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Abstract

Traditional transport theory provides a closure of fluid equations that is valid in

the collisional, short mean–free–path limit. The possibility of extending an analogous

closure to long mean–free path is examined here. An appropriate kinetic equation,

using a model collision operator, is solved rigorously for arbitrary collisionality but

weak, Maxwellian source terms. The corresponding particle and heat flows are then

expressed in terms of the density and temperature profiles. The transport matrix

is found to be symmetric even at vanishing collision frequency; in the collisionless

limit it takes the form of nonlocal operators. The operator corresponding to thermal

conductivity agrees with one found previously by Hammett and Perkins [1]. However

particle diffusion, which turns out to satisfy a local Fick’s law for any finite collision

frequency, becomes singular at vanishing collisionality, where the pressure gradient

vanishes. We conclude that the fluxes can generally be expressed in terms of particle

and energy sources, but not always in terms of pressure and temperature profiles.
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I Introduction

This work considers particle diffusion and thermal conduction parallel to the magnetic field of

a magnetized plasma. Our lowest order description is thus one–dimensional and equivalent to

the one–dimensional transport problem in a neutral gas. However we emphasize the limiting

regime of vanishing collisions, as pertains to a hot plasma. Thus we consider a plasma in

which

λÀ L

where

λ ≡ vt
ν

(1)

is the mean–free path, with vt a thermal speed and ν the collision frequency, and L is the

scale length for density and temperature.

The conventional closure for a collisionless plasma is the kinetic description associated

with Vlasov and Landau. Our objective is to derive from the Vlasov equation a fluid de-

scription, in terms of the plasma pressure and temperature, as well as the particle and heat

fluxes. The fluid description has the advantage of involving only the coordinate dimensions,

rather than the larger dimensionality of phase space. Thus we derive a collisionless version,

in one dimension, of the parallel transport equations of Braginskii [2] or Spitzer [3].

The present work is related to other recent investigations of the same physics, such as that

of Hammett and Perkins [1]. In order to emphasize key features of transport as a function of

λ/L, we simplify the situation, considering the quasistatic state and omitting perturbation

of the electromagnetic field. On the other hand we treat particle and heat transport in

a systematic way, deriving the (2 × 2) transport matrix for arbitrary collisionality. Our

results agree with classical collisional transport theory in the short mean–free path limit,

and modestly generalize those of Hammett and Perkins at long mean–free path. The general

transport matrix displays some features that are not apparent in previous work. In particular
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we find that particle diffusion, in distinction to heat conduction, obeys a classical, short

mean–free path law for all values of the collision frequency.

Conventional fluid closure is based, first of all, on the fact that the lowest–order distri-

bution in a collision–dominated system is approximately Maxwellian. Since a Maxwellian

distribution is specified by its density (n), temperature (T ) and flow velocity, a fluid clo-

sure in terms of those variables makes sense. When collisional effects are very weak, on the

other hand, the distributions need not be nearly Maxwellian, and a conveniently small set

of parameters specifying even the lowest–order distributions might not exist. In the fully

nonMaxwellian case it is not clear whether transport theory can be constructed, or whether

it would be useful.

Yet there are various circumstances in which a Maxwellian distribution is pertinent even

when the mean–free path is long. Magnetically confined fusion plasmas, for example, are

approximately Maxwellian because, however much the mean–free path exceeds scale lengths,

the confinement time of the plasma is long compared to collision times. Similarly collisions

are not needed to Maxwellianize a plasma when its sources—such as ionization of neutrals,

or influx from a wall—are Maxwellian. The Maxwellian–source case is considered here.

Assuming, then, that the distributions are nearly Maxwellian, an oft–noted aspect of

transport at long mean–free path is that it is nonlocal. Since λ measures the distance that

a typical particle explores between collisions, transport is affected by a sizable range of the

pressure and temperature profiles when λ is long. Only when λ ¿ L—only, that is, in the

so–called Chapman–Enskog regime [4]—can the particles and heat fluxes at x be expressed in

terms of the gradients at x. Our conclusions will qualify this statement, but the inadequacy

of a local description for the collisionless case is nonetheless clear.

A more fundamental distinction of the collisionless case involves the question of what

drives transport. We are used to the short mean–free–path viewpoint, in which transport

responds to local gradients, or more generally to profile information. But it is clear that such
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gradients occur only because of sources : without localized inputs of particle or heat neither

gradients nor diffusion can occur. In a collisional system the sources, while conceptually

necessary, play little role in the analysis. But an analysis for arbitrary collisionality must

treat the source terms explicitly as driving terms in the linearized kinetic equation. In

particular the assumed small amplitude of the source terms provides the essential small

parameter of the generalized transport analysis, replacing the short mean–free path.

The sources appear explicitly in the kinetic equation

v
∂f

∂x
− C(f) = S (2)

where C represents the collision operator, v is the velocity coordinate and f(x, v) is the

distribution function. The quantity S(x, v) is a local source of particles and heat.

Chapman–Enskog theory systematically uses the small parameter λ/L to expand the

distribution

f = fM + f1

where fM is a local Maxwellian and f1
∼= (λ/L)fM is a perturbation, and thus to derive the

well–known equation (“Spitzer” problem)

C(f1) = v
∂fM
∂x

(3)

in which f1 is driven by the local gradients. But even for λ/L ¿ 1 it is clear (and made

explicit in Sec. II) that the latter are in turn driven by S, whose effects they therefore

mediate.

Before attacking the solution of (2), we comment on a final distinctive feature of long

mean–free–path theory. Why compute such fluid moments as the heat flux, q? At short

mean–free path, the answer is that knowing

q = −κ dT
dx
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gives closure to moment equations: a 3rd–order moment of f has been expressed in terms of a

2nd–order moment. It is not obvious that a similar closure advantage pertains at long mean–

free path: the obvious collisionless version of Chapman–Enskog theory yields circularity

rather than closure.

The issue is especially clear in the ν → 0 limit. Then (2) implies

f1 =
∫
ds
S

v

and we can easily compute q. But the result is hardly a closure relation, being merely the

one–dimensional version of the elementary moment equation

∇ · q = S.

Hence one needs to specify which moment equations one is trying to close, and make sure

that any kinetic theory actually addresses closure—one must know, in other words, why one

is computing f1.

One answer to this question is implicit in previous work, such as Ref. [1]: by expressing

q in terms of the temperature profile rather than S, one obtains fluid equations that are

valid for arbitrary spatial variation of the sources, and that map conveniently onto the short

mean–free–path–fluid description. The same point of view is adopted here. We find however,

that the goal of eliminating the source terms from fluid theory is not always achievable.

Our purpose is to develop the simplest collisionless closure that is self–consistent. It is

both instructive and convenient to include collisions, treating the ν → 0 limit as a special

case. Thus we obtain a description of transport that is valid for any collisionality. On the

other hand we simplify by using a Krook–model collision operator with constant collision

frequency [5]. The Krook model misses effects, such as off–diagonal transport coefficients,

that depend upon the energy variation of Coulomb scattering. But it is not misleading in

the collisionless limit, and it describes diagonal transport processes at short mean–free path

with good qualitative accuracy.
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II Kinetic equation

The Krook–model collision operator [5] that conserves particles and energy is well known.

Acting on a nonMaxwellian perturbation f1 it takes the form

C(f1) = −ν
[
f1 −

(
∆n(x)

n0

+
(
s2 − 1

2

)
∆T (x)

T0

)
fM

]

where

fM(n0, T0) ≡
n0

π3/2v3
t

e−v
2/v2

t

is a Maxwellian distribution with constant density n0 and constant temperature T0, and ν

is the collision frequency. The perturbations ∆n and ∆T depend upon position as moments

of f1 (see below). The thermal speed is defined by

vt ≡
√

2T0

m

where m is the particle mass, and

s ≡ v

vt

is the normalized particle speed. It is obvious that the operator C drives f1 toward the form

of a perturbed Maxwellian,

f1 → fM(n0 + ∆n, T0 + ∆T )− fM(n0, T0)

and that it conserves particles and energy, ∫
dvC = 0, (4)

∫
dv
(
s2 − 1

2

)
C = 0, (5)

provided the perturbed quantities satisfy

∆n = vt

∫
dsf1, (6)

n0∆T = 2vtT0

∫
ds
(
s2 − 1

2

)
f1. (7)
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We also assume the source to have Maxwellian velocity dependence:

S(x, v) = f̂M(T0)
[
S0(x) +

(
s2 − 1

2

)
S2(x)

]
.

Here we distinguish the particle source, S0, and the energy or heat source, S2. We have also

introduced the convenient notation

f̂M ≡
fM
n0

for a Maxwellian normalized to unit density.

The source acts as a perturbation on a homogeneous Maxwellian equilibrium, described

by the lowest–order form of (2):

v
∂fM
∂x
− C(fM) = 0.

Here “lowest–order” refers to the small parameter measuring the amplitude of S. The

resulting linear perturbation of the distribution function, f1, satisfies

v
∂f1

∂x
− C(f1) = S. (8)

This linear equation is easily solved by Fourier transformation. We use the convention

fk =
∫
dxeikxf1(x)

and find that

fk = − f̂M
ν − ikv Fk(s). (9)

Here we have introduced the function

Fk(s) ≡ σ0 + νw0 +
(
s2 − 1

2

)
(σ2 + νw2) (10)

where

w0 ≡ vt
∫
dsfk (11)

w2 = 2vt

∫
ds
(
s2 − 1

2

)
fk (12)
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measure respectively the Fourier–transformed density and temperature perturbations. The

quantities σ0k and σ2k similarly denote the transforms of the particle and energy sources. It

is worth pointing out that these transforms exist only when the sources are spatially local,

decaying for large |x|. Indeed a spatially uniform source would drive neither gradients nor

transport.

After substituting (9) into (11) and (12) we obtain two coupled equations for w0 and w2.

The solution to this system is expressed in terms of the function

Z(ζ) ≡ 1√
π

∫ ∞
−∞

ds
e−s

2

s− ζ (13)

with variable

ζ ≡ −i
kλ
. (14)

It is clear that Z is closely related to the ordinary Z–function; it differs only in that ζ is in

the lower–half plane (for positive k), whence

Z(ζ) = Z(ζ)−Θ(k)2i
√
πe−ζ

2

. (15)

Here Θ(k) is the Heaviside step–function.

Thus we find

w0(ζ) =
2σ0ζ[−2ζ3 + (1 + ζ2 − 2ζ4)Z] + σ2[2ζ + (2ζ2 − 1)Z]

ν[2(ζ2 − 1) + (2ζ3 − 3ζ)Z]
(16)

w2(ζ) =
(2σ0 − σ2)ζ[2ζ + (2ζ2 − 1)Z]

ν[2(ζ2 − 1) + (2ζ3 − 3ζ)Z]
. (17)

These results can be substituted into (9) and (10) to provide an explicit expression for the

Fourier–transform of the distribution; our kinetic analysis is complete.

Equations (16) and (17) explicate a comment made in the introduction: at any collision-

ality, it is the sources that support density and temperature gradients. Transport is driven

ultimately by such local inputs of particles and heat; the gradients that often accompany

this process can be viewed—and at low collisionality should be viewed—as artifacts.
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III Transport matrix

We denote the particle and heat fluxes by Γ and q respectively:

Γ ≡
∫
dvvf (18)

q ≡
∫
dvv

(
s2 − 3

2

)
f. (19)

Particle and energy conservation, together with the kinetic equation (2), immediately provide

simple formulae for the Fourier transforms of these fluxes:

Γk =
iσ0

k
(20)

qk =
i(

1

2
σ2 − σ0)

k
. (21)

Conventional Chapman–Enskog theory uses (the collisional version of) (9) to compute

the particle and heat fluxes as integrals of the distribution function. The same calculation

is easily performed here, for arbitrary collisionality, but it is no longer helpful. Indeed, after

combining (10), (16) and (17) one obtains expression for Γ and q that merely reproduce the

conservation laws (20) and (21). Thus the Chapman–Enskog recipe provides in this case a

helpful check on the algebra but no progress at all regarding closure. As we have emphasized,

kinetic theory plays a rather different role here than it does at short mean–free path.

The natural generalization of conventional transport theory relates the fluxes to the

density and temperature profiles, whose transforms are given by w0 and w2. Because the

transforms of the fluxes are trivially provided by the conservation laws, this generalized

closure scheme uses kinetic theory to compute the transformed profiles rather than the

fluxes.

The conventional “thermodynamic forces” are given by the pressure and temperature
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gradients:

A1 ≡
d log p

dx
=
d log n

dx
+
d log T

dx

A2 ≡
d log T

dx
,

The corresponding Fourier transforms are

A1k = −ik(w0 + w2)/n0 (22)

A2k = −ikw2/n0. (23)

The general transport matrix is a set of operators (functionals) Lij expressing the fluxes Γk

and qk in terms of the the forces:

Γ = −L1j[Aj] (24)

q = −L2j[Aj] (25)

At short mean–free path these operators degenerate into multiplicative coefficients, satisfying

Onsager symmetry,

Lij = Lji. (26)

In that case transport has a local description. At long mean–free path we expect the flows to

respond nonlocally to the pressure and temperature profiles, so that the transport operators

Lij are expected to involve integrals over some spatial range. Nonetheless we will find that

Onsager symmetry, as a relation between operators, holds for any value of λ/L.

We note that other choices for the driving forces are possible, but Onsager symmetry is

preserved only with a “canonical” choice. The density and temperature gradients are not

canonical in this sense.
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IV Heat flux

We begin with the flow of heat, which can be seen from (17) and (21) to involve only A2k.

We find that

qk = −νλ
2

2
Q(ζ)n0A2k (27)

where

Q(ζ) ≡ ζ
2(ζ2 − 1) + ζ(2ζ2 − 3)Z

2ζ + (2ζ2 − 1)Z
. (28)

Equation (27) is exact (within the model collision operator) for any collisionality, and

might in principle be used to derive interpolation formulae for heat flow over a range of

collisionalities. Here we are content to examine its form in the collisional and collisionless

limits.

Suppose first that the mean–free path is short. Then we let ζ →∞ in the function Q(ζ)

to find

lim
ζ→∞

Q =
3

2
(29)

(We note that it is necessary to keep terms in Z of order ζ−7 to compute this limit.) Thus

(27) provides the collisional heat flux qk = −(3/2)νλ2n0A2k, which is the Fourier transform

of the familiar relation

q = −3

2
νλ2n0A2. (30)

In other words our kinetic theory has reproduced, in the appropriate limit, the classical law

of parallel heat conduction.

At long mean–free path (ζ ¿ 1), we note from (15) that

Z = −i
√
π
k

|k| − 2ζ +O(ζ2)

and thus find that

qk =
ivt√
π

k

|k| n0A2. (31)
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It is helpful to express this result as qk = rkn0A2 with

rk =
ivt√
π

k

|k| .

Now the inverse transform is

q(x) = n0

∫ ∞
−∞

dx′r(x′)∆T (x− x′)

so we only need the inverse transform of k/|k|. This function is evidently not square–

integrable, but it has a well–behaved inverse transform in the generalized function sense

(see, for example, Gel’fand [6]):

r(x) =
vt
π3/2

P
(

1

x

)
where the P denotes a principal value. The resulting heat flow

q(x) =
n0vt
π3/2

∫ ∞
0

T (x− x′)− T (x+ x′)

x′
(32)

was previously derived by Hammett and Perkins. Note that the direction of the flow is such

as to dissipate the temperature gradient.

Thus (27), having been derived without a collisionality ordering, indeed contains the

physics of both short and long mean–free path.

V Particle flux

The particle flux is more interesting. The key observation is that the Fourier–transformed

thermodynamic force Aik, corresponding to the pressure gradient, involves only the particle

source, σ0. The heat source does not enter. Indeed one finds from (16) and (17) that

w0 + w2 =
−2ζ2σ0

ν
. (33)

It follows, in view of (20) and (22), that the particle flux is remarkably simple:

Γk = −1

2
νλ2n0Aik. (34)
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Because the coefficient here is independent of k, the inverse Fourier transform is obvious and

simply reproduces Fick’s law:

Γ = −1

2
νλ2n0∇ log p. (35)

Its diffusion coefficient,

Dc =
1

2
νλ2 =

1

2

v2
t

ν

is classical and, at short mean–free path, easily understood from random walk arguments.

Of course its occurrence in an expression valid for arbitrary mean–free path is surprising.

Two comments are in order:

1. A Krook–model plasma with Maxwellian sources is described by Fick’s law, with the

same diffusion coefficient Dc(ν), for any finite collision frequency. In this respect the

particle flux is very different from the heat flux: the former never involves a nonlocal

operator, as appears in (32).

2. The diffusion coefficient Dc(ν) becomes infinite in the collisionless limit. That the

collisionless particle flux is nonetheless finite reflects the fact that the pressure pertur-

bation is proportional to ν. Thus a collisionless plasma has a finite particle flux, due

to the inhomogeneity of the source σ0, but vanishing pressure gradient.

Thus our goal—to express the fluxes in terms of the profiles rather than the sources—

is only partly successful. It works nicely for the heat flux, but produces a singular result

for the collisionless particle flux. The relation between the particle flux and its canonical

driving force is singular at ν = 0, where free–streaming removes the pressure gradient while

Γ remains finite.

Because the fluxes are actually driven by local sources, not gradients, we should not be

surprised at the singularity. But its occurrence carries a cautionary message: transport clo-

sure at long mean–free path cannot be formulated, generally, in terms of profile information

alone.
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