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Abstract

A discussion of the proper homogeneous Lorentz transformation operator

eL = exp[−ω·S−ξ·K] is given where eL transforms coordinates of an observer

O to those of an observer O′. Two methods of evaluation are presented. The

first is based on a dynamical analog. It is shown that the transformation

can be evaluated from the set of equations that are identical to the set of

equations that determine the 4-velocity of a charged particle in response to

a combined spatially uniform and temporally constant electric field E and

magnetic field B, where E is parallel to ξ and B is antiparallel to ω, and

E/B = ξ/ω. The principal difference in the two problems is that in the

dynamics problem, the initial conditions for the 4-velocity u must satisfy the

constraint, u · u = 1, whereas the inner product of the coordinates acted

on by eL can have any real value. In order to evaluate eL, one can then

apply the simplifying techniques of transforming to the frame where E is

parallel or antiparallel to B, whereupon the transformation eL in this special

frame is trivially evaluated. Then we transform back to the original frame.

We determine the β and the rotation Ω that results from a successive boost

and rotation that the operator eL produces. A second method is based on

a direct summation of the power series of the matrix elements of eL that
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has been used in relativistic quantum theory. The summation is facilitated

by observing that the operators, J± ≡ K ± iS commute with each other,

and can be represented in terms of the Pauli spin matrices. Indeed, we can

reduce the Lorentz transformation to the product of spinor operators to give

a compact way to compute the elements of the Lorentz operator eL.
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I. INTRODUCTION

In a well-known textbook by Jackson (Ref. [1]) the most general form of a proper ho-

mogeneous Lorentz transformation used in classical special relativity is shown to have the

form,

A(ω, ξ) = eL (1)

with

L = −ω · S − ξ ·K (2)

with S the generator for pure spatial rotations, and K the generator for pure boosts,

S = x̂S1 + ŷ S2 + ẑ S3,

K = x̂K1 + ŷK2 + ẑK3

(3)

where

S1 =



0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0


, K1 =



0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, (4)

and the other values of Si and Ki are found in Ref. [1] (p. 546). They satisfy the commutation

relations

[Si, Sk] = εijkSk, [Si, Kj] = εijkKk, [Ki, Kj] = −εijk Sk (5)

where [i = 1, 2, 3] and the repetition of indices imply summation. The first row and column

will be referred as the 0-row or column, and the remaining will be labeled 1-3. Note that

ih̄S is a representation of an angular momentum operator in quantum mechanics and −ih̄K

is a representation of the boost operator found in relativistic quantum mechanics [2] (p. 39).

The difference in the angular momentum and boost representation that we use and in the

quantum system is a matter of bookkeeping. In a quantum system the generators are chosen
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so that rotation operators are Hermitian and boost operators are anti-Hermitian. However,

the basic mathematical structure of the symmetry that is being described is really the same

in the two systems. The commutation relations given by Eq. (5) give the structure constants,

εijk that define the Lie algebra [3,4] for the proper homogeneous Lorentz transformation.

These relations are derived from symmetry arguments based on infinitesimal change of ref-

erence frame. The transformation operator eL(ω,ξ) is the formal solution to a finite change

of the reference frame.

This exponential form does not directly answer the following questions for a given set

of input parameters ω and ξ in eL(ω,ξ): (a) what are expeditious ways to calculate the

matrix elements of this Lorentz transformation; (b) what is the physical interpretation of

the resulting Lorentz transformation. The answer is easy to obtain if either ω or ξ vanish,

but more difficult when both input parameters are nonzero (to aid the reader, the forms for

pure rotation, exp(−ω · S), and pure boost, exp(−ξ ·K), is given in the Appendix). For

the nontrivial case, where both ω and ξ are nonzero, a method used in relativistic quantum

mechanics can be applied which is based on the close correspondence of the SL(2, C) group

and the proper homogeneous Lorentz group [2,5]. Here we present an alternative method

of evaluation that generalizes a method used in the classical theory of special relativity for

calculating the 4-velocity of a charged particle in spatially and temporally constant electric

and magnetic fields. In this method, described in many textbooks on the classical theory of

special relativity [e.g. in Refs. [1] and [6], the dynamical problem is solved by transforming

to a frame where the electric and magnetic field are parallel (or anti-parallel)]. Here it is

shown that very similar method can be applied to a different problem in special relativity;

for the evaluation of the matrix elements of the operator eL.

The results of the dynamical analog method are the same as the results that emerge in

the quantum method described in Ref. [5]. However, a direct comparison to demonstrate the

equivalency requires rather involved algebra. To make the comparison expeditiously, and

self-contained within this paper, we present in detail a logical presentation of the relativistic
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quantum method that is somewhat different from that found in Ref. [5], but with the final

results manifestly the same.

We have not found in the literature an answer to question (6) presented above, though

the answer may exist in some publication. Hence to determine the answer we present an

extensive discussion of interpreting the Lorentz transformation associated with the operator

eL(ω,ξ).

To interpret the physical effect of the transformation we note that if a general homoge-

neous Lorentz transformation is applied to a set of coordinates of an observer O that is in

an inertial frame, the cartesian coordinates are changed to those of an observer O′ moving

with a velocity β = v/c with respect to O. If the axes of O′ are parallel to those of O, the

velocity of O with respect to O′ will be β′, where the components of β′ are the negative of

the components of β. If the axes of O′ are rotated with respect to O, then the components

of β′ will differ from those of β (with the constraint that |β| = |β′|). The appropriate

components of β′ can be inferred by noting that eL(ω,ξ) can be written as a successive boost

where there is no rotation of axes, followed by a rotation without a boost (or alternatively

a successive rotation followed by a boost). Mathematically, we then have

eL(ω,ξ) = eL(Ω,0)eL(0,Ξ) = eL(0,−Ξ′)eL(Ω,0). (6)

where tanh |Ξ| = tanh |Ξ′| = |β|, Ξ/|Ξ| = β̂ and Ξ′/|Ξ′| = β̂
′
. The determination of Ω

and Ξ as a function of ω and ξ gives the physical meaning of the transformation eL(ω,ξ) as

Ξ̂ determines the magnitude of the boost, and Ω = ΩΩ̂ determines the direction of the axis

of rotation and angle Ω of the rotation.

We show in Sec. II that the transformation, eL(ω,ξ), is related to a set of differential

equations that are identical to the equations of motion of the 4-velocity, u, of a charged

particle of charge q and mass m in an electric fieldE and magnetic fieldB which are constant

in space and time, but arbitrary in magnitude and direction. The equations of motion for

u are, dui/dτ = qF i
k uk/mc, where F i

k is the mixed electromagnetic field strength tensor

for E and B [obtained from Eqs. (11.137) or (11.138) in Ref. [1]], τ is the proper time, and
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ui a contravariant 4-vector. In the dynamics problem the inner product uiui is constrained

to satisfy uiui = 1, but in the Lorentz transformation problem ui is a contravariant vector

that can have an arbitrary inner product. We identify E = λξ = λξξ̂, B = −λω = −λωω̂

and ω/ξ = E/B ≡ α (λ is a constant that is found in Sec. IV and α is a specified ratio

for each specific transformation). That there is a relationship between rotation and boosts

to the electric and magnetic fields has also been noted in the tract by Synge [7] (p. 94)

with the comment “the algebra of the infinitesimal transformation is essentially the same

as that of the electromagnetic field.” This means that the generators of the Lorentz group

and electromagnetic field are in one to one correspondence with each other [8]. However, we

have not found in the literature a calculation where this algebra is employed to evaluate eL.

In the calculation presented here, we explicitly show that the mathematical techniques

used to calculate the 4-velocity of a charged particle in an electric and magnetic field, is

directly generalized to calculate the specific 4 × 4 matrix that the Lorentz transformation

eL(ω,ξ) corresponds to. Specifically, the differential equation for an arbitrary 4-vector ui can

be solved by first transforming to a frame where E and B (or equivalently ξ and ω) are

parallel or antiparallel. In this frame the solution is extremely simple. Then, transforming

back to the original frame produces the desired transformation eL(ω,ξ). The details of the

calculation are presented in Sec. II. From this solution one easily determines the value of β

that the transformation produces.

The evaluation of Ω is not directly obvious even after the matrix elements of eL(ω,ξ) are

known. In the latter part of Sec. II we discuss an interesting method by which Ω can be

determined, which is based on the symmetry found in the matrix elements of eL(ω,ξ). For

fixed directions of ω and ξ, and fixed α ≡ |ω|/|ξ|, we find as ξ ≡ |ξ| varies that the rotation

axis is along ω̂ as ξ → 0, and generally the axes of rotation continually precesses in the

3-plane defined by the 3-vectors ω̂ and ξ̂, with the precession frequency a quasi-periodic

function of ξ. The only exception arises to this precession is if ξ · ω = 0 or ξ × ω = 0, and

then the axis of rotation is along ω̂.
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In Sec. III we present the entirely different technique used in relativistic quantum theory

for evaluating the matrix elements of exp[−ω ·S−ξ ·K]. A direct power series summation of

the matrix elements for exp[−ω ·S−ξ ·K] for arbitrary ω and ξ appears at first sight to be

quite complicated due to the multiplicity of commutation relations given by Eq. (5) for the

4× 4 matrices S and K. However, in Sec. III we show that the power series representation

for the matrix elements of eL can be summed straightforwardly when the generators are

expressed in terms of J± = K ± iS. We use that [J+,J−] = 0 and that J2
±i = 1. We show

that J± can be expressed in terms of the Pauli spin matrix σ and then further reduced to

obtain the Lorentz transformation in a form expressed solely in terms of spinor operators

as it is found in Refs. [5] and [9]. Further analysis then enables us to replicate the results

obtained by the previous method to find β and Ω = ΩΩ̂.

II. DYNAMICAL ANALOG SOLUTION FOR eL(ω,ξ)

In this section we solve and interpret the specific form of the Lorentz transformation

operator by the dynamical analog methods discussed in the introduction.

A. Posing the Problem

We observe that if we take ω = αξ then eL can be written in the form,

eL(ω,ξ) = exp
[
−ξ

(
αω̂ · S + ξ̂ ·K

)]
.

If we now take the derivative with respect to ξ, we find [we use that AF (λA) = F (λA)A

with λ a scalar, A an operator, and F (x) an analytic function],

d

dξ
eL(ξ) =

∂

∂ξ
exp

[
−ξ

(
αω̂ · S + ξ̂ · κ

)]
= −

(
αω̂ · S + ξ̂ ·K

)
eL(ξ). (7)

Equation (7) is directly related to the equations of motion for the 4-velocity of a charged

particle in a spatially and temporally constant electric and magnetic field. To see this, let
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the operators in Eq. (7) act on an arbitrary 4-vector

x =



x0

x1

x2

x3


,

and we obtain the equation,

dy

dξ
= −

(
αω̂ · S + ξ̂ ·K

)
y (8)

where y = eL(ξ)x, or more explicitly,

yi(ξ) =
3∑
i=0

(
eL(ξ)

)
ij

xj (9)

(note that yi(0) = xi and
(
eL(ξ)

)
ij

are the matrix elements we are seeking).

Now let us compare Eq. (8) to the response of the 4-velocity of a particle of charge q,

and mass m to a uniform electric field E and magnetic B. The contravariant 4-velocity

u = (u0, u1, u2, u3) = (γ, γv/c) can be written as

du

dτ
=

q

mc
[−B · S +E ·K]u (10)

or in tensor notation

dui

dτ
=

q

mc
F i

ku
k, (11)

with τ the local time of the accelerating particle, E and B are electric and magnetic fields

that are constant in space and time,

F i
k = F i�g�k =



0 E1 E2 E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0


(12)
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where F i� is given by Eq. (11.138) in Ref. [1] and gij is the usual metric tensor g00 = 1, gii =

−1 (i = 1− 3), gij = 0(i 	= j).

If we take

B = −αEω̂, E = Eξ̂, ξ = −qτE/mc (13)

then Eqs. (10) and (11) are identical to Eq. (8), and thus the solution of the equation

that determines the operator eL is the same as the general solution of the equation that

determines the particle 4-velocity in a constant electric and magnetic field. We note that

the general solution allows a larger class of initial conditions than the physical dynamics

problem. The initial conditions for the dynamics problem has a 4-velocity that must satisfy

u · u ≡ uiui ≡ u2
0 − u · u = 1, while in Eq. (8) x2

0 − r · r = const where the constant is real

and can have any sign. Further, the antisymmetric nature of the covariant electromagnetic

field strength tensor Fik = gi�F
�
i guarantees that the solution yiyi = const is independent

of τ (or equivalently, ξ). Thus ui(τ)ui(τ) = ui(0)ui(0) ≡ 1 and yi(ξ)y
i(ξ) = xix

i (with

xi = yi(ξ = 0)).

In principle Eq. (10) can be solved by straightforward techniques for solving a set of four

coupled first-order linear equations. But as the equation that determines eL is the same

as the equation for the evolution of a 4-velocity in a constant electric and magnetic field,

one can expedite the solution by first transforming to a reference frame O′′ where E′′ and

B′′ are parallel (or antiparallel) to each other. The integrals that need to be performed are

then indeed trivial, and one can then transform back to the initial reference frames. The

procedure will be given below. The case when both E = B and E ·B = 0 can be found as

limiting case of the general problem that is solved.

B. Detailed Solution for eL(ω,ξ)

Equations (10) [or (8)] determine a 2D Euclidean plane in which the 3-vectors ω̂ and

ξ̂ lie. Let us choose this plane to be the x-y plane. Thus, without loss of generality ω3
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and ξ3 are set to zero. Further trivial simplification is achieved by choosing the x-axis so

that E2 = 0. Then the effective electric field is E = Ex̂ and the effective magnetic field is

B = −αEω̂ and ω̂ = cosχx̂+ sinχŷ.

The effective fields E and B can be made antiparallel (or parallel) to each other by

considering the equation in a frame O′′, moving in the z-direction, with a relative speed β′′.

In this intermediate frame, the electric and magnetic fields will be E′′ = E ′′(cosσx̂+sinσŷ)

andB′′ = ∓B′′(cosσx̂+sinσŷ) where E ′′ and B′′ are related toE andB by (see Eq. (11.149)

of Ref. [1]),

E ′′x = E ′′ cosσ = γ′′(Ex − β′′By); E ′′y = E ′′ sinσ = γ′′(Ey + β′′Bx)

B′′x = ∓B′′ cosσ = γ′′(Bx + β′′Ey); B′′y = ∓B′′ sinσ = γ′′(By − β′′Ex)

(14)

with γ′′ = 1/(1 − β′′2)1/2, and

 Ex

Ey

 = E

 1

0

 ,

 Bx

By

 = −αE

 cosχ

sinχ

. By setting

E ′′x/B
′′
x = E ′′y/B

′′
y , we eliminate σ and we find the relation (found in Ref. [6], p. 65),

β′′

1 + β′′2
≡ (E ×B)3

|E|2 + |B|2 ≡
S3

W
≡ λ =

−α sinχ

(1 + α2)
(15)

where cS3 is the Poynting Flux in the z-direction and W the field energy of our analogous

effective fields.

Note |λ| < 1/2. The solution for β′′ is

β′′ =
1

2λ

[
1− (1− 4λ2)1/2

]

γ′′ =
1

(1− β′′2)1/2
=

[
1 + (1− 4λ2)1/2

]1/2

√
2(1− 4λ2)1/4

γ′′β′′ =

[
(1− (1− 4λ2)1/2

]1/2
λ

√
2(1− 4λ2)1/4|λ|

. (16)

Observe that β′′(α) = β′′(1/α).

In the intermediate frame, given by

x′′ = exp
[
− tanh−1 β′′K3

]
x ≡ Nx
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where

N =



γ′′ 0 0 −β′′γ′′

0 1 0 0

0 0 1 0

−β′′γ′′ 0 0 γ′′


(17)

the electric and magnetic fields, will be antiparallel if −π/2 < χ < π/2 or parallel if

π/2 < χ < 3π/2.

We note that the magnitude of the transformed electric E′′ = E ′′(x̂ cosσ + ŷ sinσ) and

magnetic fields B′′ = ∓B′′(x̂ cosσ + ŷ sinσ) and its orientation angle σ, are given by,

E ′′

E
= γ′′

[
1 + α2β′′2 + 2αβ′′ sinχ

]1/2
=

1√
2

{[
(1− α2)2 + 4α2 cos2 χ

]1/2
+ 1− α2

}1/2

≡ λ1

B′′

E
= γ′′

[
α2 + β′′2 + 2αβ′′ sinχ

]1/2
=

1√
2

{[
(1− α2)2 + 4α2 cos2 χ

]1/2
+ α2 − 1

}1/2

≡ λ2

(18)

 cosσ

sinσ

 =

 1 + αβ′′ sinχ

−β′′α cosχ

 1

[1 + α2β′′2 + 2αβ′′ sinχ]1/2

= ±

 α cosχ

α sinχ + β′′

 1

[α2 + β′′2 + 2αβ′′ sinχ]1/2
. (19)

Here the upper sign is chosen for the −π/2 < χ < π/2 (B′′ antiparallel to E′′) and the lower

sign for π/2 < χ < 3π/2 (B′′ parallel to E′′). Unless otherwise stated, this sign choice holds

throughout this paper. Observe that:

λ1(α) = αλ2(1/α) (20)

and that we may also determine σ from the last relation in Eq. (19),

tanσ = (tanχ + β′′/α cosχ). (21)

We note that if χ is in the first quadrant, then by using Eqs. (15), (16), and (21), we find

tanσ

tanχ
= 1− 1

2(1 + α2)λ2

[
1− (1− 4λ2)1/2

]
≡ 1−R

(
α, λ(α, χ)

)
.
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We then observe that f(x) ≡ 1
x

[
1− (1− x)1/2

]
is a positive monotonically increasing func-

tion of x in the regime 0 < x < 1. Hence

0 < R
(
α, λ(α, χ)

)
< R

(
α, λ(α, π/2)

)
=

1

2α2

[
(1 + α2)− |1− α2|

]

=


1, if α < 1

1/α2, if α > 1.

(22)

Thus, 0 ≤ R
(
α, λ(α, χ)

)
≤ 1, and 0 ≤ tanσ/ tanχ ≤ 1. It then follows that for χ in the

first quadrant, 0 ≤ σ ≤ χ. More generally, it readily follows for the various quadrants,

(taking −π < χ < π)

χ in first quadrant 0 ≤ σ ≤ χ

χ second quadrant π ≥ σ + π ≥ χ

χ third quadrant −π ≤ σ − π ≤ χ

χ fourth quadrant 0 ≥ σ ≥ χ.

(23)

One can further ascertain from Eq. (21) that if σ(χ) is known for χ in the first quadrant,

we can express σ(χ) in any quadrant,

σ(α,−χ) = −σ(α, χ)

σ(α, π − χ) = −σ(α, χ)

σ(α, χ− π) = σ(α, χ).

(24)

In Figs. 1-3, we present several figures for the parameters we have introduced. In Fig. 1

we plot −β′′ vs. χ′ ≡ 2χ/π (0 < χ′ < 1) for the values α = .1, .25, .5, .75, and 1, with

the curves for the smaller values of α lying below the curves with a larger value of α. These

curves can be applied for α > 1, as β′′(1/α) = β′′(α). In Fig. 2 we plot χ′−σ′ ≡ 2(χ−σ)/π

vs. χ′ for α = .25, .5, .75, 1., 1.25, 2, 4. The curves for larger α lie below the curves with

smaller α. In Fig. 3a we plot λ1 vs. χ for α = .1, .25, .5, .75, and 1, and the curves with

larger α lie below the curves with smaller α. In Fig. 3b we plot ∆λ1(α) ≡ λ1(1) − λ1(α)

vs. χ′ for α = 1.25, 2.5, 2, and 4. The curves for λ2 can be inferred from these graphs,
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using Eq. (20). Note that λ1(α, χ) decreases monotonically as a function of χ from χ = 0

to χ = π/2, ranging from unity when χ = 0, to (1− α2)1/2 if α < 1 or zero if α > 1, when

χ = π/2.

Continuing in the construction of eL, it is convenient to make an additional rotation

transformation so that E′′ is along an intermediate x-axis. Hence, with x′′′ = Hx′′, where

H = e−σS3 , we need to evaluate the dynamical equation,

mc

qE

dx′′′

dτ
= −dx′′′

dξ
= HNFN−1H−1x′′′ (25)

where HNFN−1H−1 ≡ R is explicitly given by

R =



0 λ1 0 0

λ1 0 0 0

0 0 0 ∓λ2

0 0 ±λ2 0


. (26)

Note that equations for x′′′ have been reduced to two uncoupled sets of 2 × 2 linear

equations. We readily find the screw transformation defined by Eq. (127), Chap. IV, in

Ref. [7] gives the solution for x′′′(ξ) in terms of x′′′(0),

x′′′0 (ξ)

x′′′1 (ξ)

x′′′2 (ξ)

x′′′3 (ξ)


=



coshλ1ξ − sinhλ1ξ 0 0

− sinhλ1ξ coshλ1ξ 0 0

0 0 cosλ2ξ ± sinλ2ξ

0 0 ∓ sinλ2ξ cosλ2ξ





x′′′0 (0)

x′′′1 (0)

x′′′2 (0)

x′′′3 (0)


(27)

In compact notation, we write Eq. (27) as

x′′′(ξ) = Q(ξ)x′′′(0) (28)

where Q(ξ) is the square matrix shown in Eq. (27).

Returning to our original reference frame we have

x(ξ) = N−1H−1QHN x(0). (29)
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Thus the desired solution for the transformation is

exp [−ξ(α cosχS1 + α sinχS2 + K1)] = eL = N−1H−1QHN. (30)

To facilitate the matrix multiplication note that

HN =



γ′′ 0 0 −γ′′β′′

0 cosσ sinσ 0

0 − sinσ cosσ 0

−γ′′β′′ 0 0 γ′′


(31)

and N−1H−1 = (HN)−1 is obtained by changing the sign of β′′ and σ in Eq. (31). By

performing the matrix multiplications, the matrix form of eL is obtained,

γ′′2
[

cosh(λ1ξ)

−β′′2 cos(λ2ξ)

]
,

−γ′′
[

sinh(λ1ξ) cosσ

∓β′′ sin(λ2ξ) sinσ

]
,

−γ′′
[

sinh(λ1ξ) sinσ

±β′′ cosσ sin(λ2ξ)

]
,

γ′′2β′′
[

cosh(λ1ξ)

− cos(λ2ξ)

]
,

−γ′′
[

sinh(λ1ξ) cosσ

∓β′′ sin(λ2ξ) sinσ

]
,

cos2 σ cosh(λ1ξ)

+ sin2 σ cos(λ2ξ),

cosσ sinσ

[
cosh(λ1ξ)

− cos(λ2ξ)

]
,

−γ′′
[
β′′ sinh(λ1ξ) cosσ

∓ sin(λ2ξ) sinσ

]
,

−γ′′
[

sinh(λ1ξ) sinσ

±β′′ sin(λ2ξ) cosσ

]
,

cosσ sinσ

[
cosh(λ1ξ)

− cos(λ2ξ)

]
,

cosh(λ1ξ) sin2 σ

+ cos(λ2ξ) cos2 σ,

−γ′′
[
β′′ sinh(λ1ξ) sinσ

± sin(λ2ξ) cosσ

]
,

−γ′′2β′′
[

cosh(λ1ξ)

− cos(λ2ξ)

]
,

γ′′
[
β′′ sinh(λ1ξ) cosσ

∓ sin(λ2ξ) sinσ

]
,

γ′′
[
β′′ sinh(λ1ξ) sinσ

± sin(λ2ξ) cosσ

]
,

γ′′2
[
− β′′2 cosh(λ1ξ)

+ cos(λ2ξ)

]
,



.

(32)

We have confirmed with spot numerical checks that ∂ exp[−ξ(αω̂ · S + K1)]/∂ξ =

N−1H−1 ∂Q/∂ξ HN = −(αω̂ · S + K1)e
L. Note that the choice of sign changes just when

χ passes through ±π/2. One can show that Eq. (32) is continuous and smooth as χ goes

through ±π/2. Observe that Eq. (32) has the property that

L00 + L33 = L11 + L22 = coshλ1ξ + cosλ2ξ. (33)
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The solution we have obtained is for a conveniently chosen coordinate system where

ẑ is perpendicular to ω̂ and ξ̂ (or equivalently E and B) and ξ̂ = x̂. With additional

straightforward rotation operations the solution can easily be made arbitrarily general.

The value of the boost is obtained fairly straightforwardly from Eq. (33). By using an

initial value of x = (1, 0, 0, 0) which is the 4-velocity in frame O, then y(ξ) = eLx gives this

4-velocity γ[1, β′1, β
′
2, β

′
3] in the O′ system. This is the first column of Eq. (32). To obtain

βi (i = 1 − 3) [the components of the relative velocity of O′ in the O frame] we need to

obtain the first column of the matrix that is inverse to Eq. (32). This is achieved by setting

ξ → −ξ in Eq. (32). We then infer that γ and β are given by,

γ = γ′′2
[
cosh(λ1ξ)− β′′2 cos(λ2ξ)

]

β1 =
[sinh(λ1ξ) cosσ ∓ β′′ sin(λ2ξ) sinσ]

γ′′ [cosh(λ1ξ)− β′′2 cos(λ2ξ)]

β2 =
[sinh(λ1ξ) sinσ ± β′′ sin(λ2ξ) cosσ]

γ′′ [cosh(λ1ξ)− β′′2 cos(λ2ξ)]

β3 =
β′′ [cosh(λ1ξ)− cos(λ2ξ)]

[cosh(λ1ξ)− β′′2 cos(λ2ξ)]
. (34)

We note that there is an indeterminacy in Eq. (32) when ξ ⊥ ω and α = 1 where

|β′′| = 1. To resolve the result we take the limit α→ 1 and we find,

eL =



1 +
ξ2

2
−ξ 0 ±ξ2

2

−ξ 1 0 ∓ξ

0 0 1 0

∓ξ2

2
±ξ 0 1− ξ2

2


. (35)

This particular transformation is denoted in the text by Hamermesh [4] on p. 494 as T1(−ξ)

(note in Ref. [4] the ordering of the axes are 3, 2, 1, 0 rather than 0, 1, 2, 3).
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C. Evaluation of Orientation Axes of O′

There is a striking symmetry in the result in Eq. (32); the off-diagonal elements when

neither i or j is three, satisfy
(
eL

)
ij

=
(
eL

)
ji
, while if either i or j is three, these off-

diagonal elements satisfy
(
eL

)
ij

= −
(
eL

)
ij
. We will develop a method for the evaluation of

Ω, that makes use of the constraint that the Lorentz transformation for eL(ω,ξ), which can

be expressed as a successive boost, followed by a pure rotation, must exhibit this symmetry,

as well as reproduce the relation given by Eq. (33).

In general, a successive boost followed by a rotation does not exhibit the symmetry found

in Eq. (32). For example, if we choose the rotation axis as the x-axis then we find

exp(−ΩS1) exp(−Ξ ·K) =


γ −γβ

− γβ′T
−γ2β′Tβ

γ + 1
+ exp3(−ΩS1)

 (36)

where row 3-vectors are β ≡ (β1, β2, β3), β
′ = (β1, β2 cos Ω + β3 sin Ω,−β2 sin Ω + β3 cos Ω),

and exp3(−ΩS1) is a 3×3 rotation matrix without the 0-row and 0-column. The superscript

“T” denotes transpose that converts a row vector to a column vector, and β′Tβ is a direct

product of the column and row vectors.

Clearly Eq. (36) does not exhibit the required symmetry unless there is a special relation

between the components of β′ and β. As an example where this relation occurs is when

there is a rotation about the x-axis, which leaves β1 untouched, but takes β2 → β2 and β3

to −β3. This rotation is shown in Fig. 4, which clearly gives the relation

tan
Ω

2
=

β3

β2

. (37)

One can verify algebraically that Eq. (37) implies

β2 cos Ω + β3 sin Ω = β2

−β2 sin Ω + β3 cos Ω = −β3.

(38)

Denoting Lij as the matrix elements of Eq. (36) we also have
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L00 + L33 = L11 + L22 = γ + cos Ω− (γ − 1) β2
3/β

2. (39)

Because of matrix element symmetry observed in Eq. (32), we call this the synchronism

between rotation and boost required to achieve the synchronous rotational boost symmetry

(SRB).

More generally, if the rotation axis in the x-y plane is along φ̂ = cosφx̂ + sinφŷ, then

the Lorentz transformation

exp
[
−Ωφ̂ · S

]
exp[−Ξ ·K],

exhibits SRB symmetry, if

β̃2 cos Ω + β3 sin Ω = β̃2

−β̃2 sin Ω + β3 cos Ω = −β3.

(40)

where β̃1 = β1 cosφ + β2 sinφ is the component of β along the φ̂ axis and β̃2 = −β1 sinφ +

β2 cosφ is the component of β along the ẑ × φ̂ axis. It can be shown that if ω and ξ lie in

the x-y plane, Eq. (40), with φ only in the x-y plane, is the most general relation needed to

achieve SRB symmetry.

The form of the Lorentz transformation, when Eq. (40) is satisfied is then found to be,

e−Ω(cosφS1+sinφS2) · e−ξ·K =


γ, −γβa

−γβTb
γ2

γ − 1
βTb βa + exp3[−Ωφ̂ · S]

 (41)

where βa = (β̃1, β̃2, β3) and βb = (β̃1, β̃2,−β3). Further, Eq. (39) is found to still be correct

independent of φ. Now, we can obtain the value Ωφ̂ by matching the elements Lij of Eq. (41)

term by term to be elements of Eq. (32). With the help of Eq. (A3) of the Appendix we also

establish that the diagonal matrix elements of Eq. (41) satisfy the same relation as given by

Eq. (39) which does not depend on φ.

We now determine the direction of the axis of rotation Ω̂ = cosφx̂ + sinφŷ and the

amount of rotation Ω about the axis for the Lorentz transformation eL(ω,ξ). From Eq. (34)
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we know the value of β of O′ with respect to O in terms of the input parameters α, χ and ξ.

Then by equating the 3-3 elements of Eqs. (32) and (41), we find, after some algebra, that

Ω is determined by,

cos Ω =
γ2

γ + 1
β2

3 + γ′′2
[
−β′′2 coshλ1ξ + cosλ2ξ

]
= −1 + G(ξ) (42)

with

G(ξ) =
(1 + cosλ2ξ)

γ′′2 [1− β′′2(1 + cosλ2ξ)/(coshλ1ξ + 1)]
. (43)

Note that the minimum value of cos Ω is −1, and unless either β′′ = 0, λ1 = 0, or ξ = 0, the

maximum value of cos Ω < 1. This follows because 0 ≤ G(ξ) < 1+cosλ2ξ
γ′′2(1−β′′2)

= 1 + cosλ2ξ ≤ 2,

and the right-sided equality cannot be achieved unless either β′′, λ1 or ξ vanish. Except

for these special cases (which, if ξ 	= 0, turn out to be equivalent to χ = pπ/2, with p an

integer), then as ξ increases, cos Ω = 1 only for ξ = 0, and Ω remains less than 2π. As a result

Ω oscillates. The maximum value of cos Ω occurs close to 1 + cosλ2ξ = 2 (this condition

becomes more accurate the larger coshλ1ξ becomes). For coshλ1ξ � 1, Ω oscillates between

− cos−1(1− 2β′′2) < Ω < cos−1(1− 2β′′2). (44)

The value of sin Ω is determined to within a sign, sin Ω = ±[1−cos2 Ω]1/2. For sufficiently

small ξ, sin Ω > 0, and sin Ω changes sign when 1 + cos Ω vanishes, or equivalently when Ω

passes through π. From Eqs. (42) and (43) this occurs when cosλ2ξ = −1. Hence sin Ω > 0

for 2nπ < λ2ξ < (2n+1)π, for integer n, and sin Ω < 0 for (2n+1)π < λ2ξ < 2(n+1)π. Also

note that when Ω→ (2n+ 1)π, that 1+cosΩ
sin Ω

→ 0 because 1 + cos Ω vanishes quadratically in

λ2ξ − (2n + 1)π, while sin Ω vanishes linearly in λ2ξ − (2n + 1)π.

To obtain the axis of rotation, we use the relation in Eq. (40),

(β1 sinφ− β2 cosφ) sin Ω + β3 cos Ω = −β3

and we substitute for β1, β2, and β3 the equations given by Eq. (34). After some algebra we

find for the equation determining φ,
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γ′′β′′(coshλ1ξ − cosλ2ξ)
(1 + cos Ω)

sin Ω

= −

[
cos

(
λ2ξ
2

)
sinh(λ1ξ) + sin

(
λ2ξ
2

)
sinλ2ξ

(
1 + 2

(coshλ1ξ−1)

)1/2
]

{
1 + sin2(λ2ξ/2)

β′′2

[
1
γ′′2 + 2

coshλ1ξ−1

]}1/2

= − sinhλ1ξ sin(φ− σ)± β′′ sinλ2ξ cos(φ− σ). (45)

The solution to this equation is,

sin(φ− σ) =

sinhλ1ξ

(
sinhλ1ξ cos

(
λ2ξ
2

)
+ sin(λ2ξ) sin

(
λ2ξ
2

) (
1 + 2

coshλ1ξ−1

)1/2
)
− 2 sin2

(
λ2ξ
2

)
cos

(
λ2ξ
2

) √
M2

(
sinh2(λ1ξ) + β′′2 sin2 λ2ξ

) [
1 +

sin2(λ2ξ

2 )
β′′2

(
1
γ′′2 + 2

coshλ1ξ−1

)]1/2
(46)

−−−−−−→
λ1ξ � 1

sin

(
π

2
− λ2ξ

2

)
/

[
1 + sin2

(
λ2ξ

2

)
/(γ′′β′′)2

]1/2

(47)

with

√
M2 = (coshλ1ξ − 1) +

[
2− β′′2 (1 + cosλ2ξ)

]
. (48)

Note that one can show that this solution only gives precession without oscillation of φ

as ξ changes as long as |χ| 	= π/2, χ 	= 0 or χ 	= π. For the cases that are exceptions, the

orientation of the rotation axis remains fixed as ξ changes.

We also observe that if a solution for φ is obtained for a given χ, then for χ → −χ,

the solution for φ̂ is φ̂ = cosφx̂ − sinφŷ; for χ → π − χ, the solution for φ̂ is φ̂ =

− cosφx̂ + sinφŷ; and χ → χ + π the solution for φ̂ is φ̂ = − cosφx̂ − sinφŷ. These

symmetry conditions allow us to describe all solutions in terms of χ in the first quadrant.

One can show that precession is clockwise for χ in the first quadrant, and thus it follows

that the precession is clockwise for χ in the third quadrant, and counterclockwise for χ in

the second and fourth quadrants.

Now consider the special cases χ = 0, π (β′′ = 0, γ′′ = 1) and χ = ±π/2. For the first

cases (χ = 0, π), where σ = 0, we obtain from Eqs. (42) and (45),
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cos Ω = cosλ2ξ , sin Ω = sinλ2ξ, sin(φ− σ) = 0. (49)

Thus, φ = χ and χ = 0 or χ = π. Hence in this case there is no precession, but a fixed axis

of rotation, and Ω changes without bound as ξ increases.

If χ = ±π/2, we have for α < 1; β′′ = ∓α, γ′′ = 1/(1− α2)1/2, λ1 = (1− α2)1/2, λ2 = 0,

and σ = 0. Then, from Eq. (45) we find the solution sin(φ− σ) = 1. Thus, the solution has

a fixed rotation axis at χ = ±π/2. From Eq. (42) we have,

cos Ω = −1 +
2(1− α2)

{1− 2α2/ [cosh (1− α2)1/2ξ) + 1]} , (50)

or equivalently,

sin Ω =
2α(1− α2)1/2 sinh[(1− α2)1/2ξ]

cosh[(1− α2)1/2ξ] + 1− 2α2
−−−−−−−−−−−−→
(1− α2)1/2ξ � 1

2α(1− α2)1/2. (51)

Note from Eq. (51) that Ω rotates from zero to a maximum value of Ωmax =

sin−1
(
2α(1− α2)1/2

)
< π, where Ωmax is approached as [(1− α2)1/2ξ]−1 → 0.

For the case α = 1, χ = ±π/2 we need to expand in 1 − α2, and take the limit as this

quantity vanishes. We find,

φ =
π

2
, sin Ω =

4ξ

4 + ξ2
. (52)

Thus Ω→ 0 as ξ → 0, Ω→ π for ξ →∞ and Ω = π/2 for ξ = 2.

When α > 1, χ = ±π/2 algebraic manipulation gives [using λ2 = (α2 − 1)1/2, λ1 =

0, β′′ = ∓1/α, σ = π/2],

φ = π/2, sin Ω =
2α(α2 − 1)1/2 sin[(α2 − 1)1/2ξ]

2α2 − 1− cos[(α2 − 1)1/2ξ]
−−−−−−→
α� 1

sin[α2 − 1)1/2ξ]. (53)

Note that maximum and minimum values of sin Ω occur when

sin[(α2 − 1)1/2ξ] = ±2α(α2 − 1)1/2/(2α2 − 1), whereupon sin Ω = ±1. Thus as ξ increases,

Ω can rotate without bound, with the rotation axis fixed at φ = χ = ±π/2.

It is interesting to note how the precessional solution blends in smoothly with the pure

rotational solution as χ→ 0 where |β′′| � 1. Then from Eq. (46), we see that φ− σ hardly

changes until the vicinity of λ2ξ/2 = nπ, whereupon λ2ξ/2 goes from nπ − ε to nπ + ε, for
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1 � ε � |β′′|. Then the axis has flipped direction, but one can also infer that dΩ/dξ also

flips sign as λ2ξ/2 passes through nπ. Note that if the axis changes direction and dΩ/dξ

changes sign, it is essentially the same rotational effect as having the axis fixed and dΩ/dξ

maintaining the same sign. Hence except for the small region |λ2ξ/2 − nπ| ≈ |β′′|, the

transformation for small χ is almost the same as the case χ = 0.

III. SPINOR ALGEBRAIC DESCRIPTION OF LORENTZ TRANSFORMATIONS

In this section, we solve the problem discussed in the preceding sections by a different

method based on spin algebra used in relativistic quantum mechanics. In this treatment, it

is not possible to relate the problem to a dynamical analog considered before, but we are

able to exploit spinor algebra to sum a power series of an exponential matrix in a rather

straightforward manner.

A. Reduction of the Four-Dimensional Lorentz Transformation to Spinor

Representation Form

We first demonstrate how the general 4-dimensional Lorentz transformation of Eq. (9)

can be directly reduced to a well-known spinor representation of the form [5,9];

Y = LXL†, (54)

where Y (X) is a 2 × 2 matrix constructed from the space-time coordinate (y0, y1, y2, y3)

((x0, x1, x2, x3)) as

Y =

 y0 + y3 y1 − iy2

y1 + iy2 y0 − y3

 = y0 + y · σ (55)

(similarly for X), where σ = (σ1, σ2, σ3) is the Pauli spin matrix vector and

L(ω, ξ) = e(−ξ+iω)·σ/2. (56)

21



In order to derive Eq. (54) from Eq. (9), we first rewrite eL ≡ A(ω, ξ) = e−ξ·K−ω·S thereby

using J± defined as

J± = K ± iS, (57)

whereK and S are the same as those inferred in Eq. (4) [compare with Eqs. (2.70) of Ref. [2]

and Eqs. (5.6.7) and (5.6.8) of Ref. [3]]. J± satisfy the following relations;

[J±i, J±j] = ±εijkJ±k, [J+i, J−j] = 0, and J2
±i = 1. (58)

Because of the commutativity between J+ and J−, one can express A as a product of two

terms, each involving J+ or J− as

A = AA∗, (59)

where

A = eΛn̂·J+/2, (60)

with

Λ = [(−ξ + iω) · (−ξ + iω)]1/2 ≡ ΛR + iΛI = ξ(λ1 ∓ iλ2), (61)

n̂ =
1

Λ
(−ξ + iω). (62)

In Eq. (61), the branch of Λ is chosen in the first or fourth quadrant and therefore ΛR > 0.

Note that λ1 and λ2 are just the functions defined in Eq. (18), with the upper sign chosen

for −π/2 < χ < π/2 and the lower sign for π/2 < χ < 3π/2. The sign choice follows from a

relation that readily finds from Eq. (61)

λ1λ2 = α[cos2 χ]1/2 = ±α cosχ, (63)

since λ1 and λ2 are by construction in Eq. (18) non-negative. Further, using Eqs. (19) and

(61), one can show that λ1 and λ2 can be expressed in terms of the angle σ introduced in

Eq. (14), together with γ′′ and β′′ of Eq. (16), as
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λ1 =
1

γ′′
cosσ and λ2 = ∓ 1

γ′′β′′
sinσ. (64)

We now transform the 4-vectors and matrices involved by means of the following unitary

transformation R;

R =
1√
2



1 0 0 1

0 1 i 0

0 1 −i 0

1 0 0 −1


. (65)

R transforms a 4-vector such as x as

xt ≡ R



x0

x1

x2

x3


=

1√
2



x0 + x3

x1 + ix2

x1 − ix2

x0 − x3


, (66)

and an operator, such as n̂ · J+ in A, as

Rn̂ · J+R−1 =

 n̂ · σ 0

0 n̂ · σ

 . (67)

Eq. (84) implies that A transforms as

At ≡ RAR−1 =

 L 0

0 L

 ≡
 L11 L12

L21 L22

 , (68)

where L is the spinor matrix of Eq. (56). The product A = AA∗ is then transformed as

At ≡ RAR−1 = RAR−1RR∗−1(RAR−1)∗R∗R−1 = AtEA∗tE∗, (69)

where

E ≡ RR∗−1 =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


≡

 E11 E12

E21 E22

 = E∗. (70)
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Transforming the 4-dimensional Lorentz transformation y = Ax by multiplying both side

by
√

2R, we obtain

√
2Ry =

 Y1

Y2

 = At

 X1

X2

 = AtEA∗tE

 X1

X2

 , (71)

where

Yi ≡

 y0 ± y3

y1 ± iy2

 and Xi ≡

 x0 ± x3

x1 ± ix2

 with


+ for i = 1,

− for i = 2 .
(72)

Inserting Eqs. (68) and (70) into (71), one obtains Y1

Y2

 =

 L11 L12

L21 L22


 E11 E12

E21 E22


 L∗11 L∗12

L∗21 L∗22


 E11 E12

E21 E22


 X1

X2

 . (73)

Using the relations

(Lij)k� = δijLk� with (Eij)k� = δkjδ�i

that follow from the definition of the matrices Lij and Eij and also noting that (Yi)α and

(Xi)α are the αi components of the matrices Y and X in Eq. (54), i.e., Yαi = (Yi)α and

Xαi = (Xi)α, respectively, it is straightforward to obtain our desired result. Specifically we

have

Yαi = (Yi)α = (Lij)αβ(Ejk)βγ(L
∗
k�)γδ(E�m)δε(Xm)ε

= δijLαβδjγδkβδk�L
∗
γδδ�εδmδ(Am)ε

= LαβL
∗
iδ(Xδ)β = Lαβ(X)βδL

†
δi = (LXL†)αi. (74)

Eq. (54) is thus proved.

B. Spinor Calculation of the Lorentz Transformation Matrix.

The merit of use of the spinor representation Eq. (54) of the Lorentz transformation is

that it is possible to directly reduce the exponential form of L(ω, ξ) to an explicit 2 × 2

matrix form in a very straight-forward manner by first expanding in a power series and then
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use that (σ · n̂)2 = 1 for any 3-unit vector n̂ (i.e.
∑
i n

2
i = 1) even if ni is complex. The

resulting expression can be reduced to a form

L = L0 +L1 · σ, (75)

where L0 and L1 are independent of σ. The series expansions for L0 and L1 can be straight-

forwardly summed and we find for any complex function Λ, and any 3-unit vector n̂,

eΛn̂·σ/2 = cosh
(

Λ

2

)
+ n̂ · σ sinh

(
Λ

2

)
. (76)

In our case, Λ and n̂ are given by Eqs. (61) and (62), respectively.

Thus,

L0 = cosh
(

Λ

2

)
= cosh

(
ΛR

2

)
cos

(
ΛI

2

)
+ i sinh

(
ΛR

2

)
sin

(
ΛI

2

)
, (77)

L1 =
1

|Λ|2 (A+ iC), (78)

where

A = Re[Λ∗(−ξ + iω) sinh
(

Λ

2

)
] = −aω − bξ, (79)

C = Im
[
Λ∗(−ξ + iω) sinh

(
Λ

2

)]
= −aξ + bω, (80)

with

a = ΛR cosh
(

ΛR

2

)
sin

(
ΛI

2

)
− ΛI sinh

(
ΛR

2

)
cos

(
ΛI

2

)
, (81)

b = ΛR sinh
(

ΛR

2

)
cos

(
ΛI

2

)
+ ΛI cosh

(
ΛR

2

)
sin

(
ΛI

2

)
. (82)

The explicit form of the transformation matrix A(ω, ξ) may then be obtained by estab-

lishing the relations between (x0,x) and (y0,y) by using Eq. (54). Inserting Eq. (75) into

(54), we obtain

Y ′ = y0 + y · σ = (L0 +L1 · σ)(x0 + x · σ)(L∗0 +L∗1 · σ). (83)

The evaluation of the right most term in the above relation may be carried out with the

help of the well-known relation; (a ·σ)(b ·σ) = a · b+ ia× b ·σ. Equating, separately, the

time and space components of the resulting equation, we find
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y0 = (L0L
∗
0 +L1 ·L∗1)x0 + (L0L

∗
1 + L∗0L1 − iL1 ×L∗1) · x, (84)

y = (L0L
∗
1 + L∗0L1 + iL1 ×L∗1)x0

+(L0L
∗
0 −L1 ·L∗1)x+ i(L∗0L1 − L0L

∗
1)× x+ (x ·L∗1)L1 + (x ·L1)L

∗
1. (85)

One can then easily identify that the components Aµν can be given in general as

A00 = L0L
∗
0 +L1 ·L∗1,

A0i = L0L
∗
1i + L∗0L1i − iεijkL1jL

∗
1k,

Ai0 = L0L
∗
1i + L∗0L1i + iεijkL1jL

∗
1k,

Aij = (L0L
∗
0 −L1 ·L∗1)δij − iεijk(L

∗
0L1k − L0L

∗
1k) + L1iL

∗
1j + L∗1iL1j, (86)

where εijk represents the component of the antisymmetric third rank tensor.

Explicit expressions of Aµν may be determined by using L0 and L1 given by Eqs. (77)-

(78). In carrying out the calculations, use is made of the same coordinate system as used

before; the x-axis was chosen to be the direction of ξ, while the y-axis is set in the plane

defined by ξ and ω. It is then possible to show after some algebra that the resultant Lorentz

transformation matrix agrees with Eq. (32). We give here the results in a form that is directly

obtained from the present spinor algebra;

A00 = γ, A0i = −γβi, Ai0 = −γ(βi − 2β3δi3),

Aij = δij[fi cosh(λ1ξ) + (1− fi) cos(λ2ξ)] +

(1− δij)
1

(1 + α2)
√

1− 4λ2
[(cosh(λ1ξ)− cos(λ2ξ)(ξ̂iξ̂j + α2ω̂iω̂j)

∓(λ2 sinh(λ1ξ)− λ1 sin(λ2ξ))εijkξ̂k + (λ1 sinh(λ1ξ)− λ2 sin(λ2ξ))αεijkω̂k], (87)

where γ and βi (i = 1, 2, and 3) are the same as those of Eq. (34). Further,

(f1, f2, f3) = (cos2 σ, sin2 σ,−γ′′2β′′2). (88)

C. Successive Boost and Rotation

The Lorentz transformation matrix L′, corresponding to the successive boost and rota-

tion, L(ΩΩ̂,ΞΞ̂) = e−Ω·Se−Ξ·K, introduced in Sec. III, may also be obtained as
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L′ = eiΩ·σ/2e−Ξ·σ/2, (89)

with Ξ = β̂ tanh−1 β, and we note that γ = cosh Ξ and γβ = sinh Ξ. The reduced form of L′

can be obtained by performing the reduction for eiΩ·σ and e−Ξ·σ separately and then taking

the product. (We note that Ref. [9] used L′ = L1L2 indicating that the final transformation

is the result of successive transformation of L2 and L1, but it did not emphasize the special

interpretative case where L2 is a pure boost and L1 is a pure rotation.)

The resultant reduced form of L′ can still be cast in the general form of Eq. (75) as

L′ = L′0 +L′1 · σ, (90)

where L′0 and L′1 are found to be

L′0 = cos
(

Ω

2

)
cosh

(
Ξ

2

)
− i sin

(
Ω

2

)
sinh

(
Ξ

2

) (
Ω̂ · Ξ̂

)
, (91)

L′1 = − cos
(

Ω

2

)
sinh

(
Ξ

2

)
Ξ̂ + sin

(
Ω

2

)
sinh

(
Ξ

2

) (
Ω̂× Ξ̂

)
+ i sin

(
Ω

2

)
cosh

(
Ξ

2

)
Ω̂. (92)

D. Relations Between Two Lorentz Transformations

By equating Eq. (75) with (90), it is possible to establish the direct relations between

(Ω,Ξ) and (ω, ξ) and simplify some of the relations derived in Sec. V. Since both L0 and

L1 are complex, the equivalence condition (L0 = L′0 and L1 = L′1) leads to the following

four equations;

cos
(

Ω

2

)
cosh

(
Ξ

2

)
= cos

(
ΛI

2

)
cosh

(
ΛR

2

)
, (93)

− sin
(

Ω

2

)
sinh

(
Ξ

2

) (
Ω̂ · Ξ̂

)
= sin

(
ΛI

2

)
sinh

(
ΛR

2

)
, (94)

− cos
(

Ω

2

)
sinh

(
Ξ

2

)
Ξ̂ + sin

(
Ω

2

)
sinh

(
Ξ

2

) (
Ω̂× Ξ̂

)
=

1

|Λ|2A, (95)

sin
(

Ω

2

)
cosh

(
Ξ

2

)
Ω̂ =

1

|Λ|2C. (96)

As seen in Eq. (96), Ω̂ is proportional to C. Noting that C is given as a linear combination

of ξ and ω, the axis of the Ω-rotation is directly seen to be in the plane defined by the

vectors ξ and ω in agreement with the relation obtained in earlier sections.
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To obtain Ω, we may first deduce cos2 Ω
2

by taking the square of both sides of Eq. (93)

and then by dividing by cosh2 Ξ
2
. The resultant expression reads

2 cos2 Ω

2
= 4 cos2 ΛI

2
cosh2 ΛR

2
/2 cosh2 Ξ

2
. (97)

Since 2 cosh2 Ξ
2

= 1 + cosh Ξ can be calculated from cosh Ξ = γ, the above establishes the

relation between Ω and (ξ , ω). Furthermore, it is possible to show after some algebra that

the r.h.s. of the above equation reduces precisely to G defined in Eq. (43) and thus the

result that determines Ω in Eq. (42) is reproduced. One can also determine Ω directly from

the expression for cos Ω
2

obtained from Eq. (97);

cos
Ω

2
= cos

(
λ2ξ

2

)
cosh

(
λ1ξ

2

) √
2

γ + 1
, (98)

where use was made of cosh(Ξ/2) =
√

(γ + 1)/2. Since 0 ≤ Ω ≤ 2π, the above equation

uniquely determines Ω/2 and hence Ω.

In Sec. II, use was made of Eq. (40) derived on the basis of SRB symmetry in order to

obtain the axis of rotation, Ω̂ = cosφx̂+ sinφŷ. Equation (40) can be rewritten as

[
sin Ωβ × Ω̂ + (1 + cos Ω)β

]
· ẑ = 0. (99)

In the present approach, the above equation follows from Eq. (95) if one multiplies both

sides by 4 cos Ω
2

cosh Ξ
2

and then takes the scalar product with ẑ using that (A · ẑ) = 0.

As in Sec. III we can then derive Eq. (45) for the orientation angle φ between the axis of

rotation Ω̂ and the direction ξ̂.

One can obtain a compact closed form expression for Ω̂, which simply follows from

Eq. (96);

Ω̂ =
1

|Λ|2C/
(
sin

Ω

2
cosh

Ξ

2

)
. (100)

If one takes the x and y components of the above equation, one finds after some algebra

cosφ = ± γ′′2

sin Ω
2

[
λ1 sin

λ2ξ

2
cosh

λ1ξ

2
− λ2β

′′2 cos
λ2ξ

2
sinh

λ1ξ

2

] √
2

γ − 1
,

sinφ = −γ′′2β′′

sin Ω
2

[
λ2 sin

λ2ξ

2
cosh

λ1ξ

2
+ λ1 cos

λ2ξ

2
sinh

λ1ξ

2

] √
2

γ − 1
. (101)
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Equations (98) and (101) now establish the relation between Ω and (ξ,ω) and with the help

of Eq. (93) one can show that Eq. (101) satisfies Eq. (45).

IV. SUMMARY

We have shown that the evaluation of the Lorentz transformation eL(ω,ξ) can be cast in

terms of the evolution equation of the 4-velocity of a particle in an electric field, E and

magnetic field B that is uniform in space and time. The mathematical difference of the

two problems is that the 4-velocity u is constrained to have as an initial condition, an inner

product u · u = 1 (which therefore leads to a set of particular solutions for the equations

of motion), whereas the inner product of a general 4-vector, such as the coordinates of an

event (x0,x) has an inner product of arbitrary value, for which we need a general solution

to the “equations of motion” to describe an arbitrary event in a different Lorentz frame. To

solve for the transformation, we can still use the well-known procedure of transforming to a

frame where ω and ξ (or equivalently E and B) are parallel (or antiparallel), then solving

an easy equation, and transforming back to the original frame. The equations solved have

the intrinsic property that the inner product, once initially chosen, is conserved.

Having obtained the solution for eL(ω,ξ), we succeeded in interpreting it in terms of the

boost β and the rotation Ω (Ω = ΩΩ̂) where Ω̂ is the direction of the rotation axis and Ω

the angle, defined by the conventional right-hand rule, of rotation about an axis. Specific

formulas, such as Eqs. (14), (42), and (46) determine β and Ω. It is found that Ω̂ lies in the

3-plane of ω and ξ, and if ω · ξ 	= 0 and ω × ξ 	= 0 the axis of rotation varies only in this

plane. For sufficiently small ξ the axis of rotation is directed along ω̂, but with increasing

ξ, the orientation of the rotation axis with respect to ξ̂ is given in Eq. (46). As a function

of ξ (a pseudo-proper time coordinate), the rotation axis generally precesses in the 3-plane

of ξ and ω. We find that the mean precession frequency is the Larmor frequency [10],

qB′′/2γ′′mc in the intermediate frame where E and B are parallel. The only exceptions

arise if ξ · ω = 0 or ξ × ω = 0 where then the rotation axis is fixed as ξ changes.
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We have also shown how the exponential representation can be directly summed, and

the results of the two methods of calculation are fully consistent with each other.
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Appendix: Specific Representations for Pure Rotation and Boost Operators

It is well known that from the representations in Eq. (4) and the commutation relations

in Eq. (5) one obtains

e−ΩS1 =



1 0 0 0

0 1 0 0

0 0 cos Ω sin Ω

0 0 − sin Ω sin Ω


, e−ΩS2 =



1 0 0 0

0 cos Ω 0 sin Ω

0 0 1 0

0 sin Ω 0 cos Ω


, e−ΩS3 =



1 0 0 0

0 cos Ω sin Ω 0

0 − sin Ω cos Ω 0

0 0 0 1


.

(A1)

e−ξK1 =



cosh ξ − sinh ξ 0 0

0 sinh ξ cosh ξ 0 0

0 0 1 0

0 0 0 1


, e−ξK2 =



cosh ξ 0 − sinh ξ 0

0 1 0 0

sin ξ 0 1 0

0 0 0 1


, e−ξK3 =



cosh ξ 0 0 − sinh ξ

0 1 0 0

0 0 1 0

− sinh ξ 0 0 1


.

(A2)

The general pure rotation and pure boost operators can be obtained from straightforward

group theoretic relations. If Ω̂ = cos θẑ + sin θ cosφx̂+ sin θ sin φ̂ŷ ≡ Ω̂1x̂+ Ω̂2ŷ + Ω̂3ẑ we

have

e−Ω·S = eφS3eθS2e−ΩS3e−θS2e−φS2

=



1 0 0 0

0 1− (Ω̂2
2 + Ω̂2

3)f(Ω) Ω̂3 sin Ω + Ω̂1Ω̂2f(Ω) −Ω̂2 sin Ω + Ω̂2Ω̂3f(Ω)

0 −Ω̂3 sin Ω + Ω̂1Ω̂2f(Ω) 1− (Ω̂2
1 + Ω̂2

3)f(Ω) Ω̂1 sin Ω + Ω̂2Ω̂3f(Ω)

0 Ω̂2 sin Ω + Ω̂1Ω̂3f(Ω) −Ω̂1 sin Ω + Ω̂2Ω̂3f(Ω) 1− (Ω̂2
1 + Ω̂2

2)f(Ω)



(A3)

where f(Ω) = 1 − cos Ω. If Ξ = Ξβ̂, and β̂ = cos θ′x̂ + sin θ′ cosφŷ + sin θ′ sinφẑ =

β̂1x̂ + β̂2ŷ + β̂3ẑ, then
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eΞ·K = eφ
′S1eθ

′S3e−ΞK1e−θ
′S3e−φ

′S1 =


γ −γβ

−γβT I +
γ − 1

β2
βTβ

 (A4)

where γ = cosh Ξ, γβ = β̂ sinh Ξ, and see Eq. (36) for standard definitions of the vector and

direct product notations.
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FIGURE CAPTIONS

FIG. 1. Curves of −β′′(α) vs. χ′ ≡ 2χ/π for α = (.1, .25, .5, .75, 1). The curves for large

α lie above the curves for smaller α.

FIG. 2. Plot of χ′ − σ′ ≡ 2(χ − σ)/π vs. χ′ ≡ 2χ/π for α = (.25, .5, .75, 1, 1.25, 2, 4).

The curves with larger α lie below the curves with smaller α.

FIG. 3. (a) Plot of λ1(α) = αλ2(1/α), vs. χ′ ≡ 2χ/π for α = (.1, .25, .5, .75, 1) with

curves for larger α lying below curves of smaller α. (b) Plot of ∆λ1 = λ1(1)−λ1(α)

vs. χ′ = 2χ/π for α = (1.25, 1.5, 2, 4) with curves of larger α lying above curves

of smaller α.

FIG. 4. A rotation operation about the x-axis that leaves β2 invariant and changes the sign

of β3. Here β⊥ = β − β1x̂.
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