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Abstract

A discussion of the proper homogeneous Lorentz transformation operator
el = exp[—w-S—¢- K] is given where e” transforms coordinates of an observer
O to those of an observer O'. Two methods of evaluation are presented. The
first is based on a dynamical analog. It is shown that the transformation
can be evaluated from the set of equations that are identical to the set of
equations that determine the 4-velocity of a charged particle in response to
a combined spatially uniform and temporally constant electric field E and
magnetic field B, where E is parallel to & and B is antiparallel to w, and
E/B = {/w. The principal difference in the two problems is that in the
dynamics problem, the initial conditions for the 4-velocity u must satisfy the
constraint, u - 4 = 1, whereas the inner product of the coordinates acted
on by el can have any real value. In order to evaluate e’ one can then
apply the simplifying techniques of transforming to the frame where E is
parallel or antiparallel to B, whereupon the transformation e” in this special
frame is trivially evaluated. Then we transform back to the original frame.
We determine the 3 and the rotation €2 that results from a successive boost
and rotation that the operator e’ produces. A second method is based on

a direct summation of the power series of the matrix elements of e’ that



has been used in relativistic quantum theory. The summation is facilitated
by observing that the operators, J+ = K + ¢S commute with each other,
and can be represented in terms of the Pauli spin matrices. Indeed, we can
reduce the Lorentz transformation to the product of spinor operators to give

a compact way to compute the elements of the Lorentz operator e”.



I. INTRODUCTION

In a well-known textbook by Jackson (Ref. [1]) the most general form of a proper ho-
mogeneous Lorentz transformation used in classical special relativity is shown to have the

form,

Afw,€) = et 1)
with

L=—-w-S—-¢&- K (2)
with S the generator for pure spatial rotations, and K the generator for pure boosts,

S =&S; + S+ 2S5,

K=K, +9K,+2K;

where
0O 0 O 0 o 1 0 0 o0
0O 0 O 0 1 0 0 0 O
Sl - 3 Kl - ) (4)
o 0 0 -1 O 0 0 0 o0
0O 0 1 0 O 0 0 0 o0

and the other values of S; and K; are found in Ref. [1] (p. 546). They satisfy the commutation

relations
[Si, Sk] = eijkska [Su Kj] = Eiijlw [Kz’, Kj] = —€ijk Sk (5)

where [i = 1,2, 3] and the repetition of indices imply summation. The first row and column
will be referred as the 0-row or column, and the remaining will be labeled 1-3. Note that
1hS is a representation of an angular momentum operator in quantum mechanics and —ih K
is a representation of the boost operator found in relativistic quantum mechanics [2] (p. 39).
The difference in the angular momentum and boost representation that we use and in the

quantum system is a matter of bookkeeping. In a quantum system the generators are chosen
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so that rotation operators are Hermitian and boost operators are anti-Hermitian. However,
the basic mathematical structure of the symmetry that is being described is really the same
in the two systems. The commutation relations given by Eq. (5) give the structure constants,
€ijr that define the Lie algebra [3,4] for the proper homogeneous Lorentz transformation.
These relations are derived from symmetry arguments based on infinitesimal change of ref-

Lw.£) is the formal solution to a finite change

erence frame. The transformation operator e
of the reference frame.

This exponential form does not directly answer the following questions for a given set
of input parameters w and £ in eX(“#): (a) what are expeditious ways to calculate the
matrix elements of this Lorentz transformation; (b) what is the physical interpretation of
the resulting Lorentz transformation. The answer is easy to obtain if either w or & vanish,
but more difficult when both input parameters are nonzero (to aid the reader, the forms for
pure rotation, exp(—w - S), and pure boost, exp(—& - K), is given in the Appendix). For
the nontrivial case, where both w and & are nonzero, a method used in relativistic quantum
mechanics can be applied which is based on the close correspondence of the SL(2, C') group
and the proper homogeneous Lorentz group [2,5]. Here we present an alternative method
of evaluation that generalizes a method used in the classical theory of special relativity for
calculating the 4-velocity of a charged particle in spatially and temporally constant electric
and magnetic fields. In this method, described in many textbooks on the classical theory of
special relativity [e.g. in Refs. [1] and [6], the dynamical problem is solved by transforming
to a frame where the electric and magnetic field are parallel (or anti-parallel)]. Here it is
shown that very similar method can be applied to a different problem in special relativity;
for the evaluation of the matrix elements of the operator e”.

The results of the dynamical analog method are the same as the results that emerge in
the quantum method described in Ref. [5]. However, a direct comparison to demonstrate the

equivalency requires rather involved algebra. To make the comparison expeditiously, and

self-contained within this paper, we present in detail a logical presentation of the relativistic



quantum method that is somewhat different from that found in Ref. [5], but with the final
results manifestly the same.

We have not found in the literature an answer to question (6) presented above, though
the answer may exist in some publication. Hence to determine the answer we present an
extensive discussion of interpreting the Lorentz transformation associated with the operator
eL(w.€)

To interpret the physical effect of the transformation we note that if a general homoge-
neous Lorentz transformation is applied to a set of coordinates of an observer O that is in
an inertial frame, the cartesian coordinates are changed to those of an observer ' moving
with a velocity B = v/c with respect to O. If the axes of O’ are parallel to those of O, the
velocity of O with respect to @' will be @', where the components of 3" are the negative of
the components of 3. If the axes of O are rotated with respect to O, then the components
of @' will differ from those of 3 (with the constraint that |3| = |3'|). The appropriate
components of 3’ can be inferred by noting that e(“# can be written as a successive boost
where there is no rotation of axes, followed by a rotation without a boost (or alternatively

a successive rotation followed by a boost). Mathematically, we then have

oL(@€) — LL(R0) ,LOE) _ ,L(0,~F") ,L(2,0) (6)

where tanh|Z| = tanh |E/| = |8|, E/|E| = B and E//|=Z'| = B. The determination of Q
and E as a function of w and & gives the physical meaning of the transformation e« ag
Z determines the magnitude of the boost, and 2 = OO determines the direction of the axis
of rotation and angle €2 of the rotation.

We show in Sec. II that the transformation, e/« is related to a set of differential
equations that are identical to the equations of motion of the 4-velocity, u, of a charged
particle of charge ¢ and mass m in an electric field E and magnetic field B which are constant
in space and time, but arbitrary in magnitude and direction. The equations of motion for
u are, du'/dr = qF", u*/mc, where F?,_ is the mixed electromagnetic field strength tensor

for E and B [obtained from Eqs. (11.137) or (11.138) in Ref. [1]], 7 is the proper time, and



u' a contravariant 4-vector. In the dynamics problem the inner product u'u; is constrained
to satisfy u‘u; = 1, but in the Lorentz transformation problem u’ is a contravariant vector
that can have an arbitrary inner product. We identify E = \§ = Agé, B = -)\w = —-)\ww
and w/{ = E/B = a (X is a constant that is found in Sec. IV and « is a specified ratio
for each specific transformation). That there is a relationship between rotation and boosts
to the electric and magnetic fields has also been noted in the tract by Synge [7] (p. 94)
with the comment “the algebra of the infinitesimal transformation is essentially the same
as that of the electromagnetic field.” This means that the generators of the Lorentz group
and electromagnetic field are in one to one correspondence with each other [8]. However, we
have not found in the literature a calculation where this algebra is employed to evaluate e”.

In the calculation presented here, we explicitly show that the mathematical techniques
used to calculate the 4-velocity of a charged particle in an electric and magnetic field, is
directly generalized to calculate the specific 4 x 4 matrix that the Lorentz transformation
el(«€) corresponds to. Specifically, the differential equation for an arbitrary 4-vector u’ can
be solved by first transforming to a frame where E and B (or equivalently & and w) are
parallel or antiparallel. In this frame the solution is extremely simple. Then, transforming
back to the original frame produces the desired transformation e“(“€). The details of the
calculation are presented in Sec. II. From this solution one easily determines the value of 3
that the transformation produces.

The evaluation of €2 is not directly obvious even after the matrix elements of e“(“£) are
known. In the latter part of Sec. II we discuss an interesting method by which €2 can be
determined, which is based on the symmetry found in the matrix elements of e“(“#%  For
fixed directions of w and &, and fixed @ = |w|/|€|, we find as £ = |€] varies that the rotation
axis is along @ as & — 0, and generally the axes of rotation continually precesses in the
3-plane defined by the 3-vectors @ and E , with the precession frequency a quasi-periodic
function of £&. The only exception arises to this precession is if £ - w =0 or & X w =0, and

then the axis of rotation is along @.



In Sec. IIT we present the entirely different technique used in relativistic quantum theory
for evaluating the matrix elements of exp[—w-S —€- K. A direct power series summation of
the matrix elements for exp|—w S — & K| for arbitrary w and & appears at first sight to be
quite complicated due to the multiplicity of commutation relations given by Eq. (5) for the
4 x 4 matrices S and K. However, in Sec. III we show that the power series representation
for the matrix elements of e* can be summed straightforwardly when the generators are
expressed in terms of Jy = K +4S. We use that [J,,J_] =0 and that J2, = 1. We show
that J1 can be expressed in terms of the Pauli spin matrix o and then further reduced to
obtain the Lorentz transformation in a form expressed solely in terms of spinor operators
as it is found in Refs. [5] and [9]. Further analysis then enables us to replicate the results

obtained by the previous method to find 8 and €2 = 0Q.

II. DYNAMICAL ANALOG SOLUTION FOR eL(wé)

In this section we solve and interpret the specific form of the Lorentz transformation

operator by the dynamical analog methods discussed in the introduction.

A. Posing the Problem

We observe that if we take w = o€ then e’ can be written in the form,
el — exp [—§ (o@ .S +E- K)} .

If we now take the derivative with respect to &, we find [we use that AF(AA) = F(AA)A

with A a scalar, A an operator, and F'(x) an analytic function],

jgeL(g) = % exp [—f (a®-5+g-mﬂ = —(Oé(:J'S+E'K) ek®, (7)

Equation (7) is directly related to the equations of motion for the 4-velocity of a charged

particle in a spatially and temporally constant electric and magnetic field. To see this, let



the operators in Eq. (7) act on an arbitrary 4-vector

Zo
I
T = ,
o)
T3
and we obtain the equation,
dy N ~
d—g:—(aw-S—l—E-K)y (8)

where y = e“©z, or more explicitly,

u(€) =Y ("), = 9)

3
i=0 K

(note that y;(0) = z; and (eL@)) _are the matrix elements we are seeking).
ij

Now let us compare Eq. (8) to the response of the 4-velocity of a particle of charge ¢,
and mass m to a uniform electric field E and magnetic B. The contravariant 4-velocity

u = (ug, U1, us, u3) = (7,7yv/c) can be written as

d
d—z:—Tzc[—B-S—kE-K]u (10)
or in tensor notation
du’ 4
dr = e (1)

with 7 the local time of the accelerating particle, E and B are electric and magnetic fields

that are constant in space and time,

E1 0 B3 —Bg
sz — ng(k: — (12)
Ey, —Bj 0 By

Es By -B 0



where F' is given by Eq. (11.138) in Ref. [1] and g;; is the usual metric tensor goo = 1, gii =

S1(i=1-3), gy =00 £ j).

If we take
B=—aE®», E=E¢  £=—qE/mc (13)

then Eqgs. (10) and (11) are identical to Eq. (8), and thus the solution of the equation
that determines the operator e’ is the same as the general solution of the equation that
determines the particle 4-velocity in a constant electric and magnetic field. We note that
the general solution allows a larger class of initial conditions than the physical dynamics
problem. The initial conditions for the dynamics problem has a 4-velocity that must satisfy

u-u = ulug = ud —

u-u = 1, while in Eq. (8) 22 — 7 - 7 = const where the constant is real
and can have any sign. Further, the antisymmetric nature of the covariant electromagnetic
field strength tensor Fj, = g;F", guarantees that the solution y'y; = const is independent
of 7 (or equivalently, £). Thus w;(7)u’(7) = u;(0)u’(0) = 1 and y;(&)y (&) = zx* (with
at =y'(§=0)).

In principle Eq. (10) can be solved by straightforward techniques for solving a set of four

L'is the same

coupled first-order linear equations. But as the equation that determines e
as the equation for the evolution of a 4-velocity in a constant electric and magnetic field,
one can expedite the solution by first transforming to a reference frame O©” where E” and
B" are parallel (or antiparallel) to each other. The integrals that need to be performed are
then indeed trivial, and one can then transform back to the initial reference frames. The

procedure will be given below. The case when both £ = B and E - B = 0 can be found as

limiting case of the general problem that is solved.

B. Detailed Solution for eL(w:€)

Equations (10) [or (8)] determine a 2D Euclidean plane in which the 3-vectors @ and

E lie. Let us choose this plane to be the z-y plane. Thus, without loss of generality ws



and &3 are set to zero. Further trivial simplification is achieved by choosing the z-axis so
that Es = 0. Then the effective electric field is E = EZ and the effective magnetic field is
B = —aF® and W = cos xx + sin xy.

The effective fields E and B can be made antiparallel (or parallel) to each other by
considering the equation in a frame O, moving in the z-direction, with a relative speed (3”.
In this intermediate frame, the electric and magnetic fields will be E” = E”(cos 0 +sin o)

and B” = FB’(cos cZ+sin oy) where E” and B” are related to E and B by (see Eq. (11.149)

of Ref. [1]),
B = E"coso ="(E, - 3"B,); E,=E"sinoc=+~"(E,+ 3"B,)
(14)
By = ¥B"coso =+"(B, + 8"E,); B, =FB"sinoc=+"(B, - p"E,)
E, 1 B, cos Y
with 7" = 1/(1 — 3"*)'/?, and =F , = —aF . By setting
E, 0 B, sin y
E}/B; = E,/B,, we eliminate ¢ and we find the relation (found in Ref. [6], p. 65),
g (ExB)s :ﬁz)\_—asmx (15)
14087 " |ER+[B~ W 7 (1+a?)

where ¢S5 is the Poynting Flux in the z-direction and W the field energy of our analogous
effective fields.
Note |A| < 1/2. The solution for 5" is

ﬁ” _ % {1 . (1 . 4)\2)1/2}

1 1+ -4 V2

(1 _ 6//2)1/2 B \/5(1 _ 4)\2)1/4

1

1/2

(1= (1= 4x)12] 77
V2(1 = AN)V4 [N

’y//ﬁ/l —

Observe that §"(a) = 8"(1/«).

In the intermediate frame, given by
2’ = exp [— tanh™* ﬁ"Kg] r= Nx
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where

’7” 0 0 _ 6”7//
0 1 0 0

N = (17)
0 0 1 0
_ ﬁ” ’Y” 0 0 ’Y”

the electric and magnetic fields, will be antiparallel if —7/2 < x < 7/2 or parallel if
/2 < x <3m/2.
We note that the magnitude of the transformed electric E” = E”(Z coso + gsino) and

magnetic fields B” = FB"(Z coso + ysino) and its orientation angle o, are given by,

"

AN 2 A2 w21 212 2 2 112 AR
= =7 {1+0z6 + 2a0 smx} —%{{(l—a)—i-éla cos X} +1—a} =\
B” " 2 12 [/ 1/2 1 2\2 2 2 1/2 2 1/2 —
= =" [a + 0"+ 2ap smx} :E{[(l—a) + 4a” cos X} +a—1} =\

(18)
coso 1+ af”siny 1
sino —"acos x [1+ a23"7 + 203" sin y]'/*
QU COS Y 1
-+ (19)

asiny + 4" [a? 4 32 + 2a4" sin X]I/Q.
Here the upper sign is chosen for the —7/2 < x < m/2 (B" antiparallel to E") and the lower

sign for m/2 < y < 3w/2 (B" parallel to E"). Unless otherwise stated, this sign choice holds

throughout this paper. Observe that:
A(a) = ala(1/a) (20)
and that we may also determine o from the last relation in Eq. (19),
tano = (tanx + "/« cos x). (21)

We note that if x is in the first quadrant, then by using Eqgs. (15), (16), and (21), we find

tano 1

tanx b 2(1 4 a?)\2 {1 —(1- 4)‘2)1/2} =1- R(a’/\(a’X))'
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We then observe that f(z) = % {1 — (1 —az)V 2} is a positive monotonically increasing func-
tion of x in the regime 0 < z < 1. Hence
1
0 < R(a,)\(a,x)) < R<a,)\(a,7r/2)> = la+ad)—ji-
o

1, ifa<l1
= (22)
1/a?, ifa>1.

Thus, 0 < R(a, )\(a,x)) < 1,and 0 < tano/tany < 1. It then follows that for y in the
first quadrant, 0 < ¢ < x. More generally, it readily follows for the various quadrants,

(taking —m < x < m)

x in first quadrant 0<o <y
x second quadrant 7T >oc+7 >y

(23)
x third quadrant —nm<oc—-—n<Y

x fourth quadrant 0>0>y.

One can further ascertain from Eq. (21) that if o(x) is known for x in the first quadrant,

we can express o(x) in any quadrant,

o(a,—x) = —o(a,x)
ola,m—x) =—0(a,x) (24)
oa,x —m) = o(a, x).

In Figs. 1-3, we present several figures for the parameters we have introduced. In Fig. 1
we plot —f" vs. X' = 2x/7 (0 < X’ < 1) for the values o = .1, .25, .5, .75, and 1, with
the curves for the smaller values of « lying below the curves with a larger value of . These
curves can be applied for @ > 1, as 5”(1/a) = §"(«). In Fig. 2 we plot x' —0' =2(x —0)/7
vs. X' for a = .25,.5,.75,1.,1.25,2,4. The curves for larger « lie below the curves with
smaller o. In Fig. 3a we plot Ay vs. x for a = .1,.25, .5, .75, and 1, and the curves with
larger « lie below the curves with smaller o. In Fig. 3b we plot AX(a) = M (1) — A\ («)

vs. X' for « = 1.25, 2.5, 2, and 4. The curves for A\, can be inferred from these graphs,
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using Eq. (20). Note that A\j(«, x) decreases monotonically as a function of x from y = 0
to x = 7/2, ranging from unity when x = 0, to (1 — a?)"/2 if a < 1 or zero if a > 1, when
X =m7/2.

Continuing in the construction of e”, it is convenient to make an additional rotation
transformation so that E” is along an intermediate z-axis. Hence, with 2" = Hz", where

H = e 7% we need to evaluate the dynamical equation,

d " d "
e ::—;; — HNFN“'H ¢ (25)
q T

where HNFN-'H~! = R is explicitly given by

0 0  *£X 0

""" have been reduced to two uncoupled sets of 2 x 2 linear

Note that equations for x
equations. We readily find the screw transformation defined by Eq. (127), Chap. IV, in

Ref. [7] gives the solution for z”(§) in terms of " (0),

zy () cosh A&  —sinh A& 0 0 xy'(0)
z' (&) —sinh A cosh A€ 0 0 x"(0) @)
zy (&) 0 0 cos A\oé + sin A& x4'(0)
x4 (§) 0 0 Fsin A cos A€ x4’ (0)
In compact notation, we write Eq. (27) as
2"(§) = Q(£)z"(0) (28)
where Q(§) is the square matrix shown in Eq. (27).
Returning to our original reference frame we have
(&) = NTH'QHN x(0). (29)
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Thus the desired solution for the transformation is

exp [—&(acos xSy 4+ asin xSy + K1) = e = NP H'QHN. (30)

To facilitate the matrix multiplication note that

’YH 0 0 _ ’YH 6//
oy 0 CcosS o sino 0 (31)
0 —sino coso 0
o ’Y” BH 0 0 ’Y”

and N"'H-! = (HN)™! is obtained by changing the sign of 3” and ¢ in Eq. (31). By

performing the matrix multiplications, the matrix form of e” is obtained,

7" lCOShM) A [sinh()\lg) cosa - lsinh()\lg) sng 10 [COSh(Alf)
4" COSWf)]v 3" sin(Asf) sin a], 8" sin(Aof)) cos 0], _ ‘COSW@]’
—"|sinh(ME) cosT 02 0 cosh(A€) Cosasmalcoshw g |8"sinb(ng)coso

;Fﬂ” sin(As€) sina], +sin? o cos(Aaf), ~ cos( AQS)], _ F sin(Aof) sina],
| sinb(neysing  cososing]| cosh(h) cosh(Mé) sin? 0 7| 87 sinh (M\€) sin o
;_Lﬁ" cosasin()\gﬁ)], _COSWO]’ + cos(Az€) cos? o, _ + sin(\of) cosa],
e B,,[Cosh( Mé) —" [5" sinh(A\&)coso —7” [5" sinh(A;€) sin o V,Ql_ 57 cosh(\é)
~ cos( 5)1 | T sin(A\€) sin 0] : + sin(As€) cos 01 7 +cos(hy 5)] |
(32)

We have confirmed with spot numerical checks that 0 exp[—¢(aw - S + K;)]/0¢ =
NH'0Q/0¢ HN = —(aw - S + K;)el. Note that the choice of sign changes just when
X passes through +7/2. One can show that Eq. (32) is continuous and smooth as y goes

through £+m/2. Observe that Eq. (32) has the property that

LOO + L33 = L11 + L22 = cosh )\15 -+ cos )\25 (33)
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The solution we have obtained is for a conveniently chosen coordinate system where
z is perpendicular to @ and E (or equivalently E and B) and E = x. With additional
straightforward rotation operations the solution can easily be made arbitrarily general.

The value of the boost is obtained fairly straightforwardly from Eq. (33). By using an
initial value of x = (1,0, 0, 0) which is the 4-velocity in frame O, then y(¢) = efz gives this
4-velocity (1, 81, 35, 5] in the O system. This is the first column of Eq. (32). To obtain
B; (i = 1 — 3) [the components of the relative velocity of O in the O frame| we need to
obtain the first column of the matrix that is inverse to Eq. (32). This is achieved by setting

¢ — —¢ in Eq. (32). We then infer that v and 3 are given by,

L [cosh()qf) — 3" COS()\Qg)}

[sinh(A1€) cos o F 3" sin(A2€) sin o]

= T osh () — B cos(0a0)]
Gy = [sinh(A1€) sin o £ 3" sin(A9€) cos o]
* 9 feosh(M) — B2 cos(Aof)]
53 _ ﬁ” [COSh()‘lf) - COS()‘Zg)] (34)

[cosh(A1€) — B2 cos(A2€)]

We note that there is an indeterminacy in Eq. (32) when & 1 w and o = 1 where

|3"] = 1. To resolve the result we take the limit & — 1 and we find,

£ &
1+5 =€ 0 s
R 1 0 & (35)
0 0 1 0
£ £
= €0 1-%

This particular transformation is denoted in the text by Hamermesh [4] on p. 494 as T} (—¢)

(note in Ref. [4] the ordering of the axes are 3, 2, 1, 0 rather than 0, 1, 2, 3).
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C. Evaluation of Orientation Axes of O’

There is a striking symmetry in the result in Eq. (32); the off-diagonal elements when
neither ¢ or j is three, satisfy (eL)ij = <€L>ji, while if either ¢ or j is three, these off-
diagonal elements satisfy <€L)ij =— (eL)ij. We will develop a method for the evaluation of
Q, that makes use of the constraint that the Lorentz transformation for e“(“# which can
be expressed as a successive boost, followed by a pure rotation, must exhibit this symmetry,
as well as reproduce the relation given by Eq. (33).

In general, a successive boost followed by a rotation does not exhibit the symmetry found
in Eq. (32). For example, if we choose the rotation axis as the x-axis then we find

gl -8
exp(—QS))exp(—E - K) = 2375 (36)
N — + exp;(—§.S))
where row 3-vectors are 3 = (031, B2, 33), B = (01, 8208 + B38inQ, — By sin Q + B3 cos Q),
and exp;(—€2S;) is a 3 x 3 rotation matrix without the 0-row and 0-column. The superscript
“T” denotes transpose that converts a row vector to a column vector, and 87 3 is a direct
product of the column and row vectors.

Clearly Eq. (36) does not exhibit the required symmetry unless there is a special relation

between the components of 3 and 3. As an example where this relation occurs is when

there is a rotation about the z-axis, which leaves (3; untouched, but takes By — (5 and (3

to —03. This rotation is shown in Fig. 4, which clearly gives the relation

QB
tan — = —. 37
2" B 7
One can verify algebraically that Eq. (37) implies
o cos 2+ B3sin ) = By
(38)

— (5 8in Q) + B3 cos Q) = — 3.

Denoting £;; as the matrix elements of Eq. (36) we also have
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Loo + L3z = L1714 Log =y +cosQ— (v —1) 55/5% (39)

Because of matrix element symmetry observed in Eq. (32), we call this the synchronism
between rotation and boost required to achieve the synchronous rotational boost symmetry
(SRB).

More generally, if the rotation axis in the -y plane is along (Ab = cos ¢x + sin ¢y, then

the Lorentz transformation
exp [—Q(Aﬁ . S} exp[—=2 - K],

exhibits SRB symmetry, if

BQCOSQ + (38in Q) = BQ
(40)

—Fysin Q + B3 cos Q = —fs.
where 3 = 5 cos ¢ + (5 sin ¢ is the component of 3 along the g?) axis and 3, = — 3 sin ¢ +
(5 cos ¢ is the component of 3 along the z x g?) axis. It can be shown that if w and & lie in
the x-y plane, Eq. (40), with ¢ only in the z-y plane, is the most general relation needed to
achieve SRB symmetry.

The form of the Lorentz transformation, when Eq. (40) is satisfied is then found to be,

e —Wﬁa

et K = , (41)

=B T BLB.t expa[-96 - 8]

efﬂ(cos ¢S1+sin ¢Sa)

where 8, = (51, fs, fs) and B, = (Bl, (s, —03). Further, Eq. (39) is found to still be correct
independent of ¢». Now, we can obtain the value Qab by matching the elements £;; of Eq. (41)
term by term to be elements of Eq. (32). With the help of Eq. (A3) of the Appendix we also
establish that the diagonal matrix elements of Eq. (41) satisfy the same relation as given by
Eq. (39) which does not depend on ¢.

We now determine the direction of the axis of rotation £ = cos¢Z + sin ¢y and the

amount of rotation § about the axis for the Lorentz transformation e« . From Eq. (34)
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we know the value of 3 of O’ with respect to O in terms of the input parameters «, x and &.
Then by equating the 3-3 elements of Eqgs. (32) and (41), we find, after some algebra, that
() is determined by,

,}/2

cos{) =
v+1

B2+ " [—5”2 cosh A€ + cos )\25} =—-1+G() (42)

with

(1 + cos A2§)
Y21 — 372(1 + cos Ao€) /(cosh A1 +1)]

G(&) = (43)

Note that the minimum value of cos§2 is —1, and unless either " =0, A\; =0, or £ = 0, the
maximum value of cos Q2 < 1. This follows because 0 < G(§) < #rflo—fg%% =14 cos A < 2,
and the right-sided equality cannot be achieved unless either 3”7, \; or £ vanish. Except
for these special cases (which, if £ # 0, turn out to be equivalent to y = pr/2, with p an
integer), then as £ increases, cos {2 = 1 only for £ = 0, and () remains less than 27. As a result

Q) oscillates. The maximum value of cos {2 occurs close to 1 4 cos A2§ = 2 (this condition

becomes more accurate the larger cosh A\1& becomes). For cosh A1§ > 1, Q oscillates between
—cos (1 —20") < Q < cos™(1 —26"). (44)

The value of sin Q2 is determined to within a sign, sin Q = 4[1 —cos? 2]'/2. For sufficiently
small &, sin{2 > 0, and sin ) changes sign when 1 4 cos () vanishes, or equivalently when (2
passes through 7. From Egs. (42) and (43) this occurs when cos \y{ = —1. Hence sin2 > 0
for 2nm < A& < (2n+1)m, for integer n, and sin 2 < 0 for (2n+1)7 < A& < 2(n+1)w. Also
note that when 2 — (2n + 1)x, that % — () because 1+ cos (2 vanishes quadratically in

A& — (2n 4 1)m, while sin Q vanishes linearly in A\ — (2n + 1)7.

To obtain the axis of rotation, we use the relation in Eq. (40),

(B1sin ¢ — Pa cos @) sin 2 4 [ cos Q = —f3

and we substitute for 31, 52, and 33 the equations given by Eq. (34). After some algebra we

find for the equation determining ¢,
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1 Q
7" 3" (cosh \ & — cos )\QS)M
sin €2

[Cos (25) sinh(M\€) + sin (225) sin A€ (1 + m)lﬂ

fLemiOeen o TV

= —sinh \;€sin(¢ — o) £+ 3" sin Ay cos(é — o). (45)
The solution to this equation is,

sin(¢ — o) =
sinh )\1§<smh ME cos ( 25) + Sln(>\2§) sin (A2E) (1 + m)lﬂ) 2 sin? ()‘35) coSs (%) \/W

(46)

) Sin2(ﬁ> 1/2
(smb? (0s8) + 972 sn* 2o (14500 (51 + s
(T M€ 28 2 -
reat (55 et (5 oy "

with
VM2 = (cosh A\ — 1) + [2 — 3" (1 + cos )\25)} . (48)

Note that one can show that this solution only gives precession without oscillation of ¢
as ¢ changes as long as |x| # 7/2, x # 0 or x # w. For the cases that are exceptions, the
orientation of the rotation axis remains fixed as £ changes.

We also observe that if a solution for ¢ is obtained for a given y, then for y — —yx;,
the solution for g?) is q?) = cos ¢x — sin ¢y; for Y — m — x, the solution for gAb is q% =
—cos ¢x + sin ¢y; and Yy — x + 7w the solution for (}5 is q?) = —cos¢px — sin ¢y. These
symmetry conditions allow us to describe all solutions in terms of x in the first quadrant.
One can show that precession is clockwise for x in the first quadrant, and thus it follows
that the precession is clockwise for y in the third quadrant, and counterclockwise for x in
the second and fourth quadrants.

Now consider the special cases x = 0,7 (3" = 0,7” = 1) and x = +7/2. For the first

cases (x = 0,7), where o = 0, we obtain from Eqgs. (42) and (45),
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cos ) = cos A€ sin €2 = sin A9€, sin(¢ — o) = 0. (49)

Thus, ¢ = x and x = 0 or y = 7. Hence in this case there is no precession, but a fixed axis
of rotation, and €2 changes without bound as £ increases.

If x = £7/2, we have for a < 1; 3" = Fa, 7" = 1/(1 —a®)V2, A\ = (1 — a®)V2, Ay =0,
and ¢ = 0. Then, from Eq. (45) we find the solution sin(¢ — o) = 1. Thus, the solution has

a fixed rotation axis at y = +7/2. From Eq. (42) we have,

2(1 — a?)

cos{l=—1+ {1 —2a?/[cosh (1 — a2)¥/2¢) + 1]}’

(50)

or equivalently,

2a(1 — a?)/2sinh[(1 — a?)/2¢]

_9\1/2
COSh[(l - a2)1/2£] +1—2a? (1 _ a2)1/2§ > 1 204(1 « ) ) (51>

sin ) =

Note from Eq. (51) that €2 rotates from zero to a maximum value of Q. =
sin! <2a(1 - a2)1/2) < 7, where Q. is approached as [(1 — a?)Y/2¢]7! — 0.
For the case a = 1, y = £m/2 we need to expand in 1 — o?, and take the limit as this

quantity vanishes. We find,

4€

™ .
¢:§, st:m.

(52)

Thus @ - 0as{ — 0, Q2 — 7 for { — oo and Q = 7/2 for £ = 2.
When o > 1, x = 47/2 algebraic manipulation gives [using Ay = (a? — 1)¥/2, A} =
0, " =Fl/a, 0 =m/2],

2a(a? — 1)/2sinf(a? — 1)Y/2¢]

¢=m/2 sin 207 — 1 —cos[(a® — )12%€]  a> 1

sin[a? — 1)1/%¢]. (53)

Note  that maximum  and  minimum  values of sin{2  occur  when
sin[(a? — 1)1/2¢] = £2a(a® — 1)/2/(2a? — 1), whereupon sin 2 = £1. Thus as ¢ increases,
Q) can rotate without bound, with the rotation axis fixed at ¢ = x = +7/2.

It is interesting to note how the precessional solution blends in smoothly with the pure
rotational solution as x — 0 where |3”| < 1. Then from Eq. (46), we see that ¢ — ¢ hardly

changes until the vicinity of A\2£/2 = nm, whereupon \y§/2 goes from nm — € to nw + €, for
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1> e > |p"]. Then the axis has flipped direction, but one can also infer that d€2/d¢ also
flips sign as \2{/2 passes through nmw. Note that if the axis changes direction and d)/d¢
changes sign, it is essentially the same rotational effect as having the axis fixed and d2/d¢
maintaining the same sign. Hence except for the small region |[\{/2 — nn| =~ |5”|, the

transformation for small y is almost the same as the case y = 0.

III. SPINOR ALGEBRAIC DESCRIPTION OF LORENTZ TRANSFORMATIONS

In this section, we solve the problem discussed in the preceding sections by a different
method based on spin algebra used in relativistic quantum mechanics. In this treatment, it
is not possible to relate the problem to a dynamical analog considered before, but we are
able to exploit spinor algebra to sum a power series of an exponential matrix in a rather

straightforward manner.

A. Reduction of the Four-Dimensional Lorentz Transformation to Spinor

Representation Form

We first demonstrate how the general 4-dimensional Lorentz transformation of Eq. (9)

can be directly reduced to a well-known spinor representation of the form [5,9];
Y =LXLT, (54)

where Y (X) is a 2 x 2 matrix constructed from the space-time coordinate (yo,y1, Y2, Ys)

(($0,171,$2,$3)) as

Yo+ Y3 Y1 — Yo
Y = =Yty o (55)

Y1 +1iy2 Yo — Y3

(similarly for X), where o = (07, 09, 03) is the Pauli spin matrix vector and

L(w, &) = el78+iwra/2 (56)
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In order to derive Eq. (54) from Eq. (9), we first rewrite e& = A(w, §) = e K5 thereby

using J . defined as
Jiy =K +iS, (57)

where K and S are the same as those inferred in Eq. (4) [compare with Eqgs. (2.70) of Ref. [2]
and Egs. (5.6.7) and (5.6.8) of Ref. [3]]. J 1 satisfy the following relations;

[J:I:i, J:tj] = :i:Eiijik, [J_H', J_j] = O, and Jiz =1. (58)

Because of the commutativity between J, and J_, one can express A as a product of two

terms, each involving J, or J_ as

A= AA, (59)
where
A = RIS (60)
with
A= [(—€+iw) - (—& +iw)]"2 = Mg+ Ay = £\ F ida), (61)
A= (6t iw) (62)

In Eq. (61), the branch of A is chosen in the first or fourth quadrant and therefore Ag > 0.
Note that A\; and Ay are just the functions defined in Eq. (18), with the upper sign chosen
for —m/2 < x < 7/2 and the lower sign for 7/2 < x < 37/2. The sign choice follows from a

relation that readily finds from Eq. (61)

Mg = afcos? x]Y? = +acos y, (63)

since A\; and As are by construction in Eq. (18) non-negative. Further, using Eqgs. (19) and
(61), one can show that A; and Ay can be expressed in terms of the angle o introduced in

Eq. (14), together with " and 3" of Eq. (16), as
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.
NI sin 0. (64)

We now transform the 4-vectors and matrices involved by means of the following unitary

A = — COS T and Mo =F
Y

transformation R;

1 0 0 1
B 1 0 1 i 0 (65)
V2 0 1 —1 0
1 0 0 —1
R transforms a 4-vector such as x as
Zo To + X3
T 1 T, +1x
=R o ’ ) (66)
) \/§ I — ’il‘g
T3 To — T3
and an operator, such as n - J, in A, as
R n-o 0
Rn-J, R ' = : (67)
0 n-o
Eq. (84) implies that A transforms as
L0 L L
A = RAR™ = =7 (68)
0L Loy Lo

where L is the spinor matrix of Eq. (56). The product A = AA* is then transformed as

A, = RAR™' = RAR'RR* Y(RAR “W'R*R™' = A, EA'E"*, (69)
where
1 0 0 0
. 0 0 1 0 E By
E=RR"™ = = = E*. (70)
0 1 0 0 Ey Es
0 0 0 1
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Transforming the 4-dimensional Lorentz transformation y = Az by multiplying both side

by V2R, we obtain

N% X X
Very=|"" | =a| T | =aBaE| T, (71)
Nz Xy Xy
where
+ Totx + for =1,
V= o s and AX; = o with (72)
Y1 1y r1 £ ixe — for i=2.

Inserting Eqs. (68) and (70) into (71), one obtains
A% Lyy Lyo E1n B Ly, L, E1n B X
Vo Loy Lo FEo1 Ea L3 L3y Eo1 Ea Xy
Using the relations
(Lij)ke = i Lie with  (Ejj)ke = 6100

that follow from the definition of the matrices L;; and E;; and also noting that ();), and
(X;)a are the ai components of the matrices Y and X in Eq. (54), i.e., Yo = (Vi)a and
Xoi = (X))a, respectively, it is straightforward to obtain our desired result. Specifically we

have

Yoi = (Y;>a = (Lij)aﬁ(Ejk)ﬁ“/<LZZ)75<E€m>6€(Xm>€
- 5ijLa66jfy§k,65kZLi’;56€s(3m6(Am>s

= LapL}s(Xs)p = Lap(X)psL}; = (LX L. (74)

Eq. (54) is thus proved.

B. Spinor Calculation of the Lorentz Transformation Matrix.

The merit of use of the spinor representation Eq. (54) of the Lorentz transformation is
that it is possible to directly reduce the exponential form of L(w,&) to an explicit 2 x 2

matrix form in a very straight-forward manner by first expanding in a power series and then
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2

use that (o - n)? = 1 for any 3-unit vector i (i.e. >;n? = 1) even if n; is complex. The

resulting expression can be reduced to a form
L:Lo—f-Ll'O', (75)

where Ly and L; are independent of . The series expansions for Ly and Ly can be straight-

forwardly summed and we find for any complex function A, and any 3-unit vector n,
eAe/2 — cogh <%) + n - o sinh <%) : (76)

In our case, A and n are given by Egs. (61) and (62), respectively.

Thus,
_ AN Agr A; . Ar\ . [A;
Ly = cosh <§> = cosh (7> cos (7) + ¢ sinh (7> sin (7> : (77)
1 4
L, = W(A+1C), (78)
where
S A
A = Re[A"(—& + iw) sinh (§>} = —aw — b, (79)
A
C=1Im {A*(—E + iw) sinh (5)] = —a€ + bw, (80)
with
. AR . A[ . AR AI
a = Agcosh (7> sin <7) — Azsinh (7) cos <7> : (81)
N Ary (A
b = Apsinh (7) cos (7) + Ay cosh <7> sin (7) . (82)

The explicit form of the transformation matrix A(w, &) may then be obtained by estab-
lishing the relations between (zo, ) and (yo,y) by using Eq. (54). Inserting Eq. (75) into

(54), we obtain
Y=y+y-od=(Lo+ L 0)(zo+x o)L+ L] o). (83)

The evaluation of the right most term in the above relation may be carried out with the
help of the well-known relation; (a-o)(b-o) =a-b+ia x b-o. Equating, separately, the

time and space components of the resulting equation, we find
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yo = (LoLy + Ly - LY)xg + (LoLi + LyLy — iLy x L) - x, (84)
y = (LoL] + L{Ly +iLy x L)z
+(LoLy— Ly - LY)x +i(LyLy — LoL}) X « + (- L)Ly + (- Ly)Lj. (85)
One can then easily identify that the components A, can be given in general as
Aoo = LoLy + Ly - L7,
Ay = LoLy; + LoLy; — i€y Laj Ly,
Ajo = LoLy; + LoLy; + i€ L, LYy,
Aij = (LoLy — Ly - L)dy; — iegu(LoLyg — LoLyy) + LiLy; + Ly Loy, (86)
where €;;, represents the component of the antisymmetric third rank tensor.

Explicit expressions of A,, may be determined by using Ly and L, given by Egs. (77)-
(78). In carrying out the calculations, use is made of the same coordinate system as used
before; the x-axis was chosen to be the direction of &, while the y-axis is set in the plane
defined by & and w. It is then possible to show after some algebra that the resultant Lorentz

transformation matrix agrees with Eq. (32). We give here the results in a form that is directly

obtained from the present spinor algebra;

Ao =1, Ayi = =5, Ajp = —(8; — 2B56:3),

Aij = 6ij [fz COSh(/\1£> + (1 - fz) COS(/\Qg)] +

(1 0 g o) — osa) G + %010,
¢()\2 Slnh()qf) — )\1 Sin()\gf))ﬁijkgk + ()\1 smh()\lf) — )\2 sin()\gf))aeijk@k], (87)

where v and ; (i = 1,2, and 3) are the same as those of Eq. (34). Further,

(f1: fa, f3) = (cos® o,sin’ o, —y/5"). (83)

C. Successive Boost and Rotation

The Lorentz transformation matrix L', corresponding to the successive boost and rota-

tion, £(QQ,22) = e~ Se=K introduced in Sec. 111, may also be obtained as
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L = ez’ﬂ-a-/2efﬁ-cr/27 (89)

with E = @ tanh™' 3, and we note that v = cosh = and 73 = sinh =. The reduced form of L’

#¥o and e~= separately and then taking

can be obtained by performing the reduction for e
the product. (We note that Ref. [9] used L’ = L; L, indicating that the final transformation
is the result of successive transformation of Ly and Ly, but it did not emphasize the special

interpretative case where Ly is a pure boost and L; is a pure rotation.)

The resultant reduced form of L’ can still be cast in the general form of Eq. (75) as
I'=L,+L, o, (90)

where L, and L) are found to be

—_ —_

Q = Q 2\ /A
Ly = cos (—) cosh <—> — isin (—) sinh (—) (Q
2 2 2 2
Q =\ = Q E\ /A = Q =\ A
L} = —cos <§> sinh <§> =2+ sin (5) sinh (5) (Q X E.) + isin <§> cosh <§> Q. (92)

-E), (91)

D. Relations Between Two Lorentz Transformations

By equating Eq. (75) with (90), it is possible to establish the direct relations between
(2,E) and (w, &) and simplify some of the relations derived in Sec. V. Since both Ly and
L, are complex, the equivalence condition (Ly = L{ and L; = L)) leads to the following

four equations;

Q = I Agr
= h{Z) = — h({—
cos <2> cos (2> cos )cos ( 5 > , (93)
. Q . = S ~\ AI . AR
—sin <5> sinh (5) (Q . ...) = sin <?> sinh <7> , (94)
Q =\ o~ Q = ~ - 1
— CoS <§) sinh (§> = + sin <§> sinh <§> (Q X E) = W ) (95)

. (D =\ A 1
sin (§> cosh <§> Q= NEh (96)

As seen in Eq. (96), Qs proportional to C. Noting that C' is given as a linear combination
of £ and w, the axis of the ()-rotation is directly seen to be in the plane defined by the

vectors € and w in agreement with the relation obtained in earlier sections.
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To obtain €, we may first deduce cos? % by taking the square of both sides of Eq. (93)

and then by dividing by cosh? % The resultant expression reads

Q A A =
2°° _ 2 1M 2 R 2=
2 cos 5 4 cos 5 cosh 5 /2 cosh 5" (97)

Since 2 cosh? % = 1+ cosh = can be calculated from cosh= = =, the above establishes the
relation between 2 and (€ , w). Furthermore, it is possible to show after some algebra that
the r.h.s. of the above equation reduces precisely to G defined in Eq. (43) and thus the
result that determines €2 in Eq. (42) is reproduced. One can also determine €2 directly from

the expression for cos% obtained from Eq. (97);

cos% = cos (%) cosh (%) 1/%, (98)

where use was made of cosh(Z/2) = /(7 +1)/2. Since 0 < Q < 2, the above equation
uniquely determines §2/2 and hence €.
In Sec. II, use was made of Eq. (40) derived on the basis of SRB symmetry in order to

obtain the axis of rotation, Q = cos ¢Z + sin ¢y. Equation (40) can be rewritten as
[sinQ,B x @+ (1+ cos Q)ﬁ} -z=0. (99)

In the present approach, the above equation follows from Eq. (95) if one multiplies both
sides by 4 cos % cosh% and then takes the scalar product with 2 using that (A - 2) = 0.
As in Sec. III we can then derive Eq. (45) for the orientation angle ¢ between the axis of
rotation € and the direction E .

One can obtain a compact closed form expression for €, which simply follows from

Eq. (96);
Q=_—_—C/ (sin o cosh :> : (100)

If one takes the z and y components of the above equation, one finds after some algebra

12 5
cosp =+ 7 a | A1 sinﬁcoshﬁ — A 3" Cosﬁsinhﬁ -
sin 2 2 2 v—1
12 QN
2
Sin¢ = _% [AQ Sin%COSh% +)\1 COS%SiHh ¥‘| ﬁ (101)
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Equations (98) and (101) now establish the relation between €2 and (£, w) and with the help

of Eq. (93) one can show that Eq. (101) satisfies Eq. (45).

IV. SUMMARY

We have shown that the evaluation of the Lorentz transformation eX(“$) can be cast in
terms of the evolution equation of the 4-velocity of a particle in an electric field, E and
magnetic field B that is uniform in space and time. The mathematical difference of the
two problems is that the 4-velocity u is constrained to have as an initial condition, an inner
product u - u = 1 (which therefore leads to a set of particular solutions for the equations
of motion), whereas the inner product of a general 4-vector, such as the coordinates of an
event (zo,x) has an inner product of arbitrary value, for which we need a general solution
to the “equations of motion” to describe an arbitrary event in a different Lorentz frame. To
solve for the transformation, we can still use the well-known procedure of transforming to a
frame where w and € (or equivalently E and B) are parallel (or antiparallel), then solving
an easy equation, and transforming back to the original frame. The equations solved have
the intrinsic property that the inner product, once initially chosen, is conserved.

Having obtained the solution for e*“#) we succeeded in interpreting it in terms of the
boost B and the rotation Q (2 = QQ) where € is the direction of the rotation axis and €
the angle, defined by the conventional right-hand rule, of rotation about an axis. Specific
formulas, such as Eqs. (14), (42), and (46) determine 3 and Q. It is found that € lies in the
3-plane of w and &, and if w - & # 0 and w x & # 0 the axis of rotation varies only in this
plane. For sufficiently small ¢ the axis of rotation is directed along @, but with increasing
&, the orientation of the rotation axis with respect to E is given in Eq. (46). As a function
of ¢ (a pseudo-proper time coordinate), the rotation axis generally precesses in the 3-plane
of & and w. We find that the mean precession frequency is the Larmor frequency [10],
qB" /27" mc in the intermediate frame where E and B are parallel. The only exceptions

arise if £ -w =0 or £ X w = 0 where then the rotation axis is fixed as £ changes.
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We have also shown how the exponential representation can be directly summed, and

the results of the two methods of calculation are fully consistent with each other.
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Appendix: Specific Representations for Pure Rotation and Boost Operators

It is well known that from the representations in Eq. (4) and the commutation relations

in Eq. (5) one obtains

6—951 —

—€K1 _

0

0

0 10

0 01

10 0 0

01 0 0 s
00 cosQ sinf)

00 —sin€? sin{2

coshé —sinh¢ 0 0

Osinh¢ coshé 0 0

—€K2 _

1

0 cos2 0 sin

0

0 sinQ) 0 cosf?

0 0 O

0 1 O

coshé 0 —sinh¢é 0
0 1 0 0
siné 0 1 0
0 O 0 1

6—953 —

1

0

—€Ks _

0

0 cos
0 —sin) cos2 0

0

0 0
sin€2 0

0 1
(A1)

coshé 0 0 —sinhé

0 10 0

0 01 0

—sinhé 00 1
(A2)

The general pure rotation and pure boost operators can be obtained from straightforward

o~
~

group theoretic relations. If Q = cos 0% + sin 6 cos ox + sin 0 sin ¢y = 0z + Qg@ + Q32 we

have

e

where f(2) = 1 —cosQ. If B

1

0

-0-S — 6¢5369526—QS36—9526—¢52

0

L— (@5 + M) f(Q)

0 —Qgsin Q4+ %0, f(Q)

317 + 3o + (57, then

Q3 sin Q2 + Qlﬁgf(ﬁ) —QQ sin €2 + QQQ3f(Q)

L — (4 +95) /()

0 QosinQ+0Qf(Q) —QysinQ + 005 £(Q)

Ql sin ) + QQng(Q)

1 — (4 +93) /()

— 28, and B = cos#'Z + sin# cos ¢F + sin @' sin ¢z =
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g -8B
(EK 51 08 ,~EK1 0S5~ 'St _ (A4)

v—1
8" I+ B
where v = cosh =, 78 = Bsinh =, and see Eq. (36) for standard definitions of the vector and

direct product notations.
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FIG. 3.

FIG. 4.

FIGURE CAPTIONS

Curves of —3"(«a) vs. X' = 2x/m for a = (.1, .25, .5, .75, 1). The curves for large

« lie above the curves for smaller «.

Plot of X' — o' =2(x — o)/7m vs. X' = 2x/7 for a = (.25, .5, .75, 1, 1.25, 2, 4).

The curves with larger « lie below the curves with smaller a.

(a) Plot of A\j(a) = ads(1/a), vs. X' = 2x/m for a = (.1, .25, .5, .75, 1) with
curves for larger « lying below curves of smaller .. (b) Plot of AX; = (1) — A\ ()
vs. X' = 2x/m for a = (1.25, 1.5, 2, 4) with curves of larger « lying above curves

of smaller a.

A rotation operation about the z-axis that leaves (3, invariant and changes the sign

of #3. Here 3, = 3 — (1.
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