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Abstract

A low{dimensional Hamiltonian model is derived for the acceleration of ions in �nite

amplitude Alfv�en waves in a �nite pressure plasma sheet. The reduced low{dimensional

wave{particle Hamiltonian is useful for describing the reaction of the accelerated ions

on the wave amplitudes and phases through the self{consistent �elds within the enve-

lope approximation. As an example, it is shown that for a single Alfv�en wave in the

central plasma sheet of the Earth's geotail, modeled by the linear pinch geometry called

the Harris sheet, the time variation of the wave amplitude during the acceleration of

fast protons.

PACS numbers: 52.40.Db, 52.35.Mw, 96.50.Ci, 94.30.Tz, 94.20.Rr.
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I Introduction

The acceleration of particles by Alfv�en waves is important because the phenomenon is ubiq-

uitous in space, astrophysical, and laboratory plasmas. In astrophysical plasmas the ac-

celeration of ions due to continuous Kolmogorov{like Alfv�en wave spectra is a source of

energetic ions. See Arons et al. [1] for a wide range of acceleration processes associated with

magnetohydrodynamic waves.

The solar wind contains a rich spectrum of both shear and compressional Alfv�en waves

which accelerate ions. In magnetospheres, the dense magnetotail plasma trapped by the

current sheet produced by the solar wind acting on planets with strong dipolar magnetic

�elds contains a spectrum of Alfv�en waves that is thought to play a role in energizing ions.

The usual method of in�nite uniform plasma theory is to make the quasilinear approxi-

mation and use a Fokker{Planck wave{kinetic equation to describe the particle scattering by

the wave spectrum [2, 3]. This method ensures the conservation of momentum and energy

of the system. In many cases of practical interest, however, the waves are stronger and the

correlations between the waves and particles are relatively coherent so that the quasilinear

theory is not applicable. Even in cases where the system is tailored to satisfy the assumption

of quasilinear theory, important wave{particle correlations arise in the long time limit [4].

Here we develop a new, low{dimensional model, based on the �eld Lagrangian for the

entire wave{particle system that describes the interaction. In developing the theory we

employ an averaging procedure [5] to reduce the �eld Lagrangian to a �nite{dimensional

one. The resulting Hamiltonian for the closed system of M waves and N particles conserves

the total energy and momentum. Simple functions of the amplitude and phase of each wave

are canonically conjugate variables in this formalism.

We develop the theory for the case of the plasma sheet where the pinch e�ect traps the

plasma in a particularly simple con�guration called the Harris sheet [6]. The complex orbits
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of charged particles in the absence of the waves are well{known in terms of elliptic functions.

The phase space is divided by a separatrix with periodic orbits on one side and non{crossing

orbits on the other side. Alfv�en waves mix the orbits producing chaotic motion [7]. Here

we do not dwell on the chaos in the orbits, but present results for the integration of a small

ensemble of ions integrated over many wave periods. We show explicitly the conservation of

energy and momentum for the example.

Consider a high plasma pressure sheet pinch in which the current jy(z) is localized to

the scale jzj � L and the plasma pressure is trapped by the reversed magnetic �eld Bx(z)

created by jy(z). The primary example of this sheet pinch is the Harris sheet. We show how

to derive a reduced low{dimensional Hamiltonian description of the Alfv�en wave{particle

interactions by using the standard techniques of the envelope approximation applied to the

total Lagrangian for the system of �eld and particles.

The Alfv�en waves are represented by the eikonal approximation with their slowly{varying

amplitudes a` and phases �`. The time and space (x only) frequencies of the waves are de-

noted by !` and k` respectively. The �eld Hamiltonian transforms to an N{particle Hamilto-

nian withM new canonically conjugate pairs of wave variables (I`;  `)M`=1, where I`(a`) is the

wave action and  ` := !` t+�`. The total energy and x{momentumPx =
PM

`=1 k` I`+
PN

i=1 pxi

of the M waves and N particles is conserved in this framework. Thus the system describes

the acceleration of the particles with the corresponding reaction on the wave energy and

momentum. In the terminology of laser{plasma interaction physics the beam loading e�ect

is fully accounted for in the M + 3N degree{of{freedom Hamiltonian.

In space physics the acceleration of ions by Alfv�en waves is important in many contexts.

The particular situation of interest in this work is the generation of Alfv�en waves by currents

connecting the plasma sheet to the nightside ionosphere. Here the waves mediate a coupling

between the near{Earth magnetotail and the ionosphere. The interaction with fast (keV

energy) hydrogen and oxygen ions is important for understanding the energy spectra observed
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in the region of the magnetosphere. Here we restrict ourselves to the theoretical formulation

of such problems.

II Two{Dimensional Particle{Field Problem

The self{consistent �eld equations can be derived from the variation of the electromagnetic

�eld action S which is the space{time integral of the Lagrangian density L. The Lagrangian

density for the particle{�eld model is

L(A; @A;xi; _xi):=
�0
2

 
@A

@t

!2

�
1

2�0
(r�A)2 + p(A)

+
NX
i=1

e _xi �A(x; t) Æ (x� xi(t)) +
NX
i=1

1

2
m
�
_x2i + _y2i + _z2i

�
Æ (x� xi(t)) ; (1)

where A is the vector potential, N is the number of particles, and xi(t) is the trajectory of

the ith particle. When the current j is speci�ed independently, the potential p(A) is replaced

by j �A [8]. The action is

S[A;xi]: =
Z
dt
Z
d3xL (A; @A;xi; _xi) ; (2)

and it is assumed that there are no external sources present so that the electric �eld can be

given by

E = �
1

c

@A

@t
: (3)

It may be veri�ed that the equations of motion obtained upon setting ÆS=ÆA and ÆS=Æxi

to zero are consistent with Maxwell's equations for the particle{�eld problem, where the

current j is identi�ed with @p=@A.

For the problem at hand, only the y component of the vector potential is non{zero: A =

(0; A(x; z; t); 0). The corresponding magnetic �eld is (�@A=@z; 0; @A=@x). Representation

of the potential as a sum of an equilibrium piece A0(z) and a piece that depends on (x; z; t),

A(x; z; t) = A0(z) +A1(x; z; t); (4)
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yields an expansion for the Lagrangian density,

L = L0 + L1 + L2; (5)

where

L0 := p(A0)�
1

2�0

�dA0

dz

�2
; (6)

L1 := j0A1 �
1

�0

dA0

dz

dA1

dz
; (7)

L2 :=
1

2

 
�0 +

m0 n0
B2

0

! 
dA1

dt

!2

�
1

2�0

��@A1

@x

�2
+
�@A1

@z

�2�
+
1

2

dj0
dA0

A2
1

+
NX
i=1

�
e _yi

h
A0(z) +A1(x; z; t)

i
+
1

2
m
�
_x2i + _y2i + _z2i

��
Æ (x� xi(t)) : (8)

In the above equations we have denoted the equilibrium current dp=dA0 by j0, and neglected

terms of order A3
1 and higher. Note that the contribution to the action from L1 vanishes

when A0 is an equilibrium corresponding to L0. In L2, we have also included a term that

gives rise to the polarization current �(m0 n0=B
2
0) @

2A1=@t
2, where m0, n0, B0 represent the

background ion mass, density, and magnetic �eld, respectively.

The thermal plasma response in Eq. (8) arises from the adiabatic response given by the


uid response of plasma, namely

j1 =
mn

B2

@E(1)

@t
= �

mn

B2

@2A1

@t2
(9)

j2 =
dj0
dA0

A1: (10)

Now to reduce the problem to a �nite number of degrees of freedom we represent A1 by

M waves with slowly varying amplitudes a` and phases �`:

A1(x; z; t) =
MX
`=1

a`(t)f`(z) cos (k`x� !`t� �`) (11)

where _a` � !` a` and _�` � !`. This is the eikonal approximation [5]. In this presentation of

A1(x; t) the a`; �` become new dynamical variables determined by the variational principle

for the action S of the system.
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Now

@A1

@t
=

MX
`=1

_A` f` cos ` +A` f` (!` + _�`) sin ` (12)

 
@A

@t

!2

= _A2f2 cos2  � 2A _Af2(�! � _�) cos sin +A2f2(! + _�)2 sin2  (13)

Now, we compute

Z
dxdz

 
@A

@t

!2

=
1

2
A2
�
!2 + 2! _� + _�2

� Z
f2dz +

_A2

2

Z
f2dz (14)

Z
dxdz

2
4 @Ay

@x

!2

+

 
@Ay

@z

!2
3
5 = k2A2

2

Z
f2 dz +

A2

2

Z  
df

dz

!2

dz

Z
dxdz

dj0
dA

A2 f2 cos2  =
1

2
A2
Z
f2
@j0
@A

dz: (15)

Upon averaging over x, and using the eikonal approximation, the action may be written

as

S =
Z
Lenv dt; (16)

where the envelope Lagrangian is given by

Lenv =
1

4

MX
`=1

a2`

�
(!2

` + 2!` _�`)
Z
f2`

�
mn

B2
+ �0

�
dz �

k2`
�0

Z
f2` dz

�
1

�0

Z  
df`
dz

!2

dz +
Z
f2`

dj0
dA0

dz
�
Lx Ly

+
NX
i=1

e _yi
h
A0(zi) +

MX
`=1

a`(t)f`(zi) cos(k`xi � !`t� �`)
i
+

NX
i=1

1

2
m( _x2i + _y2i + _z2i ); (17)

where Lx and Ly are the x and y spatial extents of the system.

The dominant term from the variation with respect to a` is required to vanish, which is

true when each wave satis�es the dispersion relation:

!2
`

Z
f2`

�
mn

B2
+ �0

�
dz �

k2`
�0

Z
f2` dz �

1

�0

Z  
df`
dz

!2

dz +
Z
f2`

dj0
dA0

dz = 0: (18)

We are thus left with the Lagrangian,
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L =
NX
1

m

2

�
_x2i + _y2i + _z2i

�
+

NX
i=1

e _yi
h
A0(zi) +

MX
`=1

a`(t) f`(zi) cos(k`xi � !`t� �`)
i

+
1

2
a2` !`

_�` Lx Ly

Z
f2`

�
mn

B2
+ �0

�
dz: (19)

Finally, we note that there is a narrow boundary surrounding the Bx = 0 reversal layer

inside of which the polarization current formula (9) breaks down. The calculation of the

kinetic current in this layer requires numerical evaluation of the complex ion orbits [9]. Here

we resolve this diÆculty by the physical argument that there is e�ectively a lower bound on

jBminj due to other sources of magnetic �elds, such as the interplanetary magnetic �eld. This

allows us to assume that the polarization current is de�ned through the kinetic boundary

layer.

A. Canonical momenta

The generalized momenta p = @L=@ _q are given by

pyi := m _yi + eA0(zi) + e
MX
`=1

a`(t)f(zi) cos(k`xi � !`t� �`);

pxi := m _xi; pzi := m _zi; pa` := 0;

p�` :=
1

2
a2` !` Lx LyC` =: I`; (20)

where we have de�ned the wave action I` = p�` and the capacitance,

C` :=

*
m0 n0
B2

0

+ �0

+
`

:=
Z  

m0 n0
B2

0

+ �0

!
f2` dz: (21)

produced by the polarization currents.

The Euler{Lagrange equations of motion corresponding to variations in �` and a` are

dp�`
dt

=
d

dt

�
1

2
a2`!`

�
mn

B2
+ �0

�
`

�
=
@L

@�`
= e a`

X
i

_yif`(zi) sin(k`xi � !`t� �`)

dpa`
dt

= 0 =
@L

@a`
= a`!` _�`

�
mn

B2
+ �0

�
`
+ e

NX
i

_yif`(zi) cos(k`xi � !`t� �`): (22)
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B. Hamiltonian equations of motion

Introducing  ` = �` + !`t as the phase variables, the autonomous Hamiltonian may be

written as

H(I`;  `; pxi; xi; pyi; pzi; zi) =
MX
`=1

I`!` +
NX
i=1

 
p2xi
2m

+
p2zi
2m

!

+
NX
i=1

1

2m

"
pyi � eA0(zi)�

MX
`=1

e a`(I`)f`(zi) cos(k`xi �  `)

#2
(23)

where the relation in Eqs. (20) gives a`(I`), while !`, k`, and A0(zi) are considered known.

Equation (23) is obtained by the usual Legendre transformation (H = _q @L=@ _q�L) from

the Lagrangian to the Hamiltonian. The terms linear in the generalized velocities, _ ` and

_I`, drop out of the Hamiltonian. At �rst glance, it may seem necessary to use (Dirac's)

constraint theory due to this degeneracy, but it is not required in this case. The phase

variables  ` and I` turn out to be canonically conjugate to each other and the momenta

corresponding to each of them can be ignored. The equations of motion are thus given by

_xi =
@H

@pxi
=
pxi
m

_pxi = �
@H

@xi
= �

MX
`=1

e _yi a`(I`) f` k` sin(k`xi �  `); (24)

_yi =
@H

@pyi
=

1

m

�
pyi � eA0(zi)� e

MX
`=1

a`(I`) f`(zi) cos(k`xi �  `)
�
; (25)

_pyi = �
@H

@yi
= 0; (26)

_zi =
@H

@pzi
=
pzi
m
; _pzi = �

@H

@zi
= _yi

�
e
dA0

dzi
+ e

MX
`=1

a`(I`)
df`
dzi

cos(k`xi �  `)
�
; (27)

_ ` =
@H

@I`
= !` � e

da`
dI`

NX
i=1

_yi f`(zi) cos(k`xi �  `); (28)

_I` = �
@H

@ `
= e a`(I`)

NX
i=1

_yi f`(zi) sin(k`xi �  `); (29)

where it is understood that whenever _yi appears on the right{hand side, it is an abbreviation

for the expression given by the right{hand side of Eq. (25). It may be veri�ed that the above

equations are equivalent to the Euler{Lagrange equations of motion.
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The M + 3N degrees{of{freedom system has the integrals of total energy H, total x{

momentumPx :=
PM

`=1 k`I`+
PN

i=1 pxi, and the N canonical y{momenta pyi for each particle.

A test particle in a prescribed wave corresponds to setting dI`=dt = 0 and d�`=dt = 0.

The new system of M waves and N particles has many of the same features of the test

particle problem when the number of particles N is small. As the energy in the particles

increases, however, phase correlations build up as given by the right{hand side of Eqs. (29)

and (30) and limit the total energy available for acceleration. These phase correlations also

present a simple description of the acceleration process.

From the standard calculation of the Alfv�en wave energy W` we verify that the wave

action I` and x{momentum Px` can be written as

I` =
W`

!`
and Px` =

kx`W`

!`
(30)

where W` is the wave energy. The action I` can thus be interpreted as the number of quanta

in the wave packet. This interpretation is useful for making bounds on the maximum energy

particles can gain during the decay of the wave.

III Example of Self{Consistent Wave{Particle Interac-

tions

Here we relate the present general nonlinear formulation given by the Hamiltonian in Eq. (23)

to the weak quasilinear theory limit. We present three numerical examples of the interactions

that occur for small and large numbers of particles with one Alfv�en wave. We reserve for

later work the case of multiple wave particle simulations.

In general, even with a large number of particles, it is important to assign statisti-

cal weights to each particle. The weights are chosen to represent samples of N particles

taken from the desired distribution function of the particles. Examples are the initial

sech2(z=L) exp(�mv2=2T ) distribution, or the typically observed power law distributions
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(1 + "="0)�
 that are observed for high energy (" = mv2=2� T ) particles in space physics.

The energy density in the waves localized over a volume V = (2�=kLyLz is I` !`=V , while

the particle energy density is
PN

1 wi "i=V , where "i = mv2i =2. Both energy densities are

small compared to that of the ambient plasma internal energy p = nT � B2
0=2�0.

A. Quasilinear Limit

The quasilinear limit appears in the case where there is e�ectively one weighted particle in

the interaction with each wave. In this case the solvability conditions from the conservation

laws reduces to the N = 1 problem for each interaction

! Ii + w "(pi) = ! If + w "(pf );

k Ii + w pi = k If + w pf : (31)

For a small change �I = If � Ii in the wave action leads to the quasilinear resonance

condition when the expansion "(pf ) = "(pi)+ (pf � pi)@"=@pi is used along with v = @"=@pi.

The reader may easily verify that the condition for a nontrivial solution to the two equations

(24) with the two unknowns being the �nal particle momentum pf and wave action If , is

the linear wave{particle resonance condition v = @"=@pi = !=k. Thus, in the small �I and

�p limit we recover the quasilinear wave{particle interactions.

A special feature of Alfv�en wave quasilinear theory is that the polarization factor van-

ishes at the Landau resonance, i.e. (Ey � vxÆBz)�Æ(! � kxvx) is zero due to !ÆBz = kxÆEy

polarization relation. For the complex, nonlinear orbits in the self{consistent �eld this rela-

tion does not apply. The degree of magnetization of particles varies strongly along the orbits

given by elliptic functions in the inner sheet region.

The constraints of energy and momentum conservation allow a range of solutions for the

case of N particles. Perhaps the most important features may be shown by the case of two

weighted particles.
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B. Accelerated and Recoiled Particles

For strong waves the general situation is that a few particles gain a large amount of energy

from the wave, and a large number of particles recoil to absorb the momentum change. For

the N = 2 problem we write �I = If � Ii, which we consider as being negative and rewrite

Eq. (41) for two particles,

w1

�
"(p1 +�p1)� "(p1)

�
+ w2

�
"(p2 +�p2)� "(p2)

�
= �!�I

w1�p1 + w2�p2 = �k�I (32)

where the �nal momenta are written as pf = pi+�p. There is a one parameter (�p1) family

of solutions to the two equations with three unknowns �p1, �p2, �I.

The case of most interest is where w2 < w1 and particle 2 picks up almost all the lost

wave energy. In the extreme limit �p2 and �p1 are determined by

�p2 �

 
2m!j�Ij

w2

!1=2

�p1 �
kj�Ij

w1
�
w2

w1

 
2m!j�Ij

w2

!1=2

:

This is the strong acceleration limit consistent with the conservation laws. To what degree the

system dynamics equations produces these two{particle one{wave interactions is a problem

beyond the scope of this work.

C. Numerical Examples with Small N and Large N

We �rst show the results for N = 103 particles and then consider an example with N = 104

protons. In Figs. 1 and 2 we show a result for N = 103 with a single wave to make explicit

the capability of the theory to describe the reaction of the particle acceleration on the

waves. We take the simpli�ed model f(z) = f1 exp(�k jzj). We take k = 2�=Lz and load

the particles uniformly spaced in k xi = 2� i=N for i = 1; :::; N . We have carried out the
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numerical experiment for a range of z and initial energy " values. Here we choose the single,

interesting experiment with z=L = 0:5. That is, we take ions in the high energy tail of the

thermal distribution.

From the Alfv�en wave dispersion relation we �nd that !=!cio = k c=!pi = 2� c=Lz !pi.

For the example we take Lz = 20� c=!pi so that !=!cio = 1=10. Working out the equations

of motion for this case and using an adaptive step Runge{Kutta integrator, we obtain results

shown in Fig. 1 for the x{momentum components and Fig. 2 for the energy components. It

is found that the momentum conservation is satis�ed to a very high accuracy and the total

energy is conserved to an error of order the truncation integration. In future study we will

examine these particle trajectories in the d = 4 phase space.

In Fig. 3 we show the results for choosing the parameters to correspond to a reversed

equilibrium �eld of 20 nT and Alfv�en wave in the central plasma sheet. At t = 0 we

release N = 104 protons in Fig. 3 at the position z=Lz = 0:5 corresponding to the mid{

point of current pro�le. The initial vx{velocity of the particles is taken as the resonant

value equal to the wave phase velocity. Initial ions gain and lose energy as their phase

relative to how the wave varies. The net particle energy summed over all particles shows the

growth to an oscillatory, saturated state for N = 103. For N = 104 we �nd a more nearly

monotonic growth and approach to a well{de�ned saturated state is obtained. We leave the

determination of the parametric dependence of the �nal particle energy to future studies.

When the simulation in Fig. 3 is repeated with a �xed Alfv�en wave ( _a = _� = 0) the total

particle energy increases by approximately 10% more.

IV Conclusions

We have presented a new description of the Alfv�en wave{particle interaction problem that

provides a Hamiltonian formulation of the interactions of the total system consisting of a

�nite number of degrees of freedom for the M waves and N particles. The theory uses the
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eikonal approximation for the reduction of the �eld Lagrangian �eld density containing the

background thermal plasma and a set of N discrete particles. Consequently, the problem

conceptually parallels that of the electron plasma waves interacting with a weak electron

beam considered �rst by Mynick and Kaufman [10]. Due to the more complex form of the

Lagrangian for charged particles in a magnetic �eld and the structure of the Alfv�en wave,

the mathematical structure of the two problems di�ers considerably.

We discuss the relations that reduce the problem to the weak quasilinear limit without

taking up the issue of long{time wave{particle correlations that may well modify the quasi-

linear problem as in the case of the electron plasma wave problem considered by Doxas and

Cary [4].

We show a few examples of how the self{consistent �eld problem can produce a secular

increase in the net particle energy while conserving the total energy and momentum of the

wave{particle system.
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Figure 1: X{momentum transfer from the wave to ions. Solid line shows ion momentum;
dotted line shows wave momentum; the sum is preserved.

Figure 2: Energy transfer from the wave to ions. Solid line shows ion kinetic energy; dotted
line shows wave energy; the sum is preserved.
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Figure 3: The wave heating for the case of N = 104 particles uniformly spread over one
wavelength at the midway position z=L = 0:5 in the current sheet. The parameters for the
initial wave amplitude is ÆB = 1nT with the reversed �eld being B0 = 20nT.
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