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Abstract

Ambipolar flow in a turbulent plasma is investigated by combining a WKB
treatment of the waves with a turbulent collision operator resulting from
either quasi-linear theory or certain renormalized turbulence theories. If
the wave momentum has a flow from outgoing waves, then particle diffusion is
not intrinsically ambipolar, and the time wvariation of the electric
potential profile is determined by the turbulent spectrum. However, in most
cases of practical interest, as in the drift wave problem, this effect is
small, and in steady state equal rates of stochastic diffusion is predicted

for electrons and ions.
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It is well known that collisional transport theory predicts intrinsic
ambipolar diffusion to lowest order in Larmor radius in systems where the
equilibrium has at least one degree of symmetry. This property has also
been attributed to systems where the transport is due to short wavelength
turbu]_ence.l’2 However, we show here that a self-consistent development ©of
the turbulent transport equations can lead to a non-ambipolar flow. As the
global system must maintain quasi-neutrality, a time varying potential is
induced to guarantee such a state. Previous results are recovered in most
cases of practical interest as the radial variation of parameters over the
extent of the eigenfunctions is small. By neglecting this variation, one
then has dintrinsically ambipolar diffusion as observed by previous
authors.1>? These results can be demonstrated both for quasi-linear theory
and for a specific renormalized turbulence theory3, that treats stochastic

4

electron orbits. Other renormalized theories™ are not sufficiently complete
to allow an explicit demonstration here, but we expect that if they  are
developed properly, similar results will arise.

We first consider the combination of WKB theory, where wavenumbers
along the inhomogeneous direction are taken into account, with quasi-linear
theory. It has been shown® that this leads to a quasi-linear equation for
the distribution function £ in the following model. A slab plasma is
considered which is homogeneous in the y,z &irections and inhomogeneous in
the x—direction, while the magnetic field is sheared in the y,z directions
with mod-B constant (the inclusion of magnetic shear is a straightforward

extension of Ref. 5) and the perturbed fields are electrostatic with

potentials of the form,

@(X,t) exp(i fX kdx + ikyy + ik,z - 1 ft wdt') (1)
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The addition of electromagnetic waves would not alter the development below,
but is omitted for simplicity.

The quasi-linear equation is
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where the summation on k is the symbolic sum over all modes that exist at
position x, kﬂ(x) = [kyBy(x) + szz(x)]/B and Fg, is given in terms of the

particle distribution, fg by
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We note that F,, a modified distribution function that subtracts the
non-resonant or '"sloshing" term, is constant in time in the absence of
dissipation.

The frequency is determined by the condition,

Re Dlw,k(x)] = DR[w,k(x)] =0 (4)

~ 2
and [P(x,t)| satisfies the relation
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We now construct the time rate of change of density and find an/at =
fd3v af /3t = - BPS/ax where the particle flux Iy is
2
NS [Pl .
- __C_Z ( K 4 op8 ;‘ , (8)
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where the superscript "s" refers to the contribution of species s to N, and
D;. The term in Eq. (8) proportional to 3/3t is the reversible component of
diffusion due to the growth or damping of a wave, while the term
proportional to Dy is irreversible diffusion due to particle-wave resonance.

The time rate of change of charge density, d0/0t = 3/3t ) n,qg is found

S

S

from Egqs. (5) and (8) to be
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Hence, a charge imbalance arises 1if S(XNkvgk)/ax varies spatially. For
standing waves, with evanescent decay, waves have reflection points so that
Nk(vg) = Nk(-vg), Hence, the right-hand side of Eq. (8) is zero. However,
for convective waves or modes with outgoing wave boundary conditions,
Eq. (8) is not intrinsically zero ana the quasi-linear theory then predicts
non—-ambipolar flow, unless a potential can develop to restore local charge
balance. A time-varying field causes only ion motion to balance the

non—-ambipolar flow, and thus we have
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Demanding 30/3t = 0, constrains ¢(x) to satisfy,

(11)

assuming 9 1n g(x)/ax <L 9 ln(% Nkvgk]/ax.
The non—-ambipolar flow we have calculated can be interpreted as a flow
arising from a viscous stress. In equilibrium, pressure balance gives jxB/c

=V « P where P is the particle pressure tensor (or momentum flux). We see

~
~

U >

that the waves i flux of % directed momentum is T = Z

~  k
However, T = - P, if overall momentum is to be conserved. Hence, using the
force bhalance equation, we find ig = c/B 3(% Nkky vgx)/ax which agrees,

after using the continuity equation, with Eq. (9).
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We now consider the specific problem of low frequency drift waves in a
sheared magnetic field.%»7 1In a tokamak, the waves are paramterized by
poloidial (m) and toroidal (n) mode numbers. Spectral properties and wave
dynamics depend on poloidal number, m, buf the toroidal mode number enters
only in determining the rational surface. Thus, in the slab model, where
1/q = (1+X/Ls)q0, the rational surface x ., such that q(x;,) = m/n, is given
by %, = Lg ﬁ-qo - Lg. Now, the sum over modes, k, in Eq. (2) will
effectively sum over rational surfaces, and this can be written as an
integral E > fJ dky ky dxj, where J is a constant Jacobian = R%/quo in
the tokamak, while in our slab model we take J=1.
Drift waves are driven unstable by negative dissipation from the
electrons near the rational surface. Wave energy (and momentum) is
convected away from the rational surface as outgoing waves and eventually

absorbed by the ion wave particle resonance in the outer regions of each

eigenfunction. This picture is expressed by Eq. (5), which can be rewritten

2
9 Ny d : [P (x=xs, xa) |-
57 (x5 x3) + o (vgi) = -20p(x-x5, x3) 23, a

where X3 denotes the rational surface. It is typical for drift waves in a

sheared field, that the principal functional dependence of Eq. (12) wvaries

primarily with X=Xy, with only a slow dependence on the explicit x

variable., Hence the eigenfunctions centered at different =x

]
s , but within

’
.

3

an eigenfunction scale length of each other, will have close to the same

functional dependence on x We shall show that this property has the

jl

following consequences: (1) the non-ambipolar diffusion component is small

compared with the particle diffusion of each species, (2) for stationary
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turbulence the intrinsic diffusion of electrons due to diffusion near x = Xj

is nearly equal to the ion diffusion due to the resonant interaction of ions
in the outer regions of each eigenfunction.
To demonstrate statement (1) we mnote that since [P] vanishes

sufficiently far from the mode rational surface, Eq. (12) implies on

integrating over x , that

29: [ 5 2]
%/dx ky [2—1\1— (X‘Xj, Xj) + 2 D%(X"Xj, Xj) I\D(X"Xj, Xj)l } = 0 . (13)

s

On the other hand, from Eq. (8) we have,
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Hence to the extent the dependence on the second Xy is small over the range

of the eigenfunctions, Z qg I'g ® )\/Rp qg 'y, where X is the scale of a
s
typical eigenfunction and R, the macroscopic radial scale length.

P

The second assertion readily follows from Eqs. (13) and (14) as in
steady state the 3/0t terms vanish, and Eqs. (12) and (13) show that the
resonant electron flux coming primarily from the center of the eigen-
function, nearly equals the resonant ion flux coming from the "wings" of the
eigenfunction. This demonstrates that electrons and ions are both
participating in an irreversible diffusion process and that ions can then
have a significant heat conductivity. It should be noted that recently
there has been experimental evidence that the ion thermal conduction channel

may be a significant heat loss in a tokamak discharge.8
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One now infers on physical grounds that these results are of a general
nature that surpass quasi-linear theory. The wunderlying reason for
intrinsic ambipolarity here, as 1in the collisional problem and the local
theory of drift waves, 1s momentum conservation. Here, however, the
momentum exchange between species is non-local and the conservation law is
global as indicated in Eq. (13). Because of this ambipolarity can break
down locally as indicated in Eq. (9). Although each eigenfunction generates
equal ion and electron diffusion, it does so at different spatial points.
Diffusion of the two species at the same spatial point is due to different
eigenfunctions. When the eigenfunctions have unequal amplitudes due to slow
radial wvariations of the spectrum small non-ambipolar flows will occur. We
therefore expect that any nonlinear (renormalized) theory that conserves
momentum and energy will have the same conservation properties as
demonstrated above in quasi-linear theory.

In particular for the collision operator of Ref. (3) derived for
intrinsically  stochastic electron orbits using the Normal Stochastic
Approximation (NSA)9, the demonstration parallels the above almost exactly.
The energy conservation properties10 of this operator follow from a
non—-local WKB analysis similar to that employed here. The operator, for the

electrons, which replaces the right side of Eq. (2), is given by
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where Skw(x) , the spectrum of potential fluctuations, replaces Ilpkl2 above,
and hkw is the resonance function, hkw(x v") = % dt exp[i(w—ku(x)v")r -
——(k"vu) DT3]. where spatial diffusion coefficient, D, in hk.m is determined

~1

3 from the spectral sum in Eq. (15).

self-consistently
The spectrum, Skw , satisfies the transport equation [Eq. (5)]10, with

the electron contribution to the dielectric, Eq. (7), given by

2

ibmq ! k ,
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Finally, the sloshing term in Eq. (3) is replaced by

2
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The formulas here for the turbulentAelectron response have been written
in a way that directly parallels the quasi-linear equations and do not
exactly coincide with the formulas of Ref. 10. The difference between these
two forms is of order k.x, <K 1, where X, = (D/k"ve)l/3 is the correlation
distance and is negligible within the WKB approximatiom.

One now easily sees that all the above formulas and results are
duplicated by identifying Iwklz with the spectrum, Skw s including a
frequency sum, and modifying the electron dielectric. In particular, the
structure wherein the particle f£flux, Eq. (8), is determined by the
dissipative part of the dielectric 1is retained. This structure assures
global energy and momentum conservation and, thereby, all the results of

this paper.
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To estimate the magnitude of the time varying potential we assume the

following scaling characteristic of drift waves.

2 2 R
3D L .2 “pe kepi 0% 3 ) x o) Nivore
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We then find, a(qé/Te)/at Rowgg z lq¥ /Tl Ly/Lg « This scaling appears to
induce appreciable wvariations gf the ambipolar potential , especially near
the edge of the plasma, where the fluctuation level has been observed to be
particulary high.11

In summary we have shown that with net wave momentum flow, the
turbulent transport equations induce a net ambipolar flow that will give
rise to time varying potential; However, if a steady state in drift wave
turbulencé is to exist, the transport is required to be ambipolar with both
electrons and ions diffusing stochastically. This can be accomplished by

having the ions absorb the outgoing wave momentum generated by electrons at

the rational surfaces, or by perhaps more complicated nonlinear processes.
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