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Abstract

It is shown that the decompressive shock, i.e. a shock where the pressure

behind the front is smaller than the pressure ahead of it, is possible in a

radiative plasma. This is in contrast to the situation in classic gas dynamics.

An example of a steady-state decompressive shock wave for a simple, but

realistic model for radiative losses, is presented. It is shown that it satisfies

the Landau stability criteria.
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I. INTRODUCTION

As it is shown in many articles (see for example [1] and [2]) the presence of radiative

impurities in a plasma not only influence the speed of waves and front propagation in

optically thin radiative plasma, but also leads to phenomena that do not exist in pure

plasmas.

It is well known that decompressive shock waves, in which the pressure behind the

front (P1) is smaller than the pressure ahead of it (P2), are forbidden by thermodynamics

laws in classical gasdynamics [3]. In contrast, we show in this paper, that the existence of

radiative impurities in a plasma can lead to the appearance of decompressive shocks (cooling

rarefaction shock waves). This change is due to two distinct factors: First, a radiative plasma

is essentially an open system, therefore the law of increasing entropy cannot be applied to

it. Second, the impurities can change the speed of propagation and the damping of sound

waves so much [4,5] that Landau stability criteria for shocks (the speed of the shock front

has to be larger than the speed of sound in unperturbed media and lower than the speed of

sound in perturbed one) can be satisfied for decompressive waves in radiative plasma.

In section II, the conditions are found under which impurities and thermal conductivity

suppress the propagation of short wavelength oscillations in front of the decompressive shock

wave, and cause long wavelength oscillations to propagate slower than the shock wave.

In section III, the equation for a stationary shock wave, taking into account the radiative

processes, is given. It is shown that the problem for decompressive shock waves is an

eigenvalue problem, the conditions for the existence of solutions are also derived.

In section IV, a numerical solution corresponding to a decompressive shock wave is found,

and is shown to satisfy the Landau stability criteria.

It has to be noted, that the existence of decompressive thermal fronts has been predicted

for collisionless plasma with a tail of fast particles [6,7]. The existence of solutions cor-

responding to expansion of thermal fronts has also been predicted in plasmas with strong

heating by B. Ahlbom and W. Liese [8] however, the stability of such systems has not been
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examined.

II. STABILITY

Let us write down a one dimensional system of equations corresponds to the propagation

of shock waves in a radiative plasma:

∂n

∂t
+

∂

∂x
(nv) = 0, (1)

m
∂

∂t
(nv) +

∂

∂x

(
mnv2 + P − µ∂v

∂x

)
= 0, (2)

∂

∂t

(
P

γ − 1
+
mnv2

2

)
+

∂

∂x

((
γ

γ − 1
P +

mnv2

2

)
v − κ∂T

∂x

)
= S −Q, (3)

Where n — density, v — velocity, T — temperature, P = 2nT — the plasma pressure

(we suppose, that the ion and electron temperatures are equal Te = Ti), m — main ion mass,

µ — ion viscosity, γ — adiabatic index (γ = 5/3), κ— classical electron heat conductivity(
κ = κ0 (T/T0)

5/2
)
, and S and Q — heating and cooling functions, respectively, related to

the presence of impurities in plasma. Functions S and Q will be defined bellow. In Eqs. (1)-

(3) the space coordinate X coincides with the direction of propagation of the shock.

Let us find out the criteria for stability of decompressive shock waves with the assumption

that the time of shock passing is sufficiently long to neglect effects related to the final

impurity relaxation time [9]. After a simple calculation, we get the dispersion equation

corresponding to the system (1)-(3):

iνph
((
ν2
ph − γ

)
− νµ (νκ + νRT )

)
− (νRn + νµ)−

(
ν2
ph − 1

)
(νκ + νRT + νµ) = 0, (4)

where νph = ω/kvT is the dimensionless frequency (ω — frequency, k — wave number of

perturbations, vT =
√

2T/m — ion thermal speed), νRn = γ−1
2TkvT

∂(Q−S)
∂n

,νRT = γ−1
2nkvT

∂(Q−S)
∂T

,

νκ = γ−1
2

κk
nvT

and νµ = k
mvTn

µ.

Let us present the solutions to the dispersion equation (4) for a few limiting cases.

3



In the long wavelength limit: νRn,� 1, |νRT | � 1, equation (4) has three roots [4,5]. The

first:

νph = −i (νRT + νκ + νµ) (5)

corresponds to aperiodic damping (|νph| � 1); the other two:

νph = ±
(

1− νRn
νRT + νκ + νµ

)1/2

+
i

2 (νRT + νk + νµ)

(
1− γ − νRn

νRT + νκ + νµ
− νµ (νκ + νRT )

)

(6)

correspond to modified sonic oscillations (|νph| ≤ 1). Since νκ and νµ are always positive,

νRT > 0 is sufficient for damping of long wavelength sonic oscillations.

If νRT and νRn are close to unity, then all modes are highly damped.

For shorter wavelengths, the sound wave dispersion tends to be dominated by viscosity

and thermal conductivity rather than the radiative losses. If the wave vector kR that makes

νRT and νRn close to unity, is much smaller than the wave vector kκ, that brings νκ close to

unity:

kR =
γ − 1

2TvT

∂(Q− S)

∂n
� kκ =

γ − 1

2

κ

nvT
(7)

then there exists a set of values of k:

kR � k � kκ (8)

such that νRn � 1, |νRT | � 1 and νκ � 1 simultaneously. In this case the dispersion

equation (4) has three roots: the first

νph =
i

γ
(νRn − νRT − νκ) (9)

corresponds to radiative condensation mode (νph � 1) while the other two solutions:

νph = ±√γ − i

2γ
(νRn + γνµ + (γ − 1) (νRT + νκ)) (10)

corespond to slightly modified sound waves. The case of very short wave length
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2nvT
κ(γ − 1)

� k (11)

corresponds to isothermic sonic oscillations:

νph = ±
(

1− νRn + νµ
2 (νRT + νκ + νµ)

)
− i (γ − 1) + νµ (νκ + νRT )

2 (νRT + νκ + νµ)
� ±1− i kvT

4νii
. (12)

Expression (12) takes into account that ion-ion collisions are determined by µ = 0.96nTk/νii

(where νii is the frequency of ion-ion collisions). Obviously, the isothermic sound for very

short waves

kµ ∼
νii
vT

(13)

can not propagate. If kvT � νii, the MHD approximation fails. Under these conditions the

ion sound is also damped by Landau damping. If

kR � kµ, (14)

then for all k, either the viscosity is high or the radiative losses are high, e.g. either νRn,� 1,

|νRT | � 1 or νµ � 1. In this case, only the modified sonic oscillations (6) corresponding to

small values of k and |νph| � 1 may propagate in the plasma.

For the existence of decompressive shock waves it is necessary that sonic oscillations in

front of the shock are either strongly damped, or they propagate slower than the shock wave,

otherwise the shock wave will disperse.

It easy to see that if in a “warm” plasma, in front of the shock, conditions (13) and (14)

are met in addition to:

νRT + νκ > νRn, (15)

only modified sound (6) may propagate. Therefor, the speed of the shock wave, c, must be

greater than the speed of the modified sound (6) in front of the shock wave:

c2 > 1− νRn
νRT

. (16)
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In deriving (16), we neglected the influence of viscosity and conductivity on the speed

of the modified sound (6). It is worth noting that, even if conditions (13) and (14) are not

fulfilled, short wavelength oscillations may still be highly damped due to anomalous viscosity

caused by plasma turbulence.

Next, we will show that for acceptable parameters conditions when all types of sound,

with the exception of modified sound (6), do not propagate through plasma do actually exist,

even in a classical turbulence free plasma without anomalous viscosity. As an example, let us

consider a plasma with temperature T ≈ 100 eV , coefficient of ionization ξ = 0.2, adiabatic

index γ = 5/3, Q ≈ 10−19 erg · sm3/s, and d ln(Q)/d ln(T ) ≈ 2 (see Sec. IV) then the ratio

of kR = γ−1
2nkvT

∂Q
∂T

and kµ = νii
vT

is approximately 0.3, satisfying the desired creterion.

Behind the decompressive shock wave, the temperature and density are considerably

lower than in front of it. Therefor, condition (7) may be met, so modified sound (10),

behind the front of the shock wave, may propagate faster than the shock wave.

III. RADIATION LOSS MODEL

Let us choose the following model of radiative loss [5]:

Q = n2ξL(T ), (17)

S = const, (18)

where L(T ) is the temperature dependent function of plasma cooling due to the presence of

impurities, ξ is the relative concentration of impurities in the plasma. Since, the gradients

of the fluxes of particle momentum, and energy must be zero on both sides of the shock [3],

the temperature and density of the plasma in Eqs. (1)-(3) at x = ±∞ must be such that

S −Q = 0,

S − n2
x=±∞L (Tx=±∞) = 0. (19)
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We will be considering a decompression shock wave moving from the right to the left, so

x = −∞ corresponds to an undisturbed plasma (with high temperature and density), and

x = +∞ corresponds to plasma behind the front (with lower temperature and density). In

accord with this condition, the inequality (9) at x = −∞ has the form:

dln(L)

dln(T )

∣∣∣∣
x−∞

> 2. (20)

In accord with (16), we get the following condition on the speed of the decompressive shock

wave:

c2 > 1− 2

dln(L)
dln(T )

∣∣∣∣
x−∞

. (21)

Combining inequalities (20) and (21) we get:

2

1− c2 >
dln(L)

dln(T )

∣∣∣∣
x−∞

> 2. (22)

IV. STATIONARY FRONT EQUATIONS

In the coordinate system moving along with the shock wave, the shock wave is described

by the following stationary system of equations:

nv = Γ1 = const, (23)

mvΓ1 + P − µdv
dx

= Γ2 = const, (24)

d

dx

((
γ

γ − 1
P +

mnv2

2

)
v − κ dT

dx

)
= S −Q. (25)

The system of equations (23)-(25) is reduced from the system of Eqs. (1)-(3) by discarding

the time dependent terms, and a subsequent integration of equations (1) and (2). The

constants Γ1 and Γ2 are determined through the plasma parameters at x = −∞ :

Γ1 = αn0

√
20

m
, Γ2 = 2n0T0(1 + α2), (26)
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where n0, v0, T0 — density, speed, temperature of the plasma in front of the shock wave, and

α =
√
mv2

0/ (2T0) — speed of the decompressive shock wave. In terms of the dimensionless

variables to be

ñ =
n

n0

, τ =
T̃

T0

, ṽ =
v

v0

, z = −x
l
, (27)

where l = κ/Γ1, we get the following system of equations:

d

dz

(
dT̃ 7/2

dz
+

2γ

γ − 1
T̃ + α2ṽ2

)
= Q̃− S̃, (28)

α2ṽ2 − (1 + α2)ṽ + T̃ − µv0ṽ

2T0l

dṽ

dz
= 0. (29)

If we neglect viscosity in equation (29), it becomes a quadratic with solution

ṽ(T̃ ) =
1 + α2 ±

√
(1 + α2)2 − 4α2T̃

2α2
. (30)

The graph of the function ṽ(T̃ ) is shown on fig. 1. Substituting (30) into equation (28) we

get the equation which coincides completely with the equation for motion of a Newtonian

particle in a given field with friction:

d2y

dz2
+ λ(y)

dy

dz
= −dU

dz
, (31)

y = T̃ 7/2, λ(y) =
4γ

7(γ − 1)
y−5/7 + 2α2ṽ(y)

dṽ

dy
, U(y) =

∫
(S̃ − Q̃)dy.

The + sign in (30) corresponds to plasma in front of the shock wave, and the − sign

to plasma behind the shock wave. Equation (31) is useful for a qualitative analyses of

possible solutions for different radiative impurity models. It is worth while to note that

the coefficient of friction λ has a singularity at the point of maximum allowed temperature

T̃max = (1 + α2)
2
/ (4α2). However, it does not mean, that equation (28) should also have

the same singularity. In the neighborhood of the critical point T̃ = T̃max, like in the theory

of classical shock waves, it is necessary to take viscosity into account. From equation (29)

it is easy to see, that at this point dṽ/dz = 0 and dT̃ /dz = 0. So, in the neighborhood of

the critical point the temperature equation (28) becomes:
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d2T̃ 7/2

dz2
= Q̃− S̃. (32)

At T̃ = T̃max, the second derivative of temperature with respect to z is negative due to the

sign of Q̃− S̃ (see below). The condition that dT̃ 7/2/dz = 0 at T̃ = T̃max allows us to connect

together the solutions corresponding to the two branches of oscillations (see. 30). In our

calculations we used the integrodifferential equation:

dT̃ 7/2

dz
+

2γ

γ − 1
T̃ + α2ṽ2 =

∫ z

0
(Q̃− S̃)dx+ const, (33)

which is equivalent to equation (28). It is easy to see that equation (33) does not have a

singularity solution at point T̃ = T̃max even if we use expression (30), instead of equation (29)

for ṽ(T̃ ). So z < 0 corresponds to the plasma in front of the shock wave, and z > 0 to the

plasma behind it.

Let us consider what must be the form of the function L(T ) in expression (10), so that

equation (33) would have a solution in the form of a decompressive shock wave and at

the same time in the vicinity of T̃ = 1 would satisfy (22). Since at T̃ = 1 the derivative

dln(L)/dln(T̃ ) must be greater than 2 (see (20)), and at the same time T̃ = 1 must be a

point of equilibrium (corresponding to the plasma in front of the shock wave) the function

L(T̃ ) must be double humped. The negative sign of the derivative of the function Q(T̃ ) at

T̃ = 1 is insured by a decrease in the plasma density with decreasing of temperature. The

condition that T̃ = 1 is an equilibrium point has the form:

2

1− α2
>

dln(L)

dln(T̃ )

∣∣∣∣∣
T̃max

. (34)

It is easy to see that inequality (34) is equivalent to inequality (21). The form of the function

L(T̃ ) corresponds to the radiative losses of different impurities in the coronal Hydrogen

plasma with Maxwellian electron distribution [11]. By addition of different impurities it

is possible to obtain the required profile of the function L(T̃ ) so that equation (33) has a

solution in the form of a decompressive shock wave. From mathematical point of view the

eigenvalues of equation (33) with fulfillment of condition (22) at T̃ = 1 correspond to a

decompressive shock wave.
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SHOCK SOLUTION

In this section we give an example of a decompressive shock wave found by numerically

solving equation (32) for the function L̃(T̃ ) shown in fig. 2, and α = 0.5. It should be noted

that not for every double humped function L̃(T̃ ) that satisfies condition (22), there exists a

decompressive shock wave solution.

As was noted above, T̃ = 1 is the equilibrium point, that corresponds to undisturbed

plasma in front of the shock wave. This point is located on the growing branch in fig. 1

(solid line). As the distance from the shock decreases, the plasma speed grows with the

growth of temperature in accord with the solid curve in fig. 1. After crossing the shock front

the plasma speed must increase with decrease in temperature in accord with the dashed

curve in fig. 1. If the solution of equation (33) does not switch to the other branch, one

recovers the well recognized “cooling wave” (see for example [12]). For numerical solution

of equation (33), we started from the point z = 0 corresponding to T̃max = (1 + α2)
2
/ (4α2).

We used this to choose the integration constant in equation (33). Integration for positive

and negative z was conducted independently.

In fig. 3 we display the temperature (solid line) and density (dashed line) profile from the

numerical solution of equation (33). The shock wave propagates from the right to the left.

The temperature profile, as is apparent from fig. 3, is very asymmetric. The temperature

slowly falls for negative z and suddenly drops for positive z. It is easy to check that the

speed of the sonic wave propagation behind the shock front is greater than α — the speed

of this decompressive shock wave, which corresponds to the shock wave stability criteria of

Landau.

V. CONCLUSION

It is shown that the decompressive (rarefaction) shock is possible in radiative plasmas in

contrast to classical gasdynamics. It is possible for two reasons. First, a radiative plasma is
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an open system, and the entropy production may be arbitrary. Second, the usual sound may

be damped in an unperturbed hot plasma, and only the slow modified sound may propagate.

Simultaneously, the usual sound may propagate in a cool perturbed plasma. The shock

front speed may be faster than the sound speed in unperturbed hot plasma and slower than

the sound speed in the perturbed cool plasma. Thus, the Landau stability criterion may

be satisfied. The eigenfunction and eigenvalue problem has been solved numerically for a

simple but realistic radiation model. The temperature shock profile is presented.
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FIGURE CAPTIONS

Fig. 1. The dimensionless velocity versus the temperature. The solid line coresponds to

undisturbed plasma (in front of the shock wave),and the dashed — to the disturbed plasma

(behind the shock wave). Point corresponds to the equilibrium state.

Fig. 2. Radiative losses Q̃ (solid line), and the heat source S̃ (dashed line) versus the

temperature.

Fig. 3. The temperature profile (solid line), and density profile (dashed line) in the shock

wave. The wave runs from the right to the left.
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