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Abstract

A sheared background flow in a plasma induces cou-
pling between different MHD wave modes, resulting in
their mutual transformations with corresponding energy
redistribution between the modes (Chagelishvili, Rogava
& Tsiklauri (1996)). In this way, the energy can be trans-
fered from one wave mode to the other, but energy can
also be added to or extracted from the background flow.
In the present paper it is investigated whether the wave
coupling and energy transfer mechanisms can operate un-
der solar wind conditions. It is shown that this is indeed
the case. Hence, the long-period waves observed in the
solar wind at r > 0.3 AU might be generated by much
faster periodic oscillations in the photosphere of the Sun.
Other possible consequences for the observable peculiar
beat phenomena in the wind and acceleration of the wind
particles are also discussed.

Subject headings: Sun: solar wind — MHD waves — shear flow
— wave coupling

1. Introduction

Long-period waves are observed in the solar wind at
r > 0.3 AU (Hollweg (1990)). The correlation between
the magnetic field and the velocity fluctuations indicates
that the observed waves are outward propagating Alfvén
waves. It appears, thus, that the sun radiates Alfvén
waves. These waves dissipate and heat heavy ions and
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protons. In the wind, the heavy ions (such as He?") are
hotter as well as faster than the protons, T;/T), = m;/m,,
and V; =V, = v4. The latter condition strongly indicates
that the waves could play a significant role in the heating
and acceleration of the wind. For this mechanism to be
taken seriously, we must find answers to the following
questions:1) Since the observed waves have periods of
several hours at 1 AU, what is the source of such low-
frequency waves; it is hard to associate these waves with
known processes in the photosphere, 2) Will there be
enough power in the Alfvén waves to drive the high-speed
solar wind streams?

In this paper we make an attempt to answer these
questions. The coupling brought about by the veloc-
ity shear between the modes of a shear-less plasma, and
the interactions of these modes with the velocity shear
(with a possible energy exchange) will be the two cen-
tral mechanisms invoked in this effort. The ability of an
inhomogeneity like the velocity shear to couple various
plasma modes has been common knowledge for a long
time. What has not been generally known, however, is
the fact that velocity shear, unlike other normal inhomo-
geneities, causes a profound change in the very nature of
the eigenvalue problem associated with linear waves. The
corresponding eigenvalue problem becomes non self- ad-
joint resulting in non-orthogonal eigenfunctions which do
not have independent time evolution. Thus the asymp-
totic normal mode analysis (with exponential time de-
pendence) cannot completely describe the time evolution
of the system. In particular, all transient and algebraic
processes, which may form an essential part of the dy-
namics, will be missing in the standard approach. Thus
to know the rates of mode conversion or of energy ex-
change in a sheared plasma, we need a different approach.
One, in fact, must go back to solving the initial value
problem. Fortunately the mathematical frame work for
posing and solving the initial value problem (in sheared
flows) is now well developed, and a large number of rel-
evant and interesting physics problems have also been
worked out. For want of a better name, we call the new
method (to be explained and used in this paper) ‘non-
modal analysis’.

In several papers, dealing with a wide variety of lab-
oratory, geophysical and astrophysical shear flows, the
techniques of the nonmodal analysis have been used to
delineate most of the expected shear induced phenomena:
the transient amplification and decay of perturbations,
energy exchange between a given mode and the back-
ground, and the mutual conversion and energy exchange
between different modes. A list of representative arti-
cles consists of: Chagelishvili, Rogava & Tsiklauri (1996);
Chagelishvili, Rogava, & Segal (1994); Rogava, Mahajan,



& Berezhiani (1996); Chagelishvili & Chkhetiani (1995);
and Mahajan, Machabeli & Rogava (1997). In these pa-
pers, appropriate conditions for optimal exchange and
the rates of exchange are also worked out.

Large empirical evidence (see the numerous Ulysses
data in Winterhalter D. et al. 1996) implies that the so-
lar wind is a quite essential example of an inhomogeneous
plasma flow capable of sustaining a variety of modes. Are
the conditions in the solar wind, then, favourable for the
shear-mediated processes to effectively occur? In this
paper we demonstrate that the answer to the preceding
question is in the affirmative. This realization is likely
to have far-reaching consequences: 1) the appearance of
the long-period waves at r > 0.3 AU may be attributed to
the shear-induced transformation of much faster photo-
spheric oscillations, e.g. fast magnetosonic modes, 2) The
inter mode-flow energy exchange, jointly with wave trans-
formations, may transfer a part of the wave energy to
the flow resulting in the acceleration of the solar wind.
Finally, the wave coupling can produce beats (Rogava
& Mahajan (1997)), which may be detected in the so-
lar wind. Due to its rather peculiar outward appearance,
this effect may serve as a bona fide signature of the shear-
induced effects.

Before plunging into a mathematical analysis of the
solar wind problem, we should note that we consider two
different kinds of MHD wave transformations. The first
process ivolves the transformation of fast magnetosonic
waves (FMW) into Alfvén waves (AW). It was recently
shown (Rogava, Mahajan, & Berezhiani (1996), Chagel-
ishvili et al. (1997)) that this process takes place in both
electron-proton and electron-positron plasmas. The re-
markable quality of this particular kind of velocity shear
induced mode transformation is that its efficiency is ex-
clusively determined by the spectrum of initial perturba-
tions, i.e. the characteristics of the background flow do
not impose any specific constraints.

The second process considered in the present paper is
the velocity shear induced transformation of FMW into
slow magnetosonic waves (SMW) (Chagelishvili, Rogava
& Tsiklauri (1996)). This process is efficient only when
the Alfvén and sound speeds, V4o and Vs, are compara-
ble. In the solar wind, beyond ~ 0.5 AU, typically (see
e.g. Sturrock (1994)), the ion and electron temperatures
are approximately the same (T, ~ T, ~ 10°K), the pro-
ton number density is n, ~ 10 cm 3, and the background
magnetic field is By ~ 1074 — 107° G. For these values,
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which is of order unity.

This difference in efficiency conditions between the
two processes implies that while FMW-AW transforma-
tions may take place in the whole extent of the solar wind
the FMW-SMW transition may be of secondary impor-
tance since it may take place only at » > 0.5 AU involving
internally generated and/or remnant FMW. The FMW-
AW transformations, on the other hand, may serve as a
reliable source for the generation of the observed long-
period Alfvén waves at r > 0.3 AU.

We consider a simple low-3 fluid plasma to study both
the FMW-AW and FMW-SMW processes. In both these
transformations, the adiabatic character of the FMW en-
ergy evolution, induced by the presence of the velocity
shear, may cause a partial transfer of the wave energy to
the mean flow thus leading to the acceleration of wind
particles. Finally, we show that, in either of these cases,
beat waves are excited; the latter finding is similar to the
recent results of Rogava & Mahajan (1997) where beat
waves are seen in the parallel shear flow of a gravitation-
ally stratified compressible neutral fluid.

2. General Formalism

In the present section we model the solar plasma as a
sheared MHD flow, and derive the basic set of linearized
equations, governing the evolution of small-scale pertur-
bations in this flow. We shall follow the techniques of
the nonmodal analysis (see for details, e.g. Marcus &
Press (1977) and Criminale & Drazin (1990)): we ap-
ply a standard coordinate transformation to a comoving
shearing reference frame, and convert the system to a set
of coupled second order ordinary differential equations
(ODESs) describing the temporal evolution of the MHD
modes (AW, SMW, and FMW) sustained by the flow.

2.1. Physical model and equations

In order to investigate the essential features of the
shear induced mode coupling in the solar wind, we con-
sider a rather simple physical model. A uniform mag-
netized plane slab plasma is embedded in a constant
magnetic field along the z-direction, i.e. By = Bype,.
The background flow is assumed to be directed along
the magnetic field and to vary linearly in the z-direction:
Vo =Vye, = Axe,, with a constant A (see Fig. 1).

The simplicity of this model flow, in particular, the
assumption of the linear profile for the velocity shear,



guarantees its applicability to a wide variety of terrestrial
and astrophysical shear flows. The reason is simple: for
small-scale perturbations with wavelengths much smaller
than the length scale of the flow, an arbitrary piecewise
linear ‘shear profile’ can be taken to be approximately
linear on the length-scales of interest . The Goldreich-
Lynden-Bell model (Goldreich, & Lynden-Bell (1965)),
widely used since the sixties for astrophysical shear flows,
is a well-known example of such an approximation.

To concentrate on the essentials of our stated physi-
cal problem, we consider a special case of the quite gen-
eral magnetized plasma flow discussed in Chagelishvili,
Rogava, & Tsiklauri (1997). By neglecting pressure
anisotropy effects, the complications due to the firehose
and mirror instabilities will be eliminated, and the re-
sulting dynamics will be limited to an interplay of SMW,
FMW, and AW. Small perturbations in the model shear
flow obey the following linearized MHD equations:

(0y + Azd.)d + Opuy + Oyuy + Oou =0, (4)
(9, + Axd.)uy = —V20,d + V2 [azﬁx - aw@} . (5a)

(8, + Azd.)u, = —V20.d — Auy, (5¢)
(8 + Az0,)by = O, u,, (6a)
(8, + Azd. )b, = D.uy, (6b)
Buby + Oyby + 02b. =0, (7)

where the dimensionless pAerturbed density and mag-
netic field are defined by d = p'/po (po =const) and
b = B'/|Bo| (|Bo| =const), respectively. The u’s are
the velocity perturbations, the operator 0 denotes the
partial derivatives, and the constants V; and V) refer to
the sound and the Alfvén speeds, respectively.

2.2. Coupled oscillations

Following the standard procedure of the nonmodal
approach (see e.g. Chagelishvili, Rogava, & Tsiklauri
(1997)) we first affect the following change of variables:

=z, vy =y, 2 =2z2-Axt t=t,

and then take a spatial Fourier transformation of the per-
turbed quantities F':

F— /ﬁ(kx', Ky ko V) ei(km/m'+ky/y'+kz/z/)dkx,dky,dkz,_

After eliminating b, by means of Eq. (7), we may write,
in dimensionless variables:

DM = K, (T)vg + Kyvy + vs, (8)

oM = 2K, (1)D + [1 + K2(7)]by + K, K. (7)b,, (9a

)

o{V) = —e?K,D + [1 + K2(7)|b, + K, K (1)by,  (90)
Ugl) = —62D — R’Um, (96)

b = —y,, (10a)

b = —,, (100)

where F(™) denotes the n-th order time derivative of F
and the/\dimensionlefs variables are defined as: D = id,
by = iby, by = iby,, R = A/(Vaky), € = V5/Va,
T = VAkm/tl, Kx(T) = km//kzl — Rt = Kzo - RT,
Ky=ky/k., vi=u;/Va (i =x,y,2).

Note that, in these equations, R measures the nor-
malised strength of the velocity shear, the speeds are
normalized to the Alfvén speed, and the time is normal-
ized to the Alfvén time. This normalization, different
from the one used in Chagelishvili, Rogava, & Tsiklauri
(1997) (velocities normalized to the sound speed), is dic-
tated by convenience for studying the cold plasma limit.

By introducing a new variable, ¥ = D + K, (7)b, +
Kby, we can reduce the system (8-10) to three intercou-
pled second order ordinary differential equations :

$® 4 w2 = Cy (r)by + Caby, (11a)
b?) + w3 (7)by = C1(7)% + C3(7)by, (115)
bl(jz) + wiby = Cotp + C5(7)by, (11c)

with the following auxiliary notation:

w1 =€, (12a)

wo(T) = /14 (1 +e2)K2(7), 12b

wy =4/1+ (142K}

(12b)
(12¢)
C1(7) = 2K, (7), (13a)
(13b)
(13¢)

13b

Cs(m) = —(1 + 2K, K, (7). 13¢

Equations (11)—(13) describe coupled oscillations with
three degrees of freedom. Uncoupled eigenfrequencies
and coupling coefficients appearing in (11)—(13) are wj;
and C;, (i = 1,2, 3) respectively. The presence of shear in
the flow (R # 0) ensures temporal variability of some of
these quantities. However, their dependence on time may



be considered as adiabatic when R < 1. Under certain
circumstances, the coupling leads to energy exchange be-
tween the oscillators, and to the transformation of fun-
damental oscillations into each other. These equations
are quite general and encompass all three linear MHD
modes (AW, SMW, FMW). In the subsequent sections
we examine two special cases of interest in the solar con-
text, viz. FMW-AW and FMW-SMW transformations.
We find that both processes are optimally favoured in
the solar wind.

3. FMW-AW transformations

Since pressure effects are quite subsidiary to this trans-
formation, we may simplify our basic setup further by
neglecting the pressure. In this approximation, ¢ = 0
with w; = C; = C2 = 0, Egs. (11)—(13) reduce to the
following pair of coupled second order ODE’s:

b+ 1+ K2(7))by + Ky K, ()b, =0, (14a)

bg(f) +[1+ K;]by + Ky Ky (7)be = 0, (14b)

describing the interaction of the compressional Alfvén
(pressureless FMW) and the shear Alfvén waves (see
Eq. (79) and Eq. (80) in Rogava, Mahajan, & Berezhiani
(1996)). The eigenfrequencies are w3(7) = [1 + K2(7)]
and wi = (1+ K7), and the coupling coefficient C3(7) =
K, K, (7). The system under investigation is mathemati-
cally equivalent to a pair of linear pendulums, connected
by a spring with a varying stiffness coefficient. The
length of one of these pendula also varies in time. Strictly
speaking, due to this temporal variation, the canonical
theory of coupled oscillations is no longer valid. However,
when the system parameters vary slowly (adiabatically),
as they do when R < 1, the standard theory of coupled
oscillations may serve as a useful guide in understanding
and interpreting the inherent physical processes. A brief
overview of some useful facts from this well-known part
of Classical Mechanics is presented in the Appendix.

In Eq. (14), the time dependence of the effective cou-
pling coefficient C3(7) is a direct consequence of the shear
in the mean flow velocity. The coupling coefficient is
also proportional to the wave vector component in the y-
direction (K, in our dimensionless notation) so that for
ky = 0, the two waves decouple, even in the presence of
a shear flow. Since the frequency wy also varies in time,
the presence of shear (R # 0) leads to a temporal vari-
ability of one of the uncoupled eigenfrequencies (ws(7))
in addition to that of the coupling coefficient C3(7).

A remarkable feature of this particular kind of veloc-
ity shear induced wave coupling is that its effectiveness
depends mainly on the wave characteristics (the values

of Ko and K, which determine the initial orientation
of the wave vector) and not explicitly on the intrinsic
physical characteristics of the flow. However, a depen-
dence on some flow characteristics (average value of back-
ground flow velocity V; and the Alfvén velocity) is hidden
in the shear parameter R. An estimate for R reads as
R ~ (Vu/Va)(l,/L), with L signifying a characteristic
length scale of the shear flow. Since we are considering
only small-scale perturbations I, = 1/k,, < L, it is clear
that for both the slow (with Vp ~ 3 x 10°m/sec), and
the fast (with Vy ~ 6 — 7 x 10° m/sec) solar wind flows,
we have R < 1.

The ‘normal frequencies’ of these oscillations, calcu-
lated by the standard formula (see Appendix), are

Q2.(7) EQﬁ_ = 1+K§+K§(7), (15a)
04 =02 =1, (15b)

and may easily be identified, respectively, as compres-
sional and shear Alfvén wave (equivalently, FMW and
AW) frequencies. The frequency of the FMW is time
dependent and when R < 1, it varies adiabatically.

To demonstrate explicitly (for example, by a numerical
solution of Egs.(14)) the presence or absence of ‘mode-
transformation’ it is essential to excite, initially, one of
the ‘pure’ normal modes, and then observe the evolu-
tion of the entire system. This comprises a problem of
the proper selection of initial conditions, which is readily
resolved by means of a technique known in the math-
ematical theory of coupled mechanical oscillations (see
Appendix).

We are now ready to present the results of the numeri-
cal solution of the initial value problem posed in Eq.(14).
For Fig. 2, the relevant parameters are: K,y = 10,
K, =0.1, R=0.1. From Fig. 2a, displaying the solution
for by(7), the conversion of an initially pure FMW into
an AW around the time 7 = 7, = K,(/R, can be clearly
seen. The energy history of this transformation is illus-
trated in Fig. 2b, which shows the temporal evolution of
the perturbation energy

Era(r) = g [Ioal? + luyl? 4 [osl? 4 [bul? + Iy ? + 107
(16)

Note that in the shearless limit the energy is a con-
served quantity (Rogava, Mahajan, & Berezhiani (1996)),
while when R0, the temporal evolution of Eg 4 proceeds
adiabatically. The ‘adiabatic behavior’ of the modes
implies that they should normally follow the dispersion
curves of their own: the spectral energy density of either
the FMW or AW should be proportional to its corre-
sponding normal frequency £4 ~ Q4 (Chagelishvili, Ro-
gava & Tsiklauri (1996), Rogava, Mahajan, & Berezhiani



(1996), Chagelishvili, Rogava, & Tsiklauri (1997)). This
mode of energy evolution, however, will not pertain in the
‘degeneracy region’ (DR, see appendix), where efficient
transformation of one wave into the other may occur.
Checking necessary conditions for efficient coupling (see
Appendix), we learn that the difference Q4 (7) — Q_(7)
attains its minimum value at 7 = 7. It is, therefore, ev-
ident that the DR is in the neighborhood of 7. (at times,
when 0 < |K,(7)| < 1). In the vicinity of 7 = 7, K, < 1
leads to the most efficient mode coupling and, hence, to
the possibility of mutual transformation of the modes.
As regards the second (‘slow passing’) condition derived
in the appendix, it readily holds in the DR when R <« 1.

The FMW-AW transformation is not complete but
only partial; this is shown in Fig. 2 (b). We see that
the energy graph is not symmetric: the rate of adiabatic
decrease in energy up to 7 = T, is greater than the cor-
responding rate of growth at 7 > 7, indicating that the
initial FMW was only partially converted into the AW,
which contributed to the decrease of the efficiency with
which the wave extracts energy from the mean flow at
T > T,. In other words, the FMW transfers energy to
the mean flow until 7 < 7, and cannot, afterwards, (at
T > T,) extract back the same amount of energy because
the FMW has been partially transformed into an AW.
The latter mode has a constant fundamental frequency
Q_ = Q4 and, therefore, is not able to extract energy
from the mean flow via the shear-induced process. This
picture allows one to speculate that FMW—-AW transi-
tions may contribute to the net acceleration of solar wind
particles.

Yet another impressive shear-induced phenomenon,
which arises in this setup is the excitation of beat modes
(Fig. 3). Similar kinds of shear induced beats among in-
ternal gravity and sound waves were originally reported
in Rogava & Mahajan (1997).

In the MHD system, the subject of the present paper,
the ‘beat regime’ is realized when R < K, < 1 (¢ ~ 1);
the normal frequencies Qp(7) and Q4 are, then, almost
equal to each other. Hence, the coupling is inherently
efficient and conditions are favourable for the excitation
of ‘beats.” A representative example of such a solution
is presented in Fig. 3 for Ky = 0.1, Ky, = 0.1, and
R = 2 x 107*. Notice that the beat frequency Q, =
Qp (1) — Q4 is variable, and varies in such a way that the
beat period becomes smaller and smaller when 7 exceeds
T

4. FMW-SMW transformations

In the Introduction we have already shown that con-
ditions in the solar wind environment are also favourable

for FMW-SMW transformations. For an explicit demon-
stration, let us study another simple case, and consider
2D perturbations in the presence of a thermal isotropic
pressure. In other words, let us investigate our basic set
(11)-(13) with K, = 0 = b,. The remaining system turns
out to be yet another interesting pair of intercoupled sec-
ond order ODEs :

Y@ 4 %) = 2K, ()b, (17a)

b 4+ 1+ (1 + ) K2())by = 2K (7). (17b)

Chagelishvili, Rogava & Tsiklauri (1996), dealing with
a similar system, have shown that the condition ¢ ~ 1,
which physically corresponds to the approximate equality
of Alfvén and acoustic Mach numbers, ensures effective
mutual transformations of SMW and FMW into one an-
other with corresponding energy exchange between them.
Interestingly enough, the solar wind parameters are pre-
cisely in the regime for optimal coupling (see introduc-
tion).

In the solar wind context we are primarily interested
in establishing the possibility of FMW-SMW transitions.
We performed a numerical analysis of Eq. (17) for the
case ¢ = 1.2 (Ko = 10, R = 0.1). Fig. 4a shows the
temporal evolution of the function v,(7), which appar-
ently reveals that the initially pure FMW is partially
converted into a much slower oscillating SMW. Note that
the transformation is not complete: the resulting wave is
a mixture of a SMW and a FMW.

The situation becomes clearer on examining the evolu-
tion of the dimensionless total energy density of the per-
turbations (Chagelishvili, Rogava & Tsiklauri (1996)),

Ers = (ol +[0:2) /222 DP /2 (b 2+ 6. ) /2. (18)

In Fig. 4b the temporal evolution of Epg(7)/Ers(0) is
plotted for the same sample of parameters. As expected,
the initially pure FMW follows its adiabatic (Eps ~ QF)
route of evolution up to the moment 7 = 7. However,
after the wave passes through the DR, and is partially
converted into SMW, the slope of its energy curve (en-
ergy increases at 7 > 7,) is noticeably smaller. This be-
haviour indicates that at 7 > 7, we actually have some
mixture of a FMW and a SMW. This means also that
the initial perturbation, which is converted into a SMW,
has transfered a part of its energy to the background flow
contributing its fair share to the acceleration of the solar
wind particles.

Beats are present in this case too. Figure 5 displays
a vivid example of the excited beat modes (numerical
solution is obtained for K,y = 1072, R = 104, and
e=1).



5. Discussion

In this study, we had set out to find answers to a cou-
ple of questions: 1) what is the source of long-period
Alfvén waves in the distant solar wind, and 2) could
Alfvén-like modes accelerate the solar wind, and if yes,
how? Our conjecture is that the short-period fast mag-
netosonic waves (amply produced in the photosphere),
acting through the agency of the newly discovered ve-
locity shear induced physical processes, could convert to
long-period Alfvén waves as well as impart energy to the
wind flow. To test this conjecture, we have examined if
the shear mediated processes of mode-conversion (FMW
to AW and FMW to SMW), and of energy exchange with
the flow (FMW, SMW and the flow) could efficiently take
place in the solar wind. The preliminary results are very
encouraging. We found that the conditions for occurence
of these processes are, in fact, very close to optimal. For
reasons stated earlier, we considered the following two,
rather simple, subclasses of velocity shear induced pro-
cesses:

1. FMW-AW transitions (with thermal pressure ef-
fects ignored). We found that the velocity shear
effectively couples FMW and AW modes, and for
weakly 3D perturbations (i.e. those with K, =
ky [k, < 1), ensures a partial transformation of
FMWs into AWs. We argue that this process may
be the source for the long-period Alfvén waves
which are actually observed at r > 0.3 AU (Hollweg
(1990)). It was demonstrated that a small shear in
the wind velocity can easily yield AWSs in the corona
with a period 10 times longer than the FMWs ex-
cited in the photosphere. The FMWs are converted
into AWs around the moment when their energy
density tends to its minimum value. This allows us
to argue, also, that FMWs transfer a part of their
energy to the background wind flow while they are
converted into AWs. Thus the process may be a
credible source of solar wind particles acceleration.

2. We found that FMWs may also be transformed into
SMWs in the solar wind. Conditions for the ef-
fectiveness of this channel of wave transformations
are more distinctive—it is necessary to have ap-
proximately equal values of the Alfvén and acous-
tic Mach numbers in the region of the wind. Fortu-
nately, as simple estimates show, nature seems to
favour this condition: such an equality (V4 ~ V)
is likely to exist for the known wind parameters at
distances greater then 0.5 AU raising the possibility
of an FMW-SMW transition. Like in the previous
case FMWs manage to impart a considerable part

of their energy to the mean flow while they are con-
verted into SMWs, so that the process may provide
yet another channel of wind acceleration.

In our investigations, we have also unearthed another
remarkable ‘shear’ effect— the excitation of beat modes.
It is shown to happen in both the FMW-AW and FMW-
SMW regimes. This phenomenon, due to its spectacular
appearance, may be gainfully employed as a reliable ob-
servational signature of velocity shear induced processes.

After these very promising indications of the impor-
tance of velocity shear induced effects in the solar wind
we are eager to further extend the investigations. We in-
tend to launch more profound and detailed studies based
on more realistic plasma models. It is hoped that accu-
rate quantitative statements regarding these transitions
will follow. We would, then, be in a stronger position
to judge if this mechanism can really account for the
long-period Alfvén waves that are observed in the so-
lar wind. As regards energy exchange processes, again,
more detailed studies are required to find out to what
extent this kind of energy transition takes place in the
solar wind. In a forthcoming paper, based on the gen-
eral equations (11)—(13) derived in the present paper, we
will consider a general 3D setup and will look for mutual
transformations of Alfvén and both magnetosonic modes,
so that all transitions between linear MHD waves wil be
investigated under typical solar wind conditions. Further
generalizations of this model, including different T; and
T, (present in the solar wind), pressure anisotropy, and
finally the kinetic effects will also be studied.

Recent observational results Grall et al. (1996) in-
dicate that the acceleration of the polar wind is almost
completed by 10 Rg. This circumstance implies that the
acceleration of the solar wind and and the heating of the
solar corona occur in approximately the same region, the
very region where velocity shear induced mutual transfor-
mations of MHD waves are anticipated. In this context
it seems reasonable to beleive that the velocity shear in-
duced mode conversion processes may be important also
for the understanding of coronal expansion.
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A. Coupled Oscillations

The term ‘coupled oscillations’ refers to the case where
two (or more) oscillators, on equal footing, are coupled
tightly so that the motion of each one of them is affected
by the other(s). Energy can flow from one oscillator to
the other in contrast to the case of ‘forced oscillations’,
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v4.0.

where the feedback of energy from the driven system to
the driver can be neglected.

The mathematical description of the motion of two
coupled linear oscillators leads to the following pair of
second order, ordinary differential equations:

F® 4 W2F +CF, = 0, (A1)
F¥ 4 wdF+CF = 0, (A2)

where wy and ws are the oscillator eigenfrequencies, and
C is the corresponding coupling coefficient. The above
system describes general linear oscillations of coupled os-
cillators (Morse (1981), Magnus (1976)). Fixing one of
the oscillators results in a simple harmonic oscillation of
the other, but allowing both oscillators to move simulta-
neously results in a motion that is usually (with arbitrary
initial conditions) not periodic (Morse (1981)).

However, for constant eigenfrequencies and coupling
coefficient, it can be shown that the general solution of
the system can always be represented as a combination
of the normal modes:

Fy, = Ficos(Qit—¢i)+ F_cos(Q_t—¢_), (A3)
Fy, = o04Fcos(Qpt—¢y)+o_F_cos(Q_t — ¢p(A4)

where the fundamental or normal frequencies of the cou-
pled oscillations, ), are determined by

1
02 3 {(w% +w3) £ \/(wf —w3)2+4C%|.  (Ab)
The auxiliary quantities o4 in Eq. (A4) relate the oscil-
lation amplitudes of the two normal modes to each other
and are defined as (see e.g. Magnus (1976)):
0% —wi C
= = A6
EET e Twoag (46)

while the ¢4 are the initial phases of the coupled oscil-
lators.

In a coupled system described by Egs. (A1)-(A2), it is
always possible (with properly chosen initial conditions)
to excite a simple harmonic motion in which both oscilla-
tors have the same frequency, viz. one of the fundamental
frequencies Q4 or Q_. From Eqs. (A3)—(A4) it is easily
seen that this regime is established when either F or
F_ is equal to zero. It immediately follows that (Magnus
(1976)):

e Fy #0and F_ =0, when Iy, = 0, Fy, and 0;Fs =
O'+8tF1

e [ #0and Fy =0, when Fy = o_F}, and O, F» =
O'_atFl.



Note also that the value of 2_ is smaller than either
wy or we, while the value of Q. is larger than both w;
and ws. In other words, ‘coupling always spreads apart
the natural frequencies’ (Morse (1981)).

When the eigenfrequencies and/or coupling coefficient
C of the coupled oscillating system vary in time, and
when the variation is slow or adiabatic (i.e. |Q4 (1) | <
02%.(7)), then the system exhibits notable mutual trans-
formations of normal oscillations with corresponding en-
ergy transfer between them (Kotkin & Serbo (1971),
Chagelishvili, Rogava & Tsiklauri (1996), Rogava, Ma-
hajan, & Berezhiani (1996)). The mechanical exam-
ple of the oscillatory system, governed by this kind of
equations, is the system of two coupled pendulums with
slowly (adiabatically) variable lengths (i.e. eigenfrequen-
cies) and the interpendulum coupling coefficient. Kotkin
& Serbo (1971), while considering the similar mechani-
cal problem discovered two necessary conditions for the
effectiveness of the energy exchange between the weakly
coupled pendulums:

e (A) There should exist a so called “degeneration
region,” (DR) where |Q3 — Q2| < |C(7)]. In other
words, in the case of weak coupling this condi-
tion implies that Q_ =~ 4, which means that
the maximum energy exchange between the pen-
dulums occurs when they have approximately the
same length.

e (B) The DR should be ‘passed’ slowly, i.e. in a suf-
ficiently long time interval exceeding the ‘beat pe-

riod”: |2 (r)] < |C(7)!.

Certainly, these conditions are valid for arbitrary oscil-
latory systems, governed by the same kind of differential
equations. So, they can be directly applied in the anal-
yses of velocity shear induced intermode (or interwave)
couplings.
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Figure Captions

Fig. Al.— Simple uniform slab model with linearly vary-
ing background flow.

Fig. A2.— Time dependence of b,(r) for Ko = 10,
R = 0.1, and K, = 0.1 (Fig. 2a). The graph [numeri-

cal solution of Egs. (14)] represents the partial transfor-
mation of a FMW, with fundamental frequency Qg(7),
into a AW with frequency 24 = 1 (more than 10 times
lower!). Fig. 2b displays the time dependence of the en-

ergy Epa(7)/Era(0).

Fig. A3.— Beat waves [FMW-AW] displayed for b, (7)
and by (1) when K0 = 0.1, R=2x10"% and K, = 0.1.

Fig. A4.— The temporal evolution of v,(7) for an ini-
tially pure FMW which is partially transformed into a
SMW. The graph represents results of numerical solution
for K0 = 10, R = 0.1, and ¢ = 1.2 (Fig. 4a). Fig. 4b
shows time dependence of the energy Erg(7)/Ers(0).

Fig. A5.— Beat waves [FMW-SMW]| displayed for D(7)
and b, (7) when K, =1072, R=10"% and ¢ = 1.



