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Abstract

An MHD ballooning mode formalism and calculation is developed to show
how a field 1line following code can be used to study MHD stability. The
asymptotic analysis of the ballooning equation yields the Mercier condition.
It 1is shown that first order equilibrium effects to the vacuum fields from
finite pressure, cancels the intrinsically destabilizing term of the Mercier
condition. A ballooning unstable solution is found in a Heliac
configuration that has a magnetic well at zero beta and a vrotational

transform that increases radially outward.



I. Introduction

The general problem of MHD plasma stability din a stellarator
configuration is complex owing to the intrinsic three-dimensional
equilibrium. However, the analysis simplifies considerably in the
ballooning mode limit, where the cross field structure of the mode is
assumed localized arbitrarily close to a field line. Typical analysis of
such types of modes,l’2 give stability conditions that are more pessimistic
than neighboring modes with larger spatial spread, and hence stability
conditions based on ballooning modes should yield a conservative figure of
merit for the stability properties of a given stellarator configuration,
except perhaps for free-boundary modes.

Ballooning mode equations have been derived rigorously for toroidally
symmetric systems, and more recently for a general three-dimensional
system.3 In the limit of extreme localization to a field line, the
ballooning mode formalism is readily obtained from the eikonal approximation
where a displacement §, normal to a flux surface, can be written as

§ = &(s) exp[iS(a,8)], where s 1is the distance along a field line and «
and B are two surfaces that label a field line. The perpendicular
3S

wave~number 1is given by ELEVS=Va-——
~  ~ o

+-ZB %g. In this work we use Clebsch
coordinates for a and 8 where B=VaxVg, and o is taken to label a flux
surface while B is an angle-like variable.

In general the ballooning mode equation will be given in terms of Va,
which for a given configuration is a complicated geometrical function
reflecting the complex undulations of the flux surface. In this work we
show how we can construct Va, as well as VB, relatively simply, by following

the equations of neighboring field lines on the same flux surface. Thus, if

one has a mechanism to construct the magnetic fields, one then integrates
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along the field line and simultaneously solves the ballooning mode
equations.

In this note we: (1) write the ballooning equations in a manner that is
readily integrated by a field line following code4; (2) analyze the
asymptotic properties of the ballooning mode equation to vrederive the
Mercier condition® in a form particularly well suited for our computations;
and (3) evaluate the 1low beta stability properties for three typical
configurations, Proto-Cleo, Wistor U and a Heliac where the magnetic fields
are due to actual vacuum coils plus the currents arising from a localized
pressure gradient.

We find if a system has a magnetic well at zero beta, it will be
Mercier stable for all beta values consistent with the Ilimitations of the
low beta approximation wused, a vresult previously found by Shafranov.6

However, as ballooning mode stabiity is more pessimistic than the Mercier

criterion, additional ballooning mode stability limitations sometimes arise.

II. Ballooning Mode Equation

The Euler equation of the energy principle, wusing the eikonal

approximation for the variation transverse to the magnetic field, is

d kf(S) d 2 (ixbe 70 (kxb ) = o -
ds B(s) 3 &) +;§ (kxbeVp)(kxbek) E(s) = ,

where b = B/|B| , k = (b*V)b , and s is the distance along a field line.
Stability of Eq. (1) dis determined from the condition £(s) is nonzero

between ~» < s { ©» , We assume that the lines consist of nested surfaces,



e

labelled by o = const., which can be generated by following a field line.

N

If we choose 38/3a = 0 , Eq. (1) then becomes

2
B ds B2

4
d

Given the surfaces a(g) s the function VR can be determined as

follows. From Vo x B = Va x (Vo x VB) we have the relation,

BxVa
with A

Vg = AVa + Za-ZB/IVa|2 and d\/ds is proportional to the

2
Va |
magnetic shear. Then, by applying the operation BxVae+Vx on the form for VB

we obtain the relation

(bxVa) « Vx(bxVa) . (3)

Vo |

Thus, with an initial condition A(so), we have determined V8 given Va, and

(2) can be integrated from —» { s { © , For simplicity, we shall assume
that a point Sg can be found, where the coefficients of Eq. (2) are even
in § - 83 , and then the domain of integration may be limited to
0<s ~s5<» , with dE(so)/ds = 0 and A(so)=0. We assume that when s; * is
on the outside edge of the torus, we otain the most pessimistic result,
although further investigation of this point is needed.

We now need a practical way to calculate Va . This 1is done by
choosing a convenient third coordinate and examining the covariant and
contravariant bases sets. For the covariant bases we have Vq,V8 , and say,
V¢ , where ¢ 1s the wusual toroidal angle about a fixed axis so that
Z¢ = &/R , and R 1is the major radius. The infinitesimal distapce, d£ can

be expressed in terms of the contravariant basis set d£=d¢gl+dag2+dsg3 s
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" VaxVB VBxVé VoxVa 4 larl b
it = =z _~ = T @q = —2 " _  an similar the
TN ST TWadpep <27 WexUBeVel” 3 TaxEeel 7

inverse relations hold, Va = (EBXSI)/IEIX§2'§3l ,etc. Further, we have
B

e x ep » e3|—1 = |VaxVB+V¢ | -° . It readily follows that e; = RB/B, and
SR A g 1 = RB/By
ds = BRd¢/B¢ . Further, ey 1is perpendicular to V¢ and in the plane of
the flux surface. Let us suppose we can find two points, say El(¢0)
and ro(¢g) , infinitesimally close to each other at the same ¢ = ¢ and on
the same flux surface. With these points as initial conditions, we can then

generate the curves r;(¢) and ry(¢) each of which satisfy the field line

equation Rfldg/d¢=§B/B¢. We then choose ez to satisfy

lim ri1(o) - ry(9)
£2(¢0)+£1(¢0) 1z3(¢9) - £2($g) |

(4)

(We note that the initial points are particularly easy to find for systems
for which a plane ¢ = ¢ can be found for which the flux surface has up-down
symmetry).

With eq defined according to Eq. (4), we then find that Va = egxB.

Hence, in terms of €3 , the ballooning mode equation becomes,

B eqxbek
A (L L m%2enp?) ] L 423 R (2t e JE =0
46 "B2R  |epxp)2 ~3~ dp 30 By Bleg|2 =3
(5)

with

dA g . Le3 - (e3b)b] « [(p-V)(esxb) - (e3xb)-Vb]

oo b (6)

% By |§3x§|4
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The advantage of the ballooning mode equation in this form is that we

can determine e5 and A as we generate the equations for a field 1line.
One can show that Eqs. (5) and (6) reduce to the equations derived by

Taylor, Hastie and Connor in the symmetric tokamak limit.

ITI. Mercier Condition and Diamagnetic Shift

We now derive the formal Mercier condition for Eq. (5). We first of

all observe that it follows from J:Sp/aa[2A§+(§xZa)/B2], and Ve3j=0 that

dx /do=R 23-5/B¢. Since A has to be a single-valued function of space, it

follows that the integral A = £¢d¢ %E.g3 ¢ K cannot be secular if a field
¢

line is in a bounded region of space.

Now, writing the ballooning mode equation as

By ae 3p . e3<PekR d

d ( 1 25 2 2
— | ——— + B“A“|egxDb] ) — = 4+ 2 — L————————-— - A __.)g = 0
(7
we seek a solution, as A» o of the form,

E =AY (go + gl/A + gz/_l\,2 + ...) , where Ej are non-secular.

Then, with g_l = |53x9|2B¢/R , we consider the equations



a 1% Jornan? oy e AR v a ®
dé g g dp do

e xbekg
- 2 EFE
aa B

op dA

Hence £4p=1, and if we introduce the notation, {A> = % d¢xg/g dog

e lim
G = f%d¢g R (%9 = e %., the solution for df;/d$ with the condition

that El be bounded, is then found to be

€y dA (A 3p
S -~ [Eq? - (-é)g] 2= (0 -ANg . (9

If we now integrate Eq. (8) from - < ¢ <= , demanding that

dEZ(IMI)/d¢ be bounded, we obtain the relation,

2 (e xb-K)
oo vv + 1) (dA ap BLE3FX2R'K (v + 1) dr
Ld‘p{ g (347)+237 B " g dp
dg
+2%§(x-<x>)]—5¢—)1—} =0 . (10)

Substituting Eq. (9), then leads to the recursion relation v24v4D = 0

with
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D = @22 (g 222 + 2 (A=< 4(2E) g(r?-<a>
e 1200 {{) 8] (8 =5—+ g O-0) + 450 & )1}

(11)

and D < 1/4 is required if stability is to be possible.

In general one can apply these Mercier and ballooning equations to a
numerically generated f£inite beta sfellarator equilibrium. We confine
ourselves here to studies of vacuum fields with a first order pressure
modification. To incorporate the flux function shifts due to the self-well
we note that Va = VagtVo; ;5 VB = VByHB | , where the subscript "0" refers to
quantities generated soley from vacuum currents and the subscript "1" to
perturbed quantities induced by plasma currents. By 1linearizing in the

plasma currents, we have

op BpxVeq
x[Tax98 1470 xT8 o] = I= 2= (F—5— + 2oBo) (12)
‘ B3
Further, by considering
VxVop = VX[ 1Yo otYogVB o+ 58] = O
VxV8 1 = Vx[vgaYagtvgglBotrgpB] = O (13)

and ordering, VA = %i-Va + 0(e), (i.e. the largest gradients are assumed to
L o

be across the magnetic surface) we find on taking the dot product of
Eq. (13) with 2“0 and VB, that Yo Yo EEYaa 5 YRa™~YRE€YRo This model

would be exact if the pressure gradient were non-~zero only in the
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neighborhood of the surface under examination. A similar model has been
used in Tokamak studies® and found to give the same qualitative stability
behavior as found from exact global equilibria. Now if we assume Yoo ~EYBa
and then substitute for Va; and VB; into Eq. (12) we find,
dYBa/ds = - Jy B/[Vq[z, Yoo = ~ p/Bz. Using the expression for j" in terms
of the pressure gradient we find Y8d~o(3/e) with 352p/32, thereby verifying
the consistency of our assumption. Thus only the VBl = YBGVQO correction
need be retained and the ballooning mode equation, Eq. (5), can be
evaluated with vacuum quantities, except for the equation for A which

becomes

= (67)

where dAy/d$ represents the right hand side of Eq.(6) evaluated by using
vacuum field quantities, and AO is the constant of integration for the
parallel current on a flux surface. If we argue that E/=n j; with n a
constant, and that E“=-3®/8s, as there is no inductive field (the "zero
current'" case) , then the uniqueness of ¢ demands Ao=fm ds Bl/f°° ds B.
. w0 o0

If we mnow define 6AEA~AOE—2-%§ £¢d¢ (X-AO)R/[IE3XE12B¢], and
substitute into Eq. (11) for the Mercier condition, we find that the
destabilizing quadratic term is cancelled by the SA term and D becomes

op
lim 55 € 4 egxbe  dhy

[Td¢[g + (=] (14)

D= ——————
o (A gH0)2 0 B ¢
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and consequently if D<0 as 3p/d0+ 0, it is negative (and therefore stable
to the Mercier criterion) for all beta consistent with our perturbation

theory.

IV. NUMERICAL RESULTS

We have solved the ballooning mode equations for a variety of existing
and proposed experimental devices. In this study we present the results for
Proto-Cleo, Wistor U , and a proposed heliac configuration.

The method of computation is essentially the same for each machine.
The fields are determined for a given coil structure by the Biot-Savart law
using a code developed by Anderson, et al.? One can then generate surfaces,
as in Fig. 1, by integrating the equation dr/ds = B/|B|. Then by recording
the'"puncture" points on a given ¢ plane, the structure of the surfaces
are determined (see Fig. 1). In this way one can ob£ain the distance of the
magnetic axis to the last reasonably defined surface on a given ¢ = const.
surface. In practice, a fairly abrupt transition occurs between field lines
that generate surfaces, to field 1lines that are mnot confined. This
transition, though interesting, will not be discussed further in this work.

A1l the configurations examined here have special planes ¢ = const.
that exhibit up-down reflection symmetry and in which %-Za =0 . On such
planes, points equidistant from the reflection line are on the same flux
surface. On such a ¢ = const. plane, we choose two mneighboring points,
riop and 199 , that straddle and are equidistant to the reflection line,
and construct e3 in accordance with Eq. (4) with the sign chosen so that

eqxb is directed away from the enclosed flux surface. Subsequent values

of the vector eg are generated according to Eq. (4) by following the

equations for the field lines emanating from 10 and 1y
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Simultaneously, one can solve the differential equation for A and A.
Examples of AO , A and )\ are shown in Figs. 2 and 3 for a particularly
complicated Heliac configuration. We note that A and Ay increase
secularly, with helical and toroidal modulations and the modification to the
secular behavior from the diamagnetic correction is small while the
modulation effects for this example is large. As the quantity A 1is
proportional to the parallel current it needs to be quasi-periodic. This is
demonstrated in Fig. 3. We see that A has rapid helical ripples and large

toroidal ripples. However, the quasi-periodicity of XA is confirmed with

1 do /d¢ = ZW/J the long period in Fig. 3. We choose an integral number of
poloidal circuits to integrate Egq. (5) so that averaged quantities are
evaluated accurately. We note that do = BO|§30x§|dr0 where the
subscript "0" refers to the initial ¢ = const. plane. We define the
local beta, Bo > of the surface as

Bo = 2(dp/oa) RSC|e3OxbO|/BO = RSC(Bp/arO)/B% where Ry, 1s the distance

from the magnetic axis to the outermost flux surface on the ¢ = const.

symmetry plane. The total enclosed Dbeta, B, is defined as
T

- s

B =/ drB(%BO/RSc B%O where r, is the magnetic axis, rg is the
r

a
position of the outermost flux surface and B%O the magnitude of the

magnetic field at the toroidal axis.

To find the marginal stability condition we assume that an
eigenfunction centered on the outside of the torus will have the most
pessimistic stability properties. If we start at the symmetry plane $=0q
where quantities in Eq. (5) are even in (¢ - $g) » we are allowed to
consider initial conditions, & = 1 and d&/d$y = 0. We then evaluate the
Mercier condition. If D<0O, the configuration has a magnetic well, and we

then integrate Eq. (5) in a scan of beta to see if an additional ballooning
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instability can arise. When Dballooning instability is possible, the

critical beta is insensitive to the boundary condition £=0 at ¢=¢ as long

max
as ¢pax 2 2n/r. If D>O, we examine ballooning mode stability at the Mercier
critical beta By, to see if more pessimistic ballooning beta can be found.
If the eigenfunction for Bo=By indicates an additional intersection, we then
search for the critical beta of the ballooning mode. In Fig. (4) we show an
example of eigenfunction in Heliac which was ballooning unstable with DKO.
Our results show that the Proto-Cleo configuration is always stable
(DK0 and ballooning modes are mnot found), whereas Wistor U is Mercier
unstable, with no additional ballooning mode limits. In this machine the
major vradius, RO, of the axis at fhe preferred plane is 2.5m and the minor
radius from the magnetic axis to the separatrix is .27m. We generate flux
surfaces starting at major radii R=2.55m, 2.6m, 2.65m, 2.7m, 2.75m, and find
that the respective rotational transforms, initial mod-B, and critical beta,
Bp» values are respectively 1 = .27, .35, .50, .72, 1.2, mod-B = 3.9T,
4.0T, 4.19T, 4.43T, 4.75T, and B, = .0031, .0074, .0094, .013, .012. The
mean beta 1is then found to be E = J0l1. These results agree with
Shafranov’s conjecture7 that if the rotational transform increases outwardly
ballooning mode stability is determined solely by the Mercier condition.
However, we find a counter example to Shafranov’s conjecture in a heliac
configuration which is Mercier\stable, with radially increasing rotational
transform, but ballooning limits are found at some radii, as shown in
Fig. (4). We note however, that the critical beta is somewhat high, and we
may be over extending the validity of our perturbation method expecially if
the pressure gradient is not local to the flux surface. Further study on

this aspect is needed.
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In conclusion, we have developed a ballooning mode formalism that is
amenable to numerical studies. If a magnetic well can be designed at zero
beta, there is a strong tendency for the system to be ballooning mode stable
for all beta (consistent with the equilibrium beta limitations of our
theory) 1if the rotational transform increases radially, although an
exception in a Heliac configuration has been found. Further work is in
progress to calculate stellarator equilibrium with global pressure gradients
so that ballooning mode stability can be accurately calculated when there

are appreciable flux surface shifts due to finite beta.
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