

Singular coadjoint orbits have the property that they pass through the

intersection of the walls of the Weyl chamber [37].

4.1.5 The moment map

Now, we let M be symplectic, with symplectic form w, and P Poisson,
with the Poisson structure J. Let G be a d-dimensional Lie group that acts on
M and P in such a way that the symplectic or Poisson structures are preserved
(i.e., we assume that the action maps have those properties, called symplectic

and Poisson actions, respectively).

There is an intimate connection between Casimirs of the reduced space
of a Poisson manifold P/G, and the Casimirs of the Lie coalgebra g*. The

latter is a Poisson manifold with Lie-Poisson bracket, so its Casimirs are just
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the ad*-invariant functions, as will be shown later. The connection is made

using the concept of a moment map.
Let G act on M: for € € g, £ —> &y(x), x € M, by flows.

Since G acts by symplectomorphisms (i.e., action is symplectic), we have that

ngw =0 = d(ing) + igM (dw)

or ieyw = dp(€), if H'(M,R) = 0.

Le., there is a correspondence £ — p(&), V€ € g, and at each point z € M.

(Similar considerations apply for Poisson morphisms of G on a Poisson mani-

fold P.)

The moment map is a collection of dim (G) = d Hamiltonians, whose
flows, under the vector fields they define, generate the orbits of the symmetry
group on the manifold. If p = (p',...,p%) is the moment map, then it is

defined by setting p : M — g* — R such that, with

(Psy &) = pu(§) € CF(g") VEE g, (4.17)

we have:
w(éum(z), - )=dpz(§) (4.18)
J - dp;(§) = Ep(z) (4.19)

for symplectic and Poisson manifolds, respectively. Here, &3, or p is the flow

generator of the symplectic or Poisson action corresponding to the element
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& € g. (If € is written & = E%,, in a basis {e,} for the Lie algebra, then
the moment map components p® can be mapped to the components £¢, for

a=1,...,d.)

The moment map has the important property of equivariance with
respect to the action, that is, the following diagram commutes:

M e(gv') M

ol & (4.20)

% *

g —>Ad2 g
Infinitesimally, this can be viewed as a closure condition for the moment func-
tions, p®, a =1,... ,d, with respect to the Poisson bracket of functions (which

exists for the symplectic case by nondegeneracy, and in the Poisson case, by

definition):

{02(8); p=(n)} = p2([€, 7)), (4.21)

where £, 7€ g and z € M or P.
Inserting the definition of the moment map into the above equation (4.21),
and using the Jacobi identity, we find that

[Ears )z = —([€5Mg) M-

Thus infinitesimal equivariance is equivalent to the antihomomorphism prop-

erty.
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Moreover, from the definition of the moment map, (4.18) (4.19), we
can find a condition that connects together the action, moment map, and the
symplectic or Poisson structure. Denoting ©' : g x M — M the infinitesimal

form of the action, we have

(Ooa@) = #() 2,

for a = 1,...,d. This specifies the jth component of DOy|,—., and by the
usual existence and uniqueness, given ©, = Idj,, this implies a unique solution.
We also see that singularitis of D p are zeroes of J and vice-versa, presuming

the action © is well defined and proper.
Noether’s theorem [65]

If f is a G-invariant function on P, then p is conserved on trajectories of X;.

(We state the Poisson case, as the symplectic one is a special case.)

Indeed, G-invariance of f means that

f(©(y(t),z)) = f(z) (4.22)

where g(t) = exp t&, &p = (€ - ©'|4=0)(2), € € g, x € P. Expanding (4.22)

88



about t = 0,

fla+t€-Oo(z)+---) = flz),
or f'(z)-&p(z) = 0

or dfy-¢ép(z) = 0

= —dp(§) - X;.

Thus, f conserved along group orbits means p is conserved along flows of f.

Smale’s criterion

We call x € M a regular value for p if d p, ~ g*. Let p be a (not necessarily
G-equivariant) moment map. Let G, be the isotropy of x € M and g, its Lie

algebra. Then z is a regular value for p iff g, is trivial (i.e., G is discrete).

For a proof, one observes that if x € M were regular, then for v € T, M,

<dvavf> =0 V§€G
— v = 0

or wlé,v)l, = 0

Since w(z) is nondegenerate, this happens iff £3/(x) = 0 or in other words, g,

is trivial (which is implied by G, discrete).
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Clearly, the proof does not go through for the case of a Poisson man-
ifold P, as the final step could imply either that J(z) is degenerate, or that
&p(z) = 0. But, away from the singular points of J, the theorem would apply

to a Poisson manifold (P, J) as well as a symplectic manifold (M, w).

In closing, we give an example of a moment map, to show how it justifies
its name. Let M = T*R® ~ RS, z = (z1,79,723) € R3, presymplectic 1-
form 6 € T,R? by 6 = Z?Zl yidx;, where y = (y1,y2,y3) € T,R® are fiber

coordinates; then the symplectic form on M is just w = df = 2?21 dz; N dy;.

Let G be the group of translations on the base, R®. This induces
translation on the fiber in order to keep w invariant, £xw = 0, where X € g,
the Lie algebra of G. The moment map, p is easily seen from the definition
to correspond to linear momentum, that is, p(z, y) = y € g*. Likewise, if G
is the group of rotations on the base, symplectic invariance permits the lift of
it to the whole cotangent bundle, and the moment map is seen now to be the
angular momentum, p(z, y) = zxy € g*. (The duals of R and itself are

here identified implicitly.)
Moment maps and Casimirs [66]

Let (P,J) be a Poisson manifold and G act as a Poisson map, with
p : P — g* the equivariant moment map. Define the Casimir function on
the orbit space P/G, C : P/G — R s.t. J(dC,-) = 0. Let F € g* be an ad*-

equivariant function. Then, F' is a Casimir for the Lie-Poisson bracket, and

90



Fop = Coll, where II is the orbit map, Il : P — P/G. The commutative
diagram below illustrates this theorem (whose proof can be found in the cited

reference).

p 25 ¢ L, R

n [

R +—— P/G — ¢'/G
p

Essentially, there is a direct map between the Casimirs to be found on
the space g*, and those on the orbit space of the Poisson manifold, and hence,

via the orbit map, on the Poisson manifold itself.

4.1.6 Geometric reduction

The G-equivariant moment map defined above is used to facilitate the
reduction process, whereby the symmetry of the dynamical system is removed.
For the various reduction procedures to work, restrictions on the action need to
be imposed. The action shall be taken to be proper, and G to be compact. The
results of the following Subsection 4.2.1 then allow various types of reduction

to be defined.

Reduction schemes that start with M as the basic object, and use the
moment map associated to the group action to mod out the symmetries, will
be considered. Several other schemes of reduction [67], [68], start from algebras
of functions, and while these are more general, the geometrical interpretation

of the reduced algebra is usually lacking.
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Within the first approach, or geometrical reduction, two cases can be
considered in turn: regular and singular reduction. These turn out to be well
defined for the case of locally free proper actions (and in particular, free proper

actions).

The basic idea behind the reduction philosophy is the following: If a
Lie group G acts on M symplectically, with moment map p : M — g*,
then M/G has a Poisson structure. Consider the coadjoint orbit Q(u) C g*;
then p~'(2(p))//G is a symplectic leaf of M/G. (An even more prototypical
scheme for reduction is possible if stated in terms of generalized distributions

and their integrability [69].)

We first describe the terms ‘regular’, ‘clean’ (or weakly regular) and
‘singular’ [70]. The manifold could be either symplectic or Poisson, but for

simplicity, we take the former case.

Let (M,w) be a symplectic manifold, and p the associated moment map
for a symplectic G-action on M. p € g* is a regular value for p: M — g* if

p~1(u) is such that for z € p~*(u),

pI(TxM) = Tug*a

.M = T,p ' (n) +T:(M/G).

Since under p, the whole orbit p~!(u) gets mapped to a point in g*, we have

that
ker (p') = T.(p™' (1)), (4.23)
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and
im (p') = T,(M/G). (4.24)

So, p € g* a regular value = im (p') = 7,,g* = range (p).

An element p € g* is called clean if (4.23) is satisfied, but not (4.24).
The image of p' consists of all vectors in T, M that generate motion on M
upon changing the value of the moment map on g*, away from the value at p.
(This justifies the name ‘moment map’ in analogy with angular momentum
being the generator of rotations.) A clean value need not be regular since it is
not required for it to have the property that the image of p’ maps onto 7,g*;

i.e., it is possible that singular orbits may be accounted for as well.

The kernel of p’ maps the tangent to the level submanifold p~'(u)
to zero in T,g*. However, for a clean value, the normal to the submanifold
need be mapped only into a subset of 7,,g*. When the normal space to the
level set of the moment map gets mapped onto T,g*, the map is regular.
Clearly, regular implies clean but not conversely. In either case, p~'(p) is an
imbedded submanifold. Note that regularity or cleanliness also implies that
the symplectic form restricted to the level set has constant rank, and that
the characteristic distribution of w, namely its kernel, is fibrating (so that

p~'(p)/ker (w) is an immersed Hausdorff submanifold of the level set).

A value for the moment map is singular when it is not regular nor

weakly regular. In this event, p~!(u) is not an imbedded submanifold, or the
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restriction of the symplectic form is not of constant rank, or the characteristic

distribution is nonfibrating.

Regular reduction theorem ([71, 72], [73])

Let u € g* be (weakly) regular, and p~'(u) a smooth manifold. If G, acts
freely and properly on p~'(u), then the reduced manifold is defined by M, :=
p~'(#)/Gy. Then 3! w, on M, such that

W = T,wy
with
wip t(p) — M

and 7, :p t(p) — M,.

We have a few observations about this theorem, which are not usually

pointed out in the literature.

1. First, the fact that the reduced manifold is even dimensional follows from
purely counting arguments as well. (In their original paper [71], this fact
is deduced by the presence of a nondegenerate symplectic form on M,

which of course is a constructive argument.)

Since the reduced space comes as a double quotient, M, = M/G/G, =
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M//G, where p € g*, we have

dim M, = dim M —dim G —dim G,
= dim M — (dim G —dim G,) — 2dim G,
= 2n—(d—r)—2r
= 2n — 2 X # of positive roots — 2r

= an even integer.

This counting argument does not prove that there exists a nondegenerate

closed 2-form: that is the content of the reduction theorem.

. Secondly, the Marsden-Weinstein weakly regular (or clean) version of
reduction as stated above implicitly assumes that G acts on M freely, or
at most locally freely (i.e., with discrete isotropy), at each = € M. This

is very restrictive, for most interesting actions are effective but not free.

In the event that G, # eg or a discrete subgroup I' C G, we note
that the invariant slice that is G;-invariant, adds to the thickness of the
moment level set, p~'(u), in order to compensate for the thinness of the
orbit (which now goes from G - z to Q(z) = (G/G;) - z). Therefore, the
quotient of the thickened moment level by G, ought to leave one with a

M, of larger even dimension.

The dimension formula follows from the following counting consideration.

From the observation in the previous paragraph, we can write

dim T, (p (1)) + dim T,(Q(z)) = dim M
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and by equivariance, it follows that T, (p (1)) N T(2(x)) = Tu(G, - z),
for x € p~(u), and p € g*. Now, since two points in the moment level
are related by G, action, we would need to mod out by G the isotropy
orbit while considering the reduced space. With this in mind, we can

write using the above equality,

dim M, = dim p~'(p) —dim G, +dim G,
= dim M — (dim G — dim G,) — dim G, + dim G,

= dim M —dim G — dim G, + 2dim G,.

Since we have seen in the previous note that the free action reduced
space is even dimensional, it follows that adding 2dim G, would keep it

even dimensional.
Orbit reduction [65]

It can be easily seen, from G/G, ~ G - p, that

M, =p ' (1)/Gu=p"(2n)/G

where Q(u), for p € g* is a coadjoint orbit. This version is useful when orbit
geometry comes into play. The orbit map, IT : M — M/G takes the image

of the moment level set to the reduced space: M, =II(p 1(2,)).

Singular reduction theorem [60]
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Let (M,w) be a symplectic manifold, and let G act properly on it. Suppose
that Q(p) is locally closed. Then M, = p *(Q2(u))/G is a Poisson manifold
with a nondegenerate Poisson bracket, and as a topological manifold, M, is a

locally finite union of symplectic manifolds called ‘symplectic pieces’.

There are some interesting connections between singular reduction and
invariant theory [74, 75], [60]. There are also many fascinating connections
between moment maps and geometric invariant theory [76], [77]. It turns out
that geometric invariant theory of complex projective varieties is governed
by the geometry of the the level sets of the moment map. The symplectic
quotients which arise upon (in general singular) reduction serve to characterize
the many notions of stability of a vector, on the tangent space to the orbit of

an algebraic variety.

For both the regular and the singular cases, the isotropy may be a
discrete subgroup I' of the Lie group G. In this case, we would obtain not
a symplectic manifold, but instead a symplectic orbifold, with the leaves of
the Poisson manifold p~!(1) being a stratification by symplectic manifolds of
different dimensions. (Orbifolds and stratifications are considered in greater

detail in Section 4.2 below.)

Further developments in the theory of singular reduction for symplectic

spaces may be found in [78], [79], [80].

Poisson reduction theorem [65]
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Let G act on P by Poisson maps (that is, Poisson bracket preserving), and
assume that P/G is a well defined smooth manifold, IT : P — P/G the canon-
ical projection (the orbit map). If functions f,h € C*°(P/QG) are extended to
F,H € C*(P) by the orbit map, F' = foIl, H = holl, then there is a unique

Poisson structure on P/G defined by
{fah}P/GOH = {FaH}P

For example, as indicated in Subsection 3.1.2, the Lie-Poisson bracket
for the dual to a semisimple Lie algebra comes from a Poisson reduction,
where the cotangent bundle to the Lie group goes to its orbit space by Poisson

reduction: g* ~ T*G/G.

4.2 Geometry of Strata

We define the notion of properness of an action, and the important con-
struct called a slice for the action. These concepts will permit the existence of
orbit spaces, which are seen to be in general orbifolds. The tangent and normal
spaces of the various strata (each stratum corresponds to one equivalence class
of isotropies) both in the space M and the orbit space M/G are described:;

these invariant spaces shall play a role in parametrizing the orbits.

Notation: For this section, the orbit through z € M shall be denoted

by Q(z), and not G - z.
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4.2.1 Proper actions and slices

We list a few definitions and properties of proper actions and then

describe the slice construction [60].

A continuous map © from a topological space A to another space B is

proper if © (K is compact in A for every compact subset K C B.
An action © : G x M — M is said to be proper if the map
GxM — MxM
(9,2) — (9-2,2)

is proper. For a proper action of a Lie group G' on manifold M, the isotropy

G, at any point x € M is compact, by applying the above definition.

A proper action is locally linearizable. That is, for x € M, 3 a G-
invariant neighborhood U, and a diffeomorphism ¥ : U, — T, M such that
U(z) =0, d¥(z) = Idg,p, and ¥ is G -equivariant:

U(Oy(y)) = To04(¥(y)),
y € U, g € G,. This follows from the splitting theorem below.

This linearizability property is due to Bochner [59], and among other things,

allows the action to be represented by the Adjoint of G,.

Slice. Let G act on M via action map ©, with orbits Q(z) through a point
x € M. Let G, C G be the isotropy subgroup of x, and g, its Lie algebra.
Then, if H C G such that

g=g9,+1T.H,
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and S C M a submanifold transversal to the orbit Q(z)
T,M =T,S + T,O(),

then 3 open neighborhood U, X V,; of (e,z) € H xS C G x M such that O|yxy

is a diffeomorphism onto an open neighborhood of z € M.

If the action is proper, then § is called a slice for the action if it is G-
invariant; if for any point y € S, the orbit through y, Q(y), is transversal to
the submanifold S; and if the only elements of G that leave S invariant at any

point y in it are elements of G.

The Figure 4.1 below illustrates the slice construction.

4.2.2 Orbit type

Consider, for H C G a compact subgroup, the subset of M given by

My ={z € M| H=G,}.

By the linearization property, and by the slice construct, it follows that Mg

is a submanifold of M.

Define
the set of points of points of M of orbit type (H). That is,

My ={z € M|3g€G s.t. ¢gG,g ' =H}.
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Figure 4.1: Slice construction.
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On the set of all closed subgroups of G, define a partially ordered
set by the relation <: K < H iff K is conjugate to H in G. Then < is
an equivalence relation on the set of all closed subgroups of G. Also, since
orbits are homeomorphic to the orbit spaces in G by the stabilizing subgroup
(i.e., G-z ~ G/Gy), this equivalence relation (saying that H is conjugate to a

subgroup of ) is equivalent to there being an equivariant map G/H — G/K.

As H varies over the conjugacy classes of closed subgroups of G, the
orbit types partition M into an orbit type decomposition. (This decomposi-
tion is locally finite if the action is proper. Local finiteness ensures that any
neighborhood of an orbit intersects surrounding orbits in only a finite num-
ber of pieces. Thus, for example, irrational flows on a torus are ruled out in
this scheme of things. If such flows from a group action are allowed, then it
can be shown that Casimirs do not determine the various orbits of a proper
action [9].)

Clearly, orbit types can vary only across the orbits, changing as the
foliation goes from regular to singular leaves, while remaining constant along
an orbit. Also, smaller orbit types are associated to fatter orbits, which is to
say, the generic orbits have the least residual symmetry. Singular orbits have
smaller dimension and hence, larger isotropy, and orbit types. Later it will be
seen that the orbit type of a generic leaf of a foliation in the case of a Poisson

manifold is always abelian, while that of the non-generic leaf is nonabelian.

For any G-orbit, 2, the orbit type it belongs to shall be denoted (€2)

and set equal to (Gy), for any = € Q. The partial ordering < on orbit types
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can be used to compare the residual symmetry of the orbits themselves; we say
(Q) < () if an element of (G;) is contained strictly in (G,r), where z € (2,
z' € V. Clearly, by the above remarks, if H < K, then the types of G/H and
G/K satisfy the relation (G/H) > (G/K). Hence, the smaller the isotropy

type, the larger the orbit.

This idea plays an important role in what follows, as physical systems
tend to settle down into states of greatest symmetry. (For example, a dead top,
that is at rest (or has lost all its energy through a dissipative mechanism 1!),
would have fuller symmetry than a top steadily spinning about an axis. While
the former top is represented by the origin of any solution by extremizing a

potential, the latter is represented by a flat direction.)

For example, consider the action of SO(3) on so(3)". The coadjoint
orbits are all 2-dimensional away from the origin, with the differential of the
Casimir, dC' (where C' = (p')? + (1?)? + (¢®)?, and {p'}i=1,.. 3 form a basis
for the vector space 50(3)") generating the transverse slice to any point on the
orbit. The isotropy subgroup, SO(2) is compact, abelian, and its conjugacy
class defines a orbit type for the union of all 2-spheres of non-zero radii. The
only closed (nontrivial) subgroup of SO(3) that is not conjugate to SO(2) is
SO(3) itself, and this is the isotropy of the origin where p* =0,Vi =1,...,3.
Thus M, which in this case is s0(3)", is a disjoint union of the two orbit types,

the origin of type (SO(3)) and everything else of type (SO(2)).

1Such a dissipative mechanism may be modeled using the idea of Metriplectic sys-
tems [81].

103



Now, we can define the notion of an orbit space. Formally, these are
reduced spaces M /G, where the group action is modded out. That is, each
orbit gets mapped to a point in the orbit space. Let G act properly on M. In

general, this ensures that M/G is a (Hausdorff) topological space.

Orbits: Say x ~ y if they both belong to the same orbit, that is
Q(z) = Q(y). This equivalence relation partitions M into G-orbits, M/G.
The canonical projection IT : M — M/G is called the orbit map, and it sends
each point of M onto its G-orbit. The topology of M /G is the usual quotient
topology inherited from that on M: the set U C M/G is open if I71(U) C M

is open.

Slices: By definition, the slice S at x € M is transverse to the orbit,
Q(z). For a neighborhood V,, C S, II(V) is open in M/G. As only elements of
G that belong to G\G, can move the slice along the orbits, the orbit spaces
(G-8)/G and S/G, are homeomorphic, z € S. (This shall play a role while
defining the invariant normal slice below, where we consider tubular neighbor-

hoods and the Palais’ retraction map.)

For the special case of a free action (i.e., G, = e Vo € M), the orbit
space is a smooth manifold, and in fact forms the base space of a principal G-

bundle, IT : M — M/G.

If the isotropy subgroup is discrete, then the (proper) action is said
to be locally free. In this event, M /G can be given the structure of a mildly

singular manifold called an orbifold. [An orbifold chart associated to an open
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set U in a Hausdorff topological space X is a triple (U, G, ¢) s.t. U C R is an
open set, G C GL(U), ¢ : U — U is a continuous map that is G- invariant

and onto, which induces the chart homeomorphism
¢:U/G—U.

Orbifold transition maps and atlases are similarly defined, and give the orbifold

structure to X.|

These orbifolds also appear when the reduced space of a symplectic or
Poisson manifold is considered for the case of a locally free action (as in the

Subsection 4.1.6 above on clean, singular and Poisson reductions).

4.2.3 Principal and singular strata

For simplicity of notation, although it can be done in full generality,
we assume in Chapter 5 that the manifold is a linear vector space V. In the
literature for symmetry breaking, the fields are assumed to live in a vector
space (the fiber of an associated bundle to the principal G-bundle), with the
underlying base space usually not explicitly considered. Thanks to Whitney’s
embedding theorems (stated below), this could always be done with no loss of

generality.

Further, if G is a compact Lie group, then in virtue of the existence of a
G-invariant Haar measure, it can be shown [58] that the linear G-action could

always be replaced by an orthogonal action 2. So, let V be a G-manifold,

2We emphasize here that there is little loss in generality by doing this. Orthogonal
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and V /G the space of orbits. The orbits in V are points, under the orbit
map II : V — V /G, in the image in V/G. Due to the classification of
orbits by type, we consider a stratification of V and V /G by orbit types.
Similarly, for a G-manifold M, we have the stratification into orbit types,
although the geometry of the orbits and their parametrization could become

more complicated.

Stratifications are a bit more general than generalized foliations, as they
do not require the strata to be generated by differentiable distributions. Re-
call, from Appendix 2 to Chapter 2, that a foliation of a differentiable manifold
M is a collection of all maximal integral submanifolds of an integrable system
of vector fields on M, which are guaranteed to exist by a generalized version
of Frobenius’ theorem (to include nonconstant rank distributions). The sub-
manifolds are arranged as disjoint leaves, with appropriate ‘box’ coordinates
on any locally constant rank neighborhood. Stratifications assemble the strata
without reference to their being generated by an integrable distribution. They

are more topological in nature.

First we give a vector space definition and then one for the mani-

fold [59], [8].

Stratification

decompositions of tangent and normal spaces are convenient in the symmetry breaking
context, but not germane to the general picture we are trying to elucidate. Most of what
follows applies to noncompact group actions as well, cf. Section 3.3.
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1. &€, a collection of subsets S; of V, is a stratification of V if for any pair
S, S, either S; = Sy or S; NSy = 0, with each S; a smooth manifold;
and if S; NSy # () implies S; C 05;.

2. A C" stratification of a differentiable manifold M is a locally finite par-
tition of M into locally closed, connected C" submanifolds S,, a € I, of
M, called ‘strata’, such that

Sa=5aU | Ss
BElq

with I, =1\ {a}, and dim Sg < dim S,, V3 € L,.

All points in a given group orbit have the same symmetry (or isotropy),
but all points with the same isotropy subgroup do not belong to the same
orbit. The stratification collects all orbits of a given type, so that they have
the tangent structure transversal to the orbit. (Strata are also called orbit

structures [58].)

The stratification of a G-manifold M (or a linear G-vector space V)
into strata of various orbit types can be defined next. There are three types

of strata:

1. The principal stratum Yp of maximum orbit type G/H, (so that H is
conjugate to a subgroup of each isotropy group for the principal orbits in
the stratum), is an open dense subset of M. The image via the orbit map

II: M — M/G of the principal stratum, denoted by f]p, is connected
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in M/G. If Qp is a principal orbit, and €2 any other orbit, then 3 G-
equivariant map Qp — Q. If Qp ~ G/H and Q ~ G/K, then K D H.
Then Qp — Q is a (principal) bundle projection G/H — G/K with
fiber K/H.

. If dim (K/H) > 0 (or dim Qp > dim ), then Q is called a singular
orbit, denoted by (g or ﬁ, and the stratum to which it belongs is called
a singular stratum g. The corresponding image in the orbit space is

not necessarily connected, and it is denoted by Ss.

. If dim (K/H) = 0 (so that dim Qp = dim Q) but Qp — Q is a
nontrivial covering map (so that K/H is finite and nontrivial), then Q is
called an exceptional orbit, the stratum to which it belongs is denoted

Y, and its image in the orbit space Yr.

It can be shown on general grounds that the disjoint union of singular (and

exceptional) strata form the boundary of the principal stratum. We shall not

consider exceptional strata as these are not rank changing. (They would, how-

ever, be of importance in physical situations such as bifurcations, or patterns

of discrete symmetry breaking.) Further, it can be shown that the minimum

and maximum orbit types are unique.

As an example, consider the rigid body Poisson manifold. It is com-

posed of two strata: the principal stratum Yp being a disjoint union of all

2-spheres indexed by their radii, and of isotropy type (SO(2)); and a singu-

lar stratum Y, namely the origin, of type (SO(3)). The corresponding orbit
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Figure 4.2: Principal and singular strata and their orbit map images

space strata (which are the projections of the orbits along the half real line,
which is also the base of a singular fibration with fibers the orbits) are p

which is (0, 00) and Xg, which is {0}. (See Figure 4.2.)

4.2.4 Tangents and normals

Let a compact Lie group G act on a linear vector space V ~ R" or-

thogonally (this can always be arranged [58]). Let the orthogonal represen-
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tation be denoted by (G,R"). Recall from Subsections 4.1.2 and 4.1.3 that
Gy = {9 € G| g- ¢ = ¢} is the isotropy subgroup or symmetry group of a
point ¢ € V, and g, = {£ € g| £ - ¢ = ¢} is the corresponding Lie algebra.

The reference for what follows is [82].

The tangent to an orbit Q(¢) in the orbit space V /G is generated by
dim G —dim G, vectors that are the image, via the action map, of as many Lie
algebra elements. From the slice construction (Figure 4.1; Subsection 4.2.1) it
is clear that the normal directions to the orbit are generated by a slice that
is Gy-invariant. Not all the points in the normal direction move under the
isotropy, however. The notion of an invariant normal slice plays an important

role in orbit geometry. We outline the definitions and properties in steps:

1. The tangent to the orbit, T,(Q2) = {& - ¢| £ € g}. Clearly, dim T =

dim G — dim Gy. Also, the tangent is G-invariant, that is Tg.4 = g - Tj.

2. The normal to the orbit is specified by the orthogonal decomposition,
Ny +Ty = R", (Ny, Ty) = 0, with (, ) the G-invariant inner product
on R". That is, Ny = {w € R"| (w,&-¢) = 0V € g}, and (¢, w) =
(9 - ¢, 9 - w). The latter condition, given the antisymmetry of the Lie
algebra to O(n), when differentiated with respect to a 1-parameter group
g(t) = exp t€, at t = 0, yields the condition (¢, & - ¢) = 0, which implies
that the normal space contains the point on the orbit regarded now as
a position vector emanating from the origin of R", ¢ € N,. (The zero

vector, for the same reason, also lives in N, for any ¢ € R".) Like T,
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Ny is G-invariant, Ny.4 = g - Ny.

. The set of all points in Ny that are fixed under the G4 action, Ng =
{u € Ny| h-u =wu, Yh € G4}, orthogonally decomposes N,, further into

two subspaces,

Ny = Ny Ny, (4.25)

R" = Ty® Ny Ny. (4.26)

. The tangent space to a stratum X is well-defined (thanks to invariant tube
(or normal slice translate) neighborhood theorem, in turn guaranteed by
the Palais’ retraction map) as being the orthogonal sum of the orbit and

the invariant normal space:
Ty(X) = Ty(Q) & Ny. (4.27)

Thus Ng lies in the tangent space to the stratum, and N, ¢1, is normal to
the stratum. It can be shown that the necessary and sufficient condition
that the stratum is a principal one is that NV gp spans the slice coordinates
transverse to an orbit. See Figure 4.1 in Subsection 4.2.2, and Figure 4.3

below.

. From counting dimensions, (4.27) implies dim ¥ = dim G — dim G4 +
dim Ng. Now, use the orbit map, IT : R — R /G, under which all of
the tangent space to an orbit gets mapped to the zero vector in R /G.

The corresponding strata also get mapped, II : ¥(q) — f](g), where (2)
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s
Figure 4.3: Tangents and normals to strata in the space of fields and the orbit
space.

indicates the orbit type of a representative orbit of the stratum. Thus,

we see that dim i(ﬂ) = dim N} °.

6. By combining the dimensionality relations above with the definitions of
the various types of strata, we have a criteron for principal orbits: The
necessary and sufficient condition that €2 is principal is that N(; =1
V¢ € €2, in which event, the principal stratum to which the orbit belongs

is full dimension, dim Xp = n.

3From this follows a famous theorem in particle physics called Michel’s theorem: the
sufficient condition that dim gy = 1 is that the restriction of (G4, R") to (G,R") contains
only one singlet of G'y.
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4.2.5 Whitney’s embedding theorems

We state the two embedding theorems of Whitney here, for arbitrary
differentiable manifolds and G-manifolds respectively [58] [8]. For G-spaces,
that is for continuous actions on topological (metric) spaces, an embedding
theorem was proved by Mostow. Recall that a map f : M — N induces
a tangent map df, : T,M — Ty N; if df, is injective, then f is called an
immersion. If in addition, f is a homeomorphism onto its image, then f is
called an embedding (we give the image f(M) the subspace topology relative
to N). Also, a map from one G-space to another, f : M — N is said to be
G-equivariant if f(0,(z)) = V,(f(z)), where © and ¥ are the G-actions on

M and N respectively.
Standard Whitney embedding theorem

Any smooth differentiable manifold M™ can be embedded into Eu-

clidean space of dimension 2n + 1.
FEquivariant Whitney embedding theorem

Given any G-manifold M™ there exists a G-equivariant diffeomorphism

of it into a linear G-space V, embedding M into V.

In other words, we could as well replace a complicated, nonlinear action
on a differentiable manifold by a linear action of the group on a (larger) linear

vector space.
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4.3 Invariants of Orbits

In this section, we briefly indicate how invariant theory is used to
parametrize orbits of a group action. The action shall be assumed to be a
regular representation (that is, the matrix representing it has finite entries),
and shall be denoted by p. If (p, V) is a regular representation, we say a subset
W C V is G-invariant if o(g) W C W. A representation is reducible if there
exists a G-invariant subspace W C V such that {0} # W and V # W. A rep-
resentation is irreducible if it is not reducible (i.e., there exists no nontrivial

proper G-invariant subspace of V).

4.3.1 Classical invariant theory

The problem of classical invariant theory may be stated as follows:
Given a representation of a classical Lie group, (V, p), describe the elements

of the fixed point tensor subspaces with respect to the representation:
(@ V)Y = {u e @ V| ¥ (g)(u) = u}.

Let P(V** x V™) denote the algebra of polynomials of k covector (1-form)
arguments and m vector (derivative) arguments. Then a polynomial p € P is

said to be G-invariant if
g DB, Bhs B, Om) = P(7 - 0(9), -+ Pk - 0(9), (971, -+ 0(97 ) Pm),

Vg € G. Then a related question is the following one: Describe the elements
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of P(V** x V™€ for a pair (G, ) *.

A constructive procedure to answer this question was given by the
founders of the subject of representation theory, Weyl [83], Schur, et al. In
this subsection, we lay forth some preliminary notation and state the so-called
FFT (First Fundamental Theorem) of invariant theory. We follow mainly
the notes of Procesi [55] (see also [56], [84]), and leave the details to these

references.

A relative invariant of a reductive group G (G is said to be reductive if
every finite dimensional linear representation of G is completely reducible into
a direct sum of irreducible representations) of weight y is a map f:V — K
(with K any field) such that V g € G and ¢ € V, f(g-¢) = x(9)f(¢), with
X : G — K" is a homomorphism called a character map. If x(g) = 1, then f

is called an absolute invariant.

The first fundamental theorem (FFT) of invariant theory gives the con-

dition for multilinear invariants of GL(n,K) of k£ vectors in V o~ K".

FFT
Let f: V¥ — K be a relative invariant and z1,... ,z, € V vectors with
z; = Eej. Let [x1,... ,2,] := det (&) of weight 1. Then multilinear invariants

of GL(n,K) of k vectors exist only if k£ is a multiple of n, £k = tn, where ¢ is

the weight. Each such invariant is a linear combination of invariants of the

“The existence of such elements is the content of Hilbert’s basis theorem (see below).
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form [z, ..., @i, |, [Tinirs - s Tion)s -+ [Tigonpar -+ s Tig)-

Define T?(V) = V® ®(V*)®%, a tensor of order (p,q) with action on
V* occuring by the contragredient representation, and define the G-invariant

inner product between V and V* as follows:

<l’,g : $*> = <gil : $,$*>

The classic theorem of Weyl gives the answer to the first question that began

the subsection.
Weyl’s theorem

Every multilinear invariant of GL(n,K) on T7? is a linear combination of in-

variants of three types:

1. contravariant brackets [z',... , 2"] of weight 1
2. covariant brackets [y, ... ,y,] of weight —1

3. scalar products {x,y) of weight 0.

4.3.2 Orbit and strata parametrization by invariants

In a footnote to the previous subsection, it was mentioned that Hilbert’s
basis theorem guarantees the existence of a finite basis of invariants. Here, we
shall review aspects of this theory, and obtain a natural parametrization for

strata for a group action on a vector space.
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As before, let V be a vector space (and for definiteness, let K = R be
the field), on which a compact Lie group G acts linearly (hence by orthogonal

representation) on V. A polynomial p : V — R is called G-invariant if

p(g-9)=p(¢p) Vg€ G, p€V.

Hilbert’s basis theorem|85, §]

P¢, the ring of G-invariant polynomials under the operations of polynomial

addition and multiplication, is a finitely generated algebra under R.

The algebra P® is a graded algebra, graded by the degree of the invariant
polynomial. The basis guaranteed by the above theorem is called an integrity
basis. There is a minimum number ¢, for a given representation (G, V); this
is called a minimal integrity basis, or Hilbert basis. We denote the genera-
tors of PY by (6:,...,60,) € R% Any polynomial p € P can be written,
¢ €V, p(o) = p(61(¢),...,0,(¢)). When a Hilbert basis is formed by al-
gebraic independent polynomials, it is called free and the corresponding rep-
resentation (G,R") is called cofree. A non-cofree basis would have a certain
number of nontrivial algebraic identities between the basis elements. (All

cofree representations of complex semisimple Lie groups have been classified

by G. W. Schwarz [86].)

Next we define the Hilbert map (sometimes called the orbit map; but
we reserve that term for IT : R” — R" /G) as a map that goes from the orbits

to its invariant parametrization, ) : V" — R ¢ — (01(¢), ... ,0,(¢)). The
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image H(V) is a semi-algebraic variety S € R?. Via the orbit map II, R" /G
becomes immersed as a semi-algebraic variety ° S € R? as well.

The main theorem that allows orbits to be parametrized by invariants

is the following:
Theorem

1. $ is a proper map (namely, inverse image of a compact set is compact

also).

2. If o & Q(¢'), then H(d) # $H(¢'); points from distinct orbits are separated
by the Hilbert map.

3. S~ 3, that is, there is a ‘commutative triangle’,
R* —24 SeR

n| ||

R" /G — S €R!
)

where the map Hisa homeomorphism.

The above result for polynomials has been generalized to the smooth
category by G. W. Schwarz. The proof essentialy uses Weierstraf’s approxi-
mation theorem. A smooth function may also be written as a function of a
finite number of basis elements that generate the ring of smooth G-invariant

functions.

5An algebraic variety is a zero locus of a finite set of polynomials. A semi-algebraic
variety is defined in part by inequalities.
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Ezamples

As an example, let us consider SU(n) in the adjoint representation, defined by
Tr¢ = 0. A basis for the invariants are just the Casimirs, 6, = Tr¢?,... 0,1 =
Tr¢™. Similarly for so(n), the Lie algebra of skew-symmetric matrices, X7 =
—X, for which the invariants are S, = TrX* k = 1,...,[n/2] = l. The

characteristic polynomial is the expression

Ax(\) = |X — A1

= N —p A" ==y,

The various p; in the expansion are the i**-symmetric function of the eigenval-
ues of X. Let the polynomial ring over the real numbers generated by these
pi be denoted by R[py,...,p,]. Clearly, the symmetric functions form an in-
tegrity basis for an arbitrary symmetric polynomial in n variables. There is an
isomorphism between R[py,...,p,| and R[S),...,S;], made explicit through

a set of recursive relations known as the Newton formulas,

Si — p1Si—1 +paSi—g — -+ -+ (—1)2.71]%‘—151 + (—1)ipz‘ = 0,72=1,...,n
Si —p1Sic1 +paSi—a — -+ (=1)"ppSicn = 0,
i=n+1l,n+2,--.

It is in fact possible [37] to use these relations in order to parametrize

singular orbits of the SO(n) coadjoint action on the Lie coalgebra so(n),

119



and in general, for any semisimple Lie group. The various symmetric func-
tions p1, ... , pn_k could be written as the sum over squares of Pfaffians (essen-
tially determinants of minors obtained by deleting the complementary indices).
Setting them equal to zero amounts to looking at lower rank subalgebras of
X € so(n), or on the group level, at homogeneous spaces of the form (for
n = 2m case as an example) SO(2m)/(SO(2k) x U(1)™ *. From general con-
siderations of orbit types (Subsections 4.2.2, 3.1.2) and symmetry breaking,
this amounts to a partial breaking of symmetry. The subcasimirs that arise in
the process are simply the coordinates of the embedding specified by the above
system of equations. (The representation in this case is called non cofree as

the equations are tied up with determinantal identities.)

4.4 Appendix: Equivariant and L-P Cohomology

The subject of Equivariant Cohomology was developed in part to give
a satisfactory description of actions that are not free. For free actions of a
compact group G on a manifold M, as we have seen in this chapter, M/G can
be given the structure of the base of a principal G-bundle, with the projection
map IT : M — M/G serving as the orbit map. For non-free actions, the
topology of the orbit structure required separation into orbit types, principal
and non-principal orbits, etc. Another approach [87] is to replace the base
space with some other space that is homotopic to it, and on which the group

action is indeed free. This construction is outlined briefly below.

It is then possible to ‘measure’ cohomology of the normal bundle to
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the orbit in question, and from its size, deduce the nature of the orbit. (For
the case of a Poisson manifold, the related notion of L-P cohomology serves a
similar purpose: when jumps in orbit type are made, the rank change of the
Poisson structure J, is signalled by the relevant L-P leaf cohomology. Thus,
another way to state the assumptions made about the Poisson structures we
consider is to say that the L-P cohomology and equivariant cohomology both

capture the same phenomenon.)

Consider the fixed point set of the (left) group action of G on M, call
it M“. Two spaces X and Y are isomorphic if there exist maps f: X — Y
and ¢ : Y — X such that f o g is homotopic to Idy and g o f is homotopic to
Idx. So we replace each m € MY by a space EG of the same homotopic type
as m, but on which G acts freely. Then EG/G = BG is a proper quotient (and
Il : EG — BG is a principal G-bundle), called the classifying space for G,
and EG — BG is called a model for the free action of G' on the contractible
space EG. (Note: This notation is not descriptive enough, for it hides the role
of the action © : G x M — M; different actions will give rise to different

models.)

Next, we pass to a diagonal action of G on EG x M, which we mod

out by G to give the homotopy theoretic quotient:
Mg =(EGxM)/G := EG xg M.

Define the Equivariant Cohomology of M to be the (ordinary) cohomology of
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the quotient space Mg,
HE(M) = H(Mo), (4.28)

with H{, := H(point) = H*(BG).

Recall the definition of an associated bundle [59]. Let X and Y be two
manifolds and H act on them via the same (left) action. Assume that action
on X is free, so that X — X/H is a principal H-bundle. Define the action
on X XY by (h,(z,y)) —> (z-h™',h-y) for h € H and (z,y) € X x Y. Note
that this definition makes sense, since left action by h € H is equivalent to a
right action by h~! € H (see Subsection 4.1.1). This product action is proper

and free. Define the quotient to be the smooth manifold by
XxgY:={{(z-h7h-y)| h€ H} (z,y) € X xY},

so that X XY — X xgx Y is a principal H-bundle. Consider the following

commutative diagram:

XxY 1y XxpvV

n{ lm (4.29)
X —— X/H

If such a projection on the first factor can induce one on the quotient space so
that the above diagram commutes, then we say that I : X xzgY — X/H

is an associated bundle to the principal bundle IT : X — X/H.
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Using this definition, it is clear that the homotopic theoretic quotient
is likewise accociated to the principal G-bundle Il : EG — BG, via the

following commutative diagram:

EGxM —X% EGxgM ~ M,

m | | (4.30)
BG —— BG/G=BG

This means, in particular, that H*(M¢) is a module over H*(BG). We define
[H*(BG)] to be the characteristic class of the bundle (not a principal fiber
bundle in general) M — M/G.

The other half of the above commutative diagram completes the so-called

mizing diagram:

M 5 M/G
HQT Tﬁz (4.31)

EGxM —— Mg
II

The application to orbit geometry [88] is as follows: if the isotropy
group of any point m € M is denoted by G,,, then from the above commutative

diagrams, the fiber over an orbit G - m is a classifying space of G,,,

I,Y(G- M) = EG/Gy, ~ BGp,.
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Then, by definition (4.28), we have that
HG(G/Gm) = Hig, ) = H*(BGn),

so that the normal bundle to the orbit (or the generator of the invariant normal
slice tube neighborhood) has its characteristic classes lying in H*(BG,,), which
is obviously a function of both m € M and the isotropy at that point, G,,.
(Recall that the slice is invariant with respect to precisely this isotropy.) Thus,
we have a direct connection between the orbit types of a G-manifold, and the

equivariant cohomology of the transversal to the orbit [89)].

For the case of a Poisson manifold, and for the case that the Poisson
manifold is a Lie-Poisson group (i.e., the manifold is the dual g* to a Lie
algebra g, with the Lie-Poisson bracket (2.9)), it can be shown that the L-P
cohomology is simply the canonical (Lie algebra) cohomology tensored with

the algebra of Casimirs [90],
H;_p(g*,J) = H*(g) ® {Casimirs of (g%, J)}, (4.32)

which clearly depends on the structure of the Poisson tensor J. This informa-
tion would coincide with the one provided by the equivariant cohomology as
far as rank change is concerned, if the general Poisson foliation — defined by
its characteristic distribution — is indeed (as it is assumed throughout this
thesis) one that coincides with the orbits structure of a compact Lie group

action on the Poisson manifold P.
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L-P cohomology

The local structure of a Poisson manifold depends strongly on its Pois-
son structure. One of the ways to measure this dependence is through a
cohomology that depends also on J. It was first introduced by Lichnerowicz,
and subsequently studied by many authors. In this subsection, we note the
definition of L-P cohomology for a Poisson manifold (P™,J) as it appears in
the literature. (See, eg., [15, 91], [92, 93, 94|, [95].) Deformations of Poisson

structure, and rank changes across leaves, are measured by L-P cohomology.

Notation: Let A*(P) denote the tensor subspaces of antisymmetric (contravari-
ant) forms of an unspecified degree, and A~*(P) denote the tensor subspaces

of antisymmetric covariant tensors of an unspecified degree®.

(For instance, the Poisson tensor J € A~%(P), since by definition (2.5), we have

{f,g} =J(df,dg) e R= J = J9.2 ® ;2. Here, i,j run over 1,... ,m.)

A~P(P) is a graded vector space, graded by the degree of the tensors,
and is furthermore a Lie algebra by the exterior product A (just as for forms).

The Lie derivative is a derivation on the algebra for the case p = 1.

We now define the Schouten Bracket. Given A € A=%(P), it is defined

as an index raising operator,

D: A ¥(P) — A *D(P)

6These notations are explained also at the end of Section 1.3.
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DA = —[J,A]

~ (J-O)A+(A-D)J.

More precisely, for o; € A'(P), we have the expansion

k+1
(DAY (e, .. op1) = Y (1) (Ja)iA(oa, ..., bay .Gy,
=1
k+1
+ Z H_JA {CE“O{]}} A, ... ,CAMZ',... ,dj,... ,Ojk+1),
1<j=1

with
Hai, @}t = Lay oy — Laay; i — d(J (i, ),

or, for the case of exact forms, oy = df;, f; € A°(P),

{{aia aj}} = d{fa g} = d‘](dfa dg)

From the last two expressions, we see that that Schouten bracket is in essence

a generalization of the Lie derivative.

It can be shown that the Jacob: identity of the Poisson algebra reduces
to the simple expression of the fact that the Schouten bracket of J with itself
is identically zero, i.e., [J,;J] = 0. This implies, in turn, that the exterior
derivative, D defined above satisfies D? = 0. Hence, we can form a cohomology

complex of skew-symmetric tensors,

k-1 k k1
D Ak DT Akt D+}
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where D¥~1o D¥ = 0, Im(D*) C Ker(D*!), etc., and the k-th L-P cohomol-

ogy is defined as
HY (P, J) = Ker(D*)/Im(D*™).

Since J is involved in the definition of the Schouten operator D, it follows
that the L-P cohomology would probe the change in the transverse geometry
of the Poisson foliation as we cross orbit types. The computation of the L-P
cohomology is complicated by its dependence on the specifics of J, however,
and aside from the simplest cases, or the case of a Lie-Poisson group (g*
in (4.32) above), the higher order L-P cohomologies have not been computed.
(It can be shown that third order cohomologies distinguish between the abelian
algebra of differentials of Casimirs of a regular leaf, from the non-abelian
algebra of differentials of subcasimirs of a singular leaf.) Finally, we note that
HY (P, J) = Cass (P), the algebra of Casimirs; and that for the case that
J is nondegenerate, that is, J~! = w, a symplectic structure, the L-P and de

Rham cohomologies coincide.
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Chapter 5

Spontaneous Symmetry Breaking:
Kinematics-Dynamics connection

In this chapter, we bring together the various threads of ideas and
development from the previous chapters, to outline a scheme that relates the
Goldstone bosons of symmetry breaking of a suitably chosen potential, and the
subcasimirs of a singular leaf. In this way, using control parameters present in
the potential, we can move from leaf to leaf and study how the orbit geometry

for a given representation changes.

Let P be a Poisson manifold and G a group acting on it. By Whitney’s
embedding theorem (cf. Subsection 4.2.5), this is equivalent to a linear action
on a vector space V, which could moreover (if G is compact) be taken to
be an orthogonal action [58]. So, without loss of generality, we consider an
orthogonal representation on V. By results of orbit geometry and invariant
theory, the strata of V and V /G are well defined, related via the orbit map,
and parametrized by a ring of invariants. These strata are semi algebraic
varieties, and their tangent and normal space at each point has a well defined
meaning in the sense of algebraic varieties [96] and their tangent and normal

varieties.
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For the case that P = g*, where g is a semisimple Lie algebra and g* its
dual, this identification is the natural one suggested by the maximal isotropy
embedding of a Lie algebra b in the larger Lie algebra g, for the case that

symmetry is broken from G down to H [36].

The notion of patterns in the breaking of symmetry, namely varia-
tion in the subgroups of the original symmetry group that survive according
to the variation of control parameters (like coupling constants, or classical
masses), played an important historical role in spontaneous and gauge sym-
metry breaking in particle physics. Here, it was assumed that the (hadronic,
for instance) potential had a certain polynomial form (say, quartic), and the
problem was to find the minima of the potential with respect to certain pa-
rameters. This problem was soon realized to be mostly geometrical in charac-
ter [97, 98, 82,99, 100, 101], with orbit geometry and invariant theory playing a
role in defining the possible orbital strata that minima could occupy. We turn
this development around, and use arbitrarily chosen G-invariant potentials
and their extrema in order to relate kinematical data of the Poisson bracket,
that is, orbit geometry (as defined by the characteristic distribution of V, the
vector space modeling the Poisson manifold, P), with dynamical information
that comes from symmetry breaking by the potential, to the appropriate size

residual symmetry groups.

The first section motivates the idea behind the orbit geometry of sym-
metry breaking by considering ordinary (bosonic) field theoretic symmetry

breaking. Next, we consider how orbit geometry and invariant theory can be
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used to relate extrema of the G-invariant potential with the various strata,
both principal and non-principal. This is followed by the main idea of the
thesis, which is to relate the subcasimirs that appear in the process of moving
across orbits with the extra Goldstone bosons that come from the spontaneous
breaking and restoration of symmetry, by means of varying the controls in the

G-invariant potential.

5.1 Bosonic symmetry breaking

This is the most basic mechanism for the idea of symmetry breaking.
The Hamiltonian, or the potential is assumed to be a G-invariant one, where
G is a symmetry group (could be discrete or continuous), and a function of a
certain number of scalar fields. The fields themselves depend on the spacetime
coordinates (so that they live in an associated bundle to a principal G-bundle),
and the symmetry group acts on the space of fields. A potential is assumed to
be invariant under the group action of the entire group. Spontaneous breaking
of symmetry is said to occur when the symmetry of the solutions !, got by
extremizing the potential, is less than the full symmetry group. Typically,
the lower symmetry happens to be an isotropy subgroup for the group action
(see Subsection 4.1.1, 4.1.2 for the definitions) at the equilibrium point in
question. Below, we review the mechanism of bosonic symmetry breaking,

and the associated Goldstone modes that arise as a result [102, 103].

'We use the terms ‘vacuum’ and ‘equilibrium’ interchangably.
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Let V be the space of n scalar fields, ¢; : M — R, where M is some
underlying differentiable manifold. Let G be a compact Lie group that acts
properly on V, and let V(¢) be a scalar potential function on V. Then the

condition for a vacuum is that

V)|
a¢i d=(e)

so the Taylor expansion of the potential about equilibria takes the form:

V(9) = V(o) + 5 Mixix +0(x’).

In the above expression, the ‘mass matrix’ M;; > 0 is defined as

0’V (¢)

o= 229 5.1
J a¢za¢] ¢(e) ( )

and the shifted fields by xi(z) = ¢i(#) — @) . The mass matrix, being the
second derivative of the potential, governs the stability of the equilibrium.
(See [103] for more on stability in field theory systems; we do not concern
ourselves with this aspect of the theory, but rather simply use the null spectrum
of M;; to study orbit geometry on V, which models the linear Poisson G-

manifold.)

If the potential is G-invariant, then it satisfies the invariance condition

at the vacuum as well, so

1
V(de) = V(Oy40©) = V(b)) + §Mij5¢(e)i5¢(e)j +---, (5.2)

where O, : V — V is the action Vg € G.
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Let (T“)é- denote the representation matrices, where ¢« = 1,... ,d = dim G,
and 4,7 = 1,...,n = dim V, so that O, = exp tT?,, {&} € 9, 9(t) € G a
1-parameter subgroup, and set the variation d¢) to be:

00,
0

5¢(e)i = [

¢(e)] 0&,-

t=0 %

Now, suppose that only a subgroup H C G leaves invariant the equi-

librium point. We have two possibilities:

1. If g € H, then 6¢); = 0, and the G-invariance condition for V' (5.2)
is identically satisfied, that is V(¢()) = V(d(e)), since M;;jé¢()idd(e); +
=0

2. If g € G/H, then 6¢); # 0, and so G-invariance of V now would require

that M;; have null eigenvectors:
M;;[©lode)]; = 0.

There are dim G/H = dim G — dim H null eigenvectors of the form
{©|od(e)}, of eigenvalue zero, that represent massless fields, called Gold-
stone (or Nambu-Goldstone) bosons, and the homogeneous space G/H
parametrizes the space of Goldstone bosons via the action map © :

GxV —YV.

Before we move on to the next section, a few comments are in order.
The number of massive fields (those with nonzero eigenvalues to the mass

matrix) is dim H. If H happens to be the isotropy subgroup Gy, for the
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equilibrium point, ¢, then these modes are transversal to the orbit of the
group action (cf. Subsection 4.2.1 on slices), and represent the ‘difficulty’ in
getting away from the orbit, or the leaf as they are massive, and doing so
would cost energy. Suppose now the potential depended on some number
of control parameters (these could be coupling constants, classical masses,
charges, background field strengths, etc.), that is, we write V' = V(¢,7),
where 7 are the controls. Extremizing the potential (supposed G-invariant) as

above, we would arrive at equilibria that depended on the control parameters,

As the controls are varied, we are led from solution to solution. For-
mally, this happens in an infinite dimensional space of solutions of the classical
potential 2, but we shall restrict our attention to what goes on in the orbit
space decomposition (cf. Section 4.2) of V. For some values of the control
parameters, the isotropy group of the solution may change, so we are led from
leaves of one dimension to leaves of other dimensions, and across orbit types.
Then invariant theory (cf. Sections 4.3 and 3.4) shall relate the gradients of
the potential and the null eigenvalues of the mass matrix. Referring all this
back to the Poisson manifold we began with, the picture we seek would be

complete.

Finally, we note that the Goldstone bosons we consider below are usu-

2A generalization to the simple potential extremization we have used would involve a full
Hamiltonian or action, that may preclude a splitting into potential and kinetic terms. Then
we cannot implicitly assume the kinetic terms are already frozen, or set to zero. Interesting
situations like Killing symmetry directions could thus arise [104].
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ally gone when quantization of the classical theory in question is carried out.
In particular, this could mean that any attempts to relate a quadratic Poisson
structure with such a picture might probably not work, as quadratic structures

govern the quantization of a classical theory [17].

5.2 Extrema and strata

In this section, we use the invariants provided by the gradients of the
G-invariant potential V(¢,v), with ¢ € V" and v € QF, where the latter
notation means the control parameters are derived from some s-dimensional
manifold of controls. (In what follows, the structure of @ will play little or
no role, although its dimension is relevant.) The orbit in V to which the
equilibrium belongs is characterized by the orbital stratum, and the equations
of the stratum are carved out by these gradients. In making this relation, the
geometry of the tangent space and normal space to an orbit (cf. Subsection
4.2.4) shall be extensively invoked. (We won’t repeat the references to works
cited there, and refer the reader to the sections and subsections in question

for the most part.)

Recall that the tangent space to the principal stratum comprises both
the tangent space to the orbit, T,,(2) = {£ - ¢| £ € g}, and the G4-invariant
normal slice N, g transversal to it. By the results stated in Subsection 4.3.2, the
main observation about the generators of NV, g is the following: the invariant
normal slice is the span of 90,(¢), a = 1,...,q. The proof may be found

in [100]. Note that ¢ is the minimal number of basis elements 6;(¢), guaranteed
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to exist by Hilbert’s theorem.

Furthermore, any orbital invariant on V, such as a G-invariant potential
for symmetry breaking, can be expressed in terms of the Hilbert basis as a

function in the orbit space V /G:

V(¢) =V (0:1(0), ... ,0,(d)) (5.3)

V¢ € R"™. It follows at once by differentiating the G-invariance condition for the
potential that its gradients span the invariant normal slice: V (g-¢) = V(¢) =
(€ - 9,0V (¢)) = 0 for every one parameter subgroup g(t) = exp t£ € G; by
referring to Subsection 4.2.4, this is seen to be the condition for an invariant
normal vector. We note that any G-invariant function on the orbits has the
spanning property; so the orbit geometry is a lot more general than the specifics
of a system requires. However, a potential allows for controls, and these can

be manipulated to wander across orbit types.

The final step in the process of using gradients to characterize strata
is counting dimensions. Let ¢p denote a point that belongs to a principal
stratum, and ¢g to a singular or nonprincipal stratum 2. We note that from
the relation (4.26), it follows that the sum of the dimensions of the orbit
tangent T, and of the two normal components, Ny and Ny is fixed, at n =
dim V. Since the singular stratum bounds the principal stratum, ¥ C 0Xp,

thinner orbits have fatter normal spaces, and these are characterized by the

3We rule out exceptionals, as noted in Subsection 4.2.3.
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appearance of extra gradients. These gradients will, however, not be Gg,-
invariant, that is, they get moved around in the ‘extra’ dimensions transverse
to the thinner orbit. The larger invariance group, G4s O G4, means at once
two things: a larger number of invariants (that are left invariant with respect
to the larger subgroup); and a larger number of dependent relations (that is,

the representation when restricted to the singular orbit is no longer cofree).

Next, we refer to the orbit space, V /G, where distinct points are sep-
arated by invariants using the Hilbert map (see Subsection 4.3.2); this map
takes both the vector space strata and the orbit space strata to the corre-
sponding semialgebraic varieties S and S both of which live in the Euclidean

space RY.

Define the real, symmetric, positive semi-definite (no eigenvalues less

than zero) matrix formed of the gradients of the invariant polynomials,

Ru(¢) = Zaieaw)aieb(as)

N

= R (0(9)),

with a,b=1,... ¢ and 0; stands for derivative w.r.t. ¢;.

The number of independent vectors in {96, } is equal to rank Rg;(¢) = dim N, 9
The strata and their images in the orbit space are carved out by the locus of
the determinants of the principal minors of the above matrix. The gradients
of these determinants in the orbit space can be shown to span the null space of
the matrix R, defining the ‘normal’ directions for the image of the stratum

to which ¢ belongs.
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Introducing a potential that needs to be extremized is the same as
finding the null eigenvectors of the R matrix above, since 0;V (¢) = 0 implies,
by using (5.3) the same as Y°°_, Ry(0)0,V (A) = 0. This is a locus of algebraic
equations and inequalities in orbit space V /G (a semialgebraic variety) with
the determinants of the minors of corank the dimension of the strata i(z, serving
as the Lagrange multipliers (as in the stability example in Subsection 3.1.1).
Extremizing this system of equations yields an optimal set of values for both
basis invariants and the control parameters; the mass matrix (5.1) may be

then formed out of these 2.

5.3 An interpretation of Goldstone modes in Poisson
geometry
For a Poisson manifold P, the Casimirs arise as constraint surfaces that
are defined by a generalized distribution associated to the Poisson structure J.
Although the procedure for finding subcasimirs reduces to computing the null
eigenvectors of the Poisson structure matrix restricted to the orbit in question,
our aim here is to connect the subcasimirs with null eigenvectors of the mass

matrix (5.1). With controls added, the mass matrix has the form,

Mij = 818]V(¢7 /7)|¢:¢(e)’

1,7 =1,...,n. Here, the controls themselves have been solved with the princi-

pal minor determinants added to the potential as constraints and extremized

4The number of zero eigenvalues of the mass matrix gives the corank of the corresponding
orbit Lie-Poisson structure.
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collectively (to yield %) with respect to both the invariant polynomials and
the Lagrange multipliers (as many added as there are normal directions to the
orbit space stratum, XAJ) We implicitly assume that any smooth variation ¢y
in the controls changes the vacuum solution perturbatively; that is, if v — 0,

then d¢) — 0 as well.

Now, it can be shown using the above, that the mass matrix decomposes

into two parts: M!' and M?, such that M*' - N9

_ 2 Nl .
¢(e)—O,M N%)—O, n

addition to the usual equations for the scalar Goldstone modes tangent to

orbit: ]\4'1 T¢ =0 :M2 T¢

The former Goldstone bosons correspond to the directions which arise
from adding the constraint conditions, and must therefore be regarded as new
features that arise due to the orbital structure °. In the context that we are
working within, these are precisely the subcasimirs that would arise upon a
process of partial symmetry restoration, where the isotropy group of the equi-
librium segues into one of larger dimension (and does so in a continuous manner
since it is perturbative). Let ¢ denote the generic vacuum, with isotropy
G¢(e), and ¢() the new vacuum upon variation of the control parameters,

with isotropy G\, With Gg . O G . Conversely, when the controls are

I) Y
reversed, these extra Goldstone modes from the normal directions become the
Goldstone bosons for a symmetry breakdown from the larger isotropy group

G¢(e,) to the smaller one, Gy ,,. The number of extra Goldstone modes that

5In physics, one of the components, namely the N g has an interpretation of being asso-
ciated to pseudo-Goldstone modes, which do not survive radiative corrections [105, 106].
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T In(Gye/Gy,)

Figure 5.1: Symmetry breaking and restoration between two orbit types.

are needed for this is, by Goldstone’s theorem, equal to the difference in the
orbit dimensions of the fatter and thinner orbits, which is the dimension of
the homogeneous space G%,) / Gg.,- These new modes may be regarded as the
embedding coordinates for the singular leaf into a regular leaf. (See Figure 5.1

below.)

As an illustration, to connect with the SO(3) case, imagine the isotropy
of the double well solution to increase from U(1) at the trough (flat direction),
all the way to SO(3) at the center, at the top of the hillock (Figure 5.2 below.)
Clearly the new equilibrium, for any intermediate hillock shape, is an unstable
one, a fact reflected in the degeneracy in the modified mass matrix. (Thus,
without the controls, the origin would never become a preferred point of rest.

It would, if the shape were modified so much by the controls that it became
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V(¢) = 3m°¢ - ¢+ Ao - ¢)*.

Figure 5.2: Symmetry restoration pattern, rank change, and stability in a
simple example of spontaneous symmetry breaking, with control space (m, A).

favorable to rest there.) In general, if the equlibrium is a stable (or neutrally
stable) one, then the pseudo-Goldstone bosons are absent; if the latter manifest
themselves, then stability is lost. An observation regarding stability was made
concerning the example of a charged rigid body toward the end of Subsection
3.1.1. Tt would be very interesting to see if such equilibrium analyses for the
examples of Chapter 3, using the methods of invariant theory and symmetry

breaking as above, would yield a similar simple stability criterion.
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Chapter 6

Conclusions and future work

In conclusion, we note a few developments that have not been pur-
sued at all, and could form the basis of future work. First, the geometry
of G-structures is most generally examined using the formalism of fiber bun-
dles. For example, in an appendix (Section 4.5), it was indicated how L-P
and equivariant cohomologies could distinguish between regular and singular
leaves of a foliation. The theory is formulated in terms of classifying spaces
and characteristic classes. Symmetry breaking and moment reduction are like-
wise most geometrically seen as the reduction of a principal bundle, and the
associated reduced dynamics examined in terms of reduced connections on the
bundle [107, 108, 109]. Thus, it would prove useful to have a unified bundle

description of the ideas that made up this thesis.

The second point that could use some development is the infinite di-
mensional version of the problem of rank change, which has not been addressed
in this thesis. (The example in Section 3.3 was a reduction to a finite set of
moments of an infinite dimensional system, so it does not qualify as a gen-
uinely infinite dimensional illustration of rank change.) A full treatment of

this problem would involve the use of the theory of singular eigenfunctions.
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Since in the functional setting, rank change could happen at isolated points,
the subcasimirs would need to be defined in the appropriate functional set-
ting. One fruitful approach that may be taken to characterize rank change
in the cosymplectic operator g, is through the use of anti-selfadjoint index
theory [110]. The usual Atiyah-Singer theory is done for elliptic Fredholm op-
erators over compact manifolds of even dimension. But there do exist variants
of this theory for anti-selfadjoint operators; these aver that the kernel mod 2
is a topological invariant for the operators such as Jy, which is the tangent
space linearization of the full, nonlinear J. In infinite dimensions, rank does
not fall by even integers, as Casimirs are now functionals (see for instance the
paragraph following (3.18)); rather the appearance of new subcasimirs might

change the index by only 1, so a mod 2 invariant may be useful after all.

Lastly, we review what this thesis was about. Broadly speaking, the
problem of rank change in dynamical systems is important for two reasons:
systems tend to prefer equilibrium states that are more constrained (by the
presence of a larger symmetry); and a full examination of stability of equilibria
requires an assessment of subcasimirs that arise upon rank change. We began
with a review of Poisson geometry in general, followed by examples that exhibit
the rank change properties we wished to study. Ideas from orbit geometry
and reduction were invoked next, with the underlying assumption that it is
systems with some sort of symmetry that prove physically and geometrically
interesting [111]. Invariant theory methods were employed to characterize both

the strata of group actions and the invariants (Casimirs and subcasimirs) that
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help parametrize them. Symmetry breaking ideas were introduced in order
to connect the appearance of new Goldstone modes upon changing the orbit
type (using control parameters present in an Hamiltonian), with the extra data

provided by subcasimirs to pin down singular orbits.

Now, let us review the main result of the thesis. What we have shown
is that the orbit geometries of two pictures coincide, and from this correspon-
dence, derived a dynamical interpretation for a kinematical feature we set out
to characterize. On the one hand we have a Poisson manifold whose character-
istic distribution lines up with its group action orbits; and on the other hand,
we have the orbital dependence of extrema of a symmetry breaking potential
(with controls) on a linear vector space. These two very different problems
have been connected via orbit geometry, using several results like Weinstein’s
linearization, Whitney equivariant embedding theorem, and invariant theory.
It would be nice to demonstrate explicit formulas for subcasimirs coming from
this sort of identification, and this we have not done. But we have provided
a geometrical interpretation for the generating differentials of the embedding
that makes a singular leaf sit inside a regular leaf, using the process of symme-
try breaking and symmetry restoration. The virtue of having a mass matrix is
its definiteness, which can distinguish between stable and unstable solutions,
while within the Hamiltonian context, these solutions fall into the same class.
Therefore, it is hoped that future investigations might yield a stability crite-
rion using this picture, even if the explicit formulae for the subcasimirs could

be more easily found by examining the Poisson structure directly.
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