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Abstract

Very close to the horizon of a black hole, the gravitational acceleration be-
comes so large that vacuum can begin to radiate (the Hawking radiation). The
temperature of this radiation can exceed (twice of) the rest mass of electrons
and positrons at the distance to the horizon on the order of the Compton
wavelength. In this vicinity, even within 3R, (R, is the Schwarzschild ra-
dius}, an clectron-positron plasma is realized and self-sustained. Using the
3+1 paradigm of general relativistic hydrodynamics, we find a steady equilib-
rium solution and that there is an opaque layer arcund the horizon so that the
apparent temperature of a black hole may be lower than the Hawking tem-
perature. We find that this plasma (in the “QED sea”) is hydrodynamically
marginally stable. Away from this vicinity, we also find several nontrivial
hydrodynamic equilibrium solutions of plasma on the equatorial plane. The
plasma above the “QED sea” may be unstable under certain conditions giving
rise 10 such salient phenomena as (general and special) relativistic jets. These
equilibrium solutions provide a good Start.ing point to study the dynamics of

plasma around a black hole.
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I. INTRODUCTION

The physics of a black hole has been developed mainly on its spacetime properties and
little attention has been paid on matter associated with a black hole. This may be in part due
to an assertion that no matter may be around it stably. On the other hand little development
in general relativistic plasma physics has been carried out and its little impact on astrophysics
is found, perhaps due to the esoterics of the subject. The enormous gravitational field around
a black hole greatly affects the surrounding plasma medium, so that plasma physics in the
vicinity of a black hole should be a subject of interest in astrophysics. The presence of
a plasma will also alter observational signatures via its radiative and opacity properties.
Based on the 341 paradigm [1] [2], a more intuitive mathematical description of general
relativistic hydrodynamics of a plasma around a black hole could help ease the study and
such has been introduced by Tarkenton [3] and Daniel & Tajima [4] [5]. We apply this
method to investigate the properties of the plasma around a black hole. (As we shall see,
plasma is generated and suspended around the black hole horizon).

Hawking discovered in 1974 [6] [7] that a Schwarzschild black hole can radiate electro-
magnetic waves due to its gravitational acceleration. The radiation is characterized as a

black body radiation with temperature (the Hawking temperature) Ty

hogu
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where kp is Boltzmann’s constant, k is Planck’s constant, gg = ¢®/(2R,) is the surface
gravity of a black hole, and R, = 2GM/c? is the Schwarzschild radius. This temperature
(Th) is observed at an infinite distance. Verifying them was not straightforward because
at that time there was not any agreed-upon formalism for quantum field theory in curved
spacetime. But by 1975 each of the experts had repeated Hawking’s calculation in his own
way and had obtained the same results: thermal emission (see historical reviews in, e.g., [8]
[9]). A key insight into this thermal radiation came from Unruh [10], who further discovered
that an accelerating particle detector in a flat, empty spacetime should bchave as though it

were bathed in a thermal radiation with temperature



kT = — (2)

where a is the detector’s acceleration. This temperature T is related to the Hawking tem-
perature 7y but these two temperatures are different. In our study the temperature 7 in
(2) plays the most important role.

A static observer {who is a FIDucial Observer, hereafter, a FIDO) just above the horizon

can be viewed as an accelerated observer in a flat spacetime with an acceleration

a=g=gu/a, (3)

where g is the local gravitational acceleration and « is the gravitational redshift function,

o E '

The reason why « is a gravitational redshift function is clear in the Schwarzschild metric as
we shall come to it again later. The locally measured temperature of the radiation observed
by a FIDO is divergently large as & — 0 at r — R, and thus depends on the precise location
of the FIDO. The redshifted temperature (i.e. the Hawking temperature) is related to the

temperature in {2) by
Ty =al, (5)

and hence Ty measured by a distant observer is finite. The redshifted temperature Ty is
also called the surface temperature of the hole. Therefore a remote observer will see the
black hole radiates with the temperature T, which is Hawking’s result. In a local FIDO
frame, the temperature T climbs towards the horizon and the energy of the corresponding
thermal radiation can become higher than the rest mass of electron. Adopting this Hawking
(or Unruh) mechanism, we are thus led to conclude that there is an electron-positron plasma
generated by such a thermal radiation at a distance very close to the horizon. The apparent
paradox that a FIDO above the horizon sees a thermal atmosphere but a freely falling
observer sees purc vacuum was explained by Unruh and Wald [11]: two “vacua”, one in the

FIDO and the other in the free-fall frame, are related by the Bogoliubov transformation.
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We shall show in the following how this plasma is realized and what the equilibrium it is
in. This is one of a few reasons for the presence of a plasma around a black hole. Additional
mechanisms for it include (i) the advection of a plasma from a surrounding object such as
an accretion disk [12]; (ii) a plasma generation by the presence of strong fields (magnetic
[13] or accelerating fields) and that of seed matter (perhaps from (i)). We will show some

of the properties of these plasmas as well.

II. FORMALISM
A. The Metric and Coordinates System

The Schwarzschild metric arises from the solution of the vacuum Einstein equation that
describes the gravitational field outside a neutral, non-rotating point mass. In Schwarzschild
coordinates {a modification of flat spherical coordinates) the metric takes the form [14]

ds® = — (1 - 5—5—) Gt + — L agge (6)

T 1—-R,/r

where B, = 2GM/c? is the Schwarzschild radius associated with an object of mass M and
d? = df? 4 sin®8d¢? is the elemental solid angle. From this form we can identify the
quantity m is o defined in Eq.(4) and may be called the lapse function because it
is the coeflicient of cdt in the metric and thus describes the amount of time that measured
by a FIDO elapses during the passage of a unit amount of universal time. This function
was called the gravitational redshift function in the previous section since a photon emitted
with frequency fo by a FIDO at radius ry will be measured to have the redshifted frequency
f = a(ry) fo by an observer far from the hole. The third meaning of « is that it relates with

the locally measured gravitational acceleration by

do
= — 2 ] = — 2——-_
g c“Vine T (7)

Note that the gradient operator V in the above equation is defined in a curved space metric

and hence different from its usual meaning in flat space.

4



The development of the 3-+1 formulation of general relativity by Thorne et al. [1] provides
a method in which the electrodynamics and plasma physics may be treated similarly to the
formulation in flat spacetime while taking accurate account of general relativistic effects
such as curvature. Taking this 3 4 1 point of view [15], the general relativistic spacetime
(¢,7,8, @) can be split up into an absolute three dimensional space (r,#, ¢) plus a universal

time ¢. The spatial metric of a non-rotating (Schwarzschild) black hole can then be written

as
ds?® = —i + 72d6? + r?sin® 6de®
1 - (R,/r)
= a %dr? + r2df® + r®sin® 6do?, (8)

where R, is the Schwarzschild radius described earlier. A caution should be raised when
manipulating differential equations in such a metric since the Schwarzschild space (and the
corresponding 3+1 splitting) is not flat. In order to avoid such a confusion and gain a more
intuitive insight, we should employ a locally flat space, which is Rindler’s coordinates. A

coordinates transformation

2R;a(r)

~&
il

T = Rs : (¢0 - QS)
y = 2R,a(r) ore g =6 (9)
R, {8 — O $=¢

Z

converts the Schwarzschild line eclement into a locally flat one,

ds® = dx? + dy? + d2*
~ di? + R%d0? + R?sin® fd@* (10}
in Rindler’s coordinates. The (Rindler) Cartesian coordinates will be used later when we

discuss hydrodynamics in a co-moving frame. Note that Rindler’s spherical coordinates is

slightly different from the usual spherical one. In this coordinates the lapse function is

simply

o =7/(2R,), (11)
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and the local gravitational acceleration can be written as

da ¢*R, c(1-a%)? ¢
= — Chatad = s = ~o—. 12
I=7%9 T 3ar® T " 2R, P 12)
B. Hawking’s Effect in Rindler’s Coordinates
Unruh’s effect implies that the temperature 7’ measured by a FIDO is [Eq.(2)]
hg  he(l - o) (1= a?)? My
kT = = = 1 Mo TTONMeV
B 2me draR, 5x 10 « M ¢
h 3.1 x 10712
L 27 MevV, (13)
onr T

where 7 is the distance to the horizon in Rindler’s coordinates. For a FIDO very close to
the horizon the temperature may climb higher than the rest mass of an electron. When the

distance to the horizon becomes

7o < A/ (47mqc) = Acompton/ (4™) = 3.1 x 107 2cm, (14)
or
M
—18 40
o <5x 107022, (15)

we expect the temperature of a local vacuum exceeds the rest masses of an electron and a

positron. This condition can be cast in T as

kgT(7) h
= 1. 16
2m,c? dmmecr > (16)

Where Eq.(16) [or {14)}] is fulfilled, vacuum radiates photons whose energy is high enough

to generate electrons and positrons by pair creation:
v +y+—et +e.

This will give rise to a plasma with electrons, positrons, and photons. In a thermal equi-

librium the density of each ingredient can be calculated by statistical mechanics [16] [17]



[18]. When we consider the case of pure radiation in vacuum, which corresponds to the
surroundings of an isolated black hole where no matter accrets from the outside world, the

density of electrons (and positrons) can be written as

mic® oo sds
n= s | , (17)
72h* Jo exp[(u+ 1)@ +1

where « = (1+5%)Y2—1,® = mec?/kgT. In the limit & << 1{kgT/mec* >> 1), this integral

15 evaluated as

mic’ (kpT ’ 313 -3 —4~-3
n = 1.803 253 ez | = 2 % 107 Ty (em™) = 6 x 107577, (18)

where we have used the correlation of temperature and position, Eq.(13). Such a plasma
may be regarded as an atmosphere of a black hole. Heckler [19] [20] suggested a “QED
photosphere” for a small size black hole by QED (and QCD) processes.

On the other hand, when kpT << mc?, we have the density of electrons as

vam3c? (2
n=-*——1{—=—
4m2p® \®

)3;2 e™? =221 x 108932 (19)
where ® = me?/T >> 1. The density of electrons and positrons decays rapidly as the
distance to the horizon becomes greater than Ao. Therefore, if there is sufficient matter
outside the atmosphere, [i.e. if the density is greater than n in Eq.(19)], it is not generated
by the Hawking radiation but from the matter accreted from outside the black hole or the
one generated by the assistance of strong fields with (a small amount of) seed mater. This
is the usual region considered by the previous works on relativistic plasmas near the horizon
[21] [22] [23]. Though they also considered electron-positron plasmas, they did not resort to
the Hawking (or Unruh) radiation as the ee™ source. Hence they ( [21] [22] [23]) had no such
simple relations among the density, temperature and position in equations (13) and (18).
We discuss the equilibrium and the dynamics of plasmas inside such a QED sea around the
(isolated) black hole, adopting a (magneto-)hydrodynamical (MHD) point of view. We will
also discuss briefly several possible hydrodynamical equilibria outside the QED atmosphere

where accreting matter dominates.



ITI. HORIZON PLASMA

A. Governing Equations

Adopting the above mechanism, plasma is generated around the horizon inside the Comp-

ton wavelength and we thus have a QED atmosphere. The basic equations that govern the

horizon plasma in 3+1 membrane paradigm were first introduced by MacDonald and Thorne

[1] [2] {see also Thorne et al. [15]):

e Particle Number:

e Momentum:

w(lov
c? \o Ot

1 %
—VP+%g+peE+—JxB-——4(wv-g+J-E+
C cC C

e Energy:

1 8w

o Ot

e Maxwell's Equations:

+ =V (awV) =
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19(T'n)
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where g = g7 is the local gravitational acceleration as defined in equation (12), w =
I'*(e + P) is the enthalpy density, € is the energy density including the rest mass energy,
P is pressure, V is the fluid velocity, I' = (1 — V%/¢?)7'/? is the Lorentz factor and other
symbols stand for their usual meanings. In these equations we assumed that the net of
sinks and sources is balanced in a thermal equilibrium. Although we do not dwell on the
problems with electric and magnetic fields in the present work, we keep those EM terms here
for completeness and references. Note that the particle number density n and the pressure
P are measured in the frame co-moving with the fluid, while the other physical quantities
are measured by a local FIDQ. These equations were solved successfully by the technique
developed for solving the Grad-Shafranov equation for laboratory plasma configurations [24]
[25] [3]. Here in this paper, we investigate the hydrodynamical aspect of a plasma without
dealing with the electric and magnetic field. Also, we are interested in the region whose
gravitational field is so strong that the temperature of the plasma is determined by the
Unruh effect, and such a temperature is much higher than the rest mass of an electron
so that the electron-positron density is determined by equation (18). We thus obtain the
density profile without solving the hydrodynamic equations (20),(21), (22). This procedure

much simplifies the problem.

B. QED Atmospheric Conditions

We have alrcady had the density distribution from the argument of statistical mechanics

(18):
n=6x 10743 (27)
We assume that the ee™ plasma is an ideal gas. The gas pressure is then simply
Py(7) = n(F)kT(7) = 1.8 X 10T, = 3.0 x 107#7 erg - em™>. (28)

The photon pressure is



P,(7) = gT‘I = 4.2 x 1077 terg - cm™?, (29)

where @ = 7.56 x 10~%crg cm™*K~*. This formula is valid only in the region where it is
opaque to photons. We will check the validity later in the discussion. The total pressure P

is thus
P=PFP,+ P, =72x 107 %erg-cm>. (30)

We further assume the electron-positron gas in the plasma has relativistic adiabatic gas
constant v, = 4/3 and its temperature is much higher than m.c?. Then its enthalpy density

can be written as

2
=T2{P— Y ] =ar?Pp {1+ ) map
w ( %“I—I—mnc) ( + AT (31)

IV. THE QED SEA
A. Opaqueness

Beneath the QED atmosphere there lies a layer of plasma where it is opaque to photon.
This layer may be called a QED sea. At the distance 7 to the horizon it is opaque to photon
if it satisfies

Ao

dion >> 1, (32)

F

where Ap is the Compton wavelength inside which electron-positron plasmas are realized,
and ¢ is the cross section of the photon-electron (photon-positron) interaction. The left
hand side of the inequality is the number of collisions of a photon with an electron on its
way to escape from the QED sea. A layer beneath a certain depth of the sea is opaque if
the integral is much greater than unity. We use the Klein-Nishina formula to estimate the

cross-section

O =0KN= -7 =0T, (33)



where or = (87/3)(e*/mc?)? = 6.65 x 107 cm? is the Thompson cross section. Using

Eqs.(13) and (18) for T and n, the integral Eq.(32) gives a criterion of opaqueness as
7 << 2 x 107 %cm. (34)

It means that the QED sea with the depth of ~ 107%cm around the black hole horizon traps
the radiation therein and re-radiates it. In this region the plasma is opaque and photons
can strongly interact with electrons and positrons. Note that this distance is much smaller
than the length suggested by Heckler’s photospheric surface [19] [20].

For a remote observer far away from the black hole, he does not see the Hawking radiation
coming directly from the bare horizon, which would have a temperature of kgTy = hc/ {47 R,)
after gravitationally redshifted. Instead, he observes radiation from the surface of 7, =
2 x 10718¢m, whose temperature is kpTh, = he(l — a?)2/(47R,), cooler than kgTy. We find

that the difference in these two temperatures

?ﬁ'ﬁ—?ﬂ ~ 20, (35)
This is small for an astrophysical black hole, since R, > 10%cm and a = 7/2R, < 10724, How-
ever, for a primordial black hole of a size on the order of M = 10723 M, whose Schwarzschild
radius R, is on the order of 107'®cm, the deviation (35) becomes significantly large. In this

case we need to replace the criterion of opaqueness (32) by

2R, 1x10°%
(-2 T

[a o] 1
/ (dr/e)on= [ da L2 % 1033 > 1, (36)

because Rindler’s approximation is no longer valid. This integral yields a condition

1 b 8 Ry{(cm)
2 toa,— % S fuicm) 37
w, T T3 T 377 o (37)

For example, if R, is equal to 107'8c¢m (a black hole of mass M = 10'%), the opaque layer
extends to «, = 0.33, and the deviation (35) of the apparent temperature T,, from the
Hawking temperature Ty is 22%.

The reduction of the apparent temperaturc of a primordial black hole may have much sig-

nificant meaning in astrophysics. Primordial black holes radiating with temperature higher
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than 1MeV have been estimated to have a lifetime comparable to the age of the universe
[28]. Some argued that primordial black holes may be considered as candidates for very
high energy y-ray sources [29]. If there wecre no opaque layer, the lifetime of a black hole 74

would be cstimated as

Mc?

S L 38
4’}TR§ . JSBT]ti[ ( )

TH

where osp is the Stefan-Boltzmann constant. Since we have found that there is an opaque
(QED sea surrounding the black hole, the apparent temperature T, is lower than the Hawking
temperature T and hence the evaporation rate is reduced from that computed by Hawking.

The lifetime 7 can be estimated as

Mc?
Anr? - ogpTd’

(39)

where 7, is the radius of the surface of the opaque layer. The lifetime is thus lengthen by

T — T Rs 2 TH 4 1
= (2= Y = 1. 4
TH (ro) (Tw) ! (1-a2)? (40)

This effect is pronounced for small black holes. For example, the lifetime of a black hole

with mass M = 10'%g is longer than that has been estimated without an opaque layer by
41%. According to Heckler’s calculation [19] [20], however, his QED photosphere does not

change the lifetime of a black hole significantly.

B. Isotropy

The strong gravitational field around a black hole may introduce spatial anisotropy.
However, as we shall show, this is not the case in the opaque layer (QED sca). In order
to examine the anisotropy of the plasma in the QED atmosphere, we compare two scale
lengths, the mean free path and the pressure scale height. The mean free path Ang, of the

plasma at a distance ¥ from the horizon is estimated to be

1

R(?:)O'KNl’

Amfp = (41)
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where we use the Klein-Nishina formula again to estimate the cross-section of photon-
electron interaction. From Egs.(13) and (18) in cgs units, we obtain the mean free path

of plasma at + away from the horizon as
Amgp = 4.5 x 101972, (42)

On the other hand the pressure scale height H at position 7 is

(43)

When Agg, << H, the plasma is isotropic. Otherwise the strong gravitational field causes

anisotropy in the plasma. This criterion for isotropy is
7 << 5 x 107%(cm). (44)

Since the opaque layer discussed above (34) is already inside this region (44), the plasma
in the QED sea is in fact isotropic. As for the QED atmosphere layer between 10~'8(cm)
and 107'%(cm), the electron-positron plasma is anisotropic. Its equilibrium configuration is

beyond the scope of the present paper.

C. Hydrostatic Equilibrium and Stability of the Sea

The plasma above the horizon is stratified as shown in Sec.III B. This plasma is supported
by the stratified distribution of the Hawking radiation. We investigate the properties of this
plasma, such as its equilibrium and stability.

From the QED atmospheric conditions [Eqs.(27),(30), and (31)}, we find that the pressure
gradient term happens to balance the gravitational force term in the momentum equation

(21),

_vp_,_ZU_Q.(_C?/f):T—— 0. (45)
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Thus we establish that the steady equilibrium with no flow (V = 0) is a solution to the
hydrostatic equations (20),(21),(22). This means that the plasma generated by the Hawk-
ing radiation is “self-suspended” in a steady hydrostatic equilibrium. To the best of our
knowledge, such a suspended plasma equilibrium near the black horizon has never been
mentioned.

As we shall show in the following, this equilibrium is marginally stable against hydrody-

namic convection. The Schwarzschild criterion [26] [27] for convective stability is
V < Vau, (46)

where V = dInT/dIn P is the ambient temperature gradient, Vy,q = (dInT/d1n P),q is
adiabatic gradient and is equal to (y; — 1)/ for an ideal gas. In the case of the black hole
atmosphere the adiabatic gas constant v, = 4/3 because the gas is fully relativistic; and
because the relation between the pressure and temperature is P oc 7% as in Eqgs.(28) and

(29), we obtain
V =V =1/4. (47)

This means that the plasma is convectively marginally stable. It seems astonishing to us that
the plasma generated by the (local) Hawking radiation is exactly in equilibrium and exactly
in marginal stability. We expect that in the presence of magnetic field, this equilibrium may

be destabilized, which will be discussed in a future publication.

V. PLASMA OUTSIDE THE QED ATMOSPHERE
A. Freely Falling Plasma

Far away from the QED sea (but still 7 << R;), one may expect that matter falls toward
the horizon since there is not enough force to support matter against the gravity,. When the
pressure term is absent, the momentum equation (21) can be written in spherical Rindler’s

coordinates (7,6, ¢) as
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9 9 1 N e s

v, 9\ wid

( o T VR T VR, sn0 a¢) (Ver + Veb + Vi)
2

L L(Vi + Vb + V). (48)

T

J=

Here Eq.(48) is (special) relativistic though only velocity, instead of momentum, appears.
This is because w’s are cancelled out from both hand sides of Eq.(48). Note that the
gradient operator here in Rindler’s coordinates is different from that in the usual spherical

coordinates. Noticing that

o 0 . 0
@—9’@ g =
g; = sin 9@5, = (0S8 E?QAS, g—z = — sin 67 — cos 80,

we can decompose the momentum equation in the 7,8 and ¢ directions:

8V ov;  VE Vi & VP

2 e e T o YE

s 0V Ve | ViVe Vicos8 Vi

b:Vegr %Raa R, R,sinf 7 ' (50)
I 6V 6V V,'-ng, ng,Vg cos § . V,‘-V¢
S Vi Vgt Rt R e (51)

We make a further assumption that the gas moves only on the equatorial plane. This
is most like the case when the gas accreting to the black hole is from an accompany binary
star. In this case we can easily solve the radial and azimuthal components of velocity. It
is interesting to note from the 7 component equation that the circular motion with Vi = 0
is not allowed since the azimuthal velocity would become greater than the speed of light c.
This is consistent to the well-known fact that a circularly corpuscular motion does not exist

with 3F;. Having a non-zero radial velocity V;, the azimuthal velocity is solved to be
T . F
Vs = e exp(—7/R,) =~ e (52)

where the approximation 7 << R; is adopted and the constant ¢ depends on the angular

momentum. Note that this solution is a "rigid” rotation. The radial velocity is
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— =) (53)

where the constant b is determined by the boundary condition, and 27/R, < a?/b°. The

corresponding relativistic Lorentz factor ' relates with the position 7 as

I~ ab
S (54

The number density can be determined directly from the continuity equation. From Eq.

(20) one can deduce that

al'nV; = constant,
we then obtain
T
\/ A ’
a’R, b

The density increases slightly as the distance ¥ increases, because the third term in the

n(f) =

radical is greater than the second.

B. Solutions in a Co-moving Frame

A typical belief is that the vicinity of the horizon is pure vacuum. The reason behind it
has been that a corpuscular body does not have a stable equilibrium orbit at a radius within
3R, [14]. Hence the particle that crosses 3R, will quickly fall toward the horizon. However,
the gas (or plasma) dynamics is different from the corpuscular dynamics, because the fluid
is under the gaseous {or plasma) pressure influence in addition to the gravitational force
and the centrifugal force. When the distance to the horizon is small enough, the pressure
term in the momentum equation (21) can not be neglected. It has been demonstrated, in
fact, that there exist equilibria of plasma with or without magnetic field around the event
horizon [24] [25] [3]. Here we take a local point of view to study this vicinity.

The metric for local Cartestan coordinates has been given in Eq.(9). The lapse function

in this Cartesian Rindler coordinates is
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i

a(y) = 2R,’ (56)
and the gravitational acceleration measured in this frame is
2
c
gl = —. a7
lol =< (57)

(Note that y = 7 to relate to the previous notation).
With careful manipulations, the basic general relativistic MHD equations in a local co-

moving Rindler's frame can be derived from equations (20) through (26) as:

a—p+v-(apV)=0, (58)
Ot
1 8(pV) BB B? B
o +V (pVV+pI - +8?rI — g+ 2000 XV =0, (59)
B Ux(avxB) (60)
ot
19 U+1V2+B—2
oot p 2° 8
+lV-[a(U+ +1V2)V+%EXB - V=0 (61)
o P p 2,0 P PE =W
where
1 p
U= P 62
PO (62)
1

The Lorentz factor disappears since we adopt a co-moving frame and assume that the fluid
velocity with respect to this frame is not relativistic. The €2 x V term is the relativistic
Coriolis force term. In this co-moving Rindler’s coordinates the z-axis points to the negative
azimuthal direction, the y-axis to the radial direction and the z-axis to the vertical direction.
The gravitational acceleration g is measured in this co-moving frame. Its main component

is in the negative 2-direction since the radial component of the gravitational force is mainly

17



cancelled by the centrifugal force. It is assumed that g,, which is the radial gravitational
acceleration minus the centrifugal accelcration, is proportional to g,. Both g, and g, are
assumed to be independent of z.

We find that the hydrostatic sokhution to the force equilibrium in this co-moving frame is:

Py, 2) = Pyexp(—y/L)exp(—2/H), (64)

Pl ) = s expl—u/L) expl—2/H), (65)
where
T(y) = vHg.(v), (66)

where H and L are the scale heights in the z and y direction, respectively.
We study the stability of this equilibrium by adopting the Schwarzschild criterion of
convection [26] [27]. Consider an imaginary bubble at position {y, 2) moves toward a new

position (y + &y, z + dz}. The changes in the pressure P and density p are

Py + 6y, 2+ 62) = P(y, 2) (1 —~ c%y) (1 - %z) , (67)
oly + 6y, 2 + 62) =~ ply, ) [1 P LY iaz] . (68)
i ’ y L H

The ambient change of the density is denoted by épamp = p(y + 0y, 2 + 62) — p(y, 2). We

have

8 Pamb 1 1 dz

On the other hand, the adiabatic change of density is
8p, dP § ]
Pad _ _ oy oz (70)

p P gL ~H’
where < is the adiabatic gas constant and is equal to 4/3 in relativistic case. The

Schwarzschild criterion for stability has been given in Eq.(48), or equivalently, §pamp < épaq.
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Thus, the perturbation in the present equilibrium is unstable if it moves in the direction of

(6y, 8z) which lies in the section (in the first quadrant) defined by
— == = (71)

The scale heights H and L are functions of the distance to the horizon {(y), thus the con-
dition (71) is sensitive to ¥ (i.e., ). This instability may be called the general relativistic
hydrodynamic convection. It is interesting to note that the general relativistic effect mani-
fests through the fact that the gravity changes rapidly as a function of the lapse function «
and thus y, even though the region we consider is so small that the y dependence of other
physical quantities such as shearing is negligible. In the non-general-relativistic limit ¥ and
L approach to infinity and there is no instability.

The overall picture (on the equatorial plane) of the plasma in the atmosphere around a
Schwarzschild black hole is shown in Fig. 1. The atmosphere may be categorized into six
different regions. In region I, where the distance to the horizon is smaller than 10~*¥cm,
the atmosphere {or the sea) is plasma composed of electrons and positrons generated by the
Hawking radiation and it is opaque to photons. This plasma is found to be in a stable static
equilibrium (Sec.IV C). In region II {10~!%em < 7 < 10~?cm) the atmosphere is filled with
plasma, but it is not opaque and is spatially anisotropic. In region III the atmosphere is
composed of matter due to accreted gas from outside. The combination of the centrifugal
force and pressure gradient balances the gravitational force. The plasma in this region may
be in a stratified rotating equilibrium as shown in Eqs.(64)(65). We find that this equilibrium
is against the general relativistic convection instability. In regions IV and V the atmosphere
is not self suspended but the gas is spirally falling toward the hole. The difference of region
V from region IV is that in region V the pressure may be neglected and the plasma is in
a dynamical equilibrium given in Eqs.(52), (53) and (55). Region VI is outside 3R, and it
is the usual region on which many studies of accretion disks {starting from [30}) have been

carried out.
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VI. SUMMARY

In summary, we have found the presence of plasmas even in the vicinity (within 3R,)
of the horizon of a Schwarzschild black hole. The origin and property of this plasma vary
depending upon the distance away from the horizon. Within the Compton wavelength
away from the horizon of an isolated black hole an electron-positron plasma is generated
by thermal radiation due to the Hawking effect (Unruh effect). This yields the creation of
the QED atmosphere. The particle number density, temperature, pressure, and enthalpy
density of the plasma are locally determined by the condition of Unruh radiation and are
simple power of 7, where 7 is the distance to the horizon. Deep in such a QED atmosphere,
the plasma is opaque to photons (the “QED sea”). The presence of this “sea” leads to
a number of important conclusions. A remote observer cannot see the radiation coming
directly from the bare horizon. Therefore the apparent temperature 7, observed at infinity
(such as us) is lower than the Hawking temperature T. This apparent temperature T, can
be significantly less than Ty for a small black hole. The lifetime of Hawking evaporation
is considerably lengthened for such a black hole. This “sea” is shown to be isotropic. This
solution satisfies the hydrodynamic equations with a steady equilibrium with no flow V' =0,
where the gravitational force is balanced by the (radiation) pressure gradient. It is shown
that this equilibrium is convectively marginally stable. This plasma is “suspended in vacuum
near the horizon”. (As is for the e"e™ pair creation where 7 > 2mc?, there should be vi
creation when the local Hawking temperature becomes sufficiently high. Thus it is expected
such neutrinos arc emitted. The emergence and energy of such neutrinos depend on the
neutrino mass). In the QED atmosphere above the “sea”, it is a layer of an optically thin,
anisotropic electron-positron plasma generated by Hawking radiation.

Just above the QED atmosphere level, the gas may pile up instead of falling into the
horizon. We have shown an cquilibrium solution in a local co-moving frame in this region
and found that it is unstable against a convective motion. Such instabilities may manifest

as a relativistic jet (both general relativistic and special relativistic). Beyond this region,
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the plasma is spirally falling inward. This solution may be consistent with the advective
accretion [12].

This work is supported by NSF and US DoE.

21



REFERENCES

[1}] Thorne, K.S. and Macdonald, D.A., Mon. Not. R. Astron. Soc. 198, 339 (1982).
[2] MacDonald, D.A. and Thorne, K.S., Mon. Not. R. Astron. Soc. 198, 345 (1982).
(3] Tarkenton, G., PhD. dissertation, University of Texas at Austin (1996}.

[4] Daniel, J. and Tajima, T. Phys. Rev. D 55, 5193 (1997).

[5] Daniel, J. and Tajima, T. ApJ (1998, in press).

[6] Hawking, S.W., Nature 248, 30 (1974).

[7] Hawking, S.W., Commun. Math. Phys. 43, 199 (1975).

[8] Sciama, D.W., Candelas, P. and Deutsch, D., Adv. Phys. 30, 327 (1981).

[9] Birrell, N.D. and Davies, P.C.W., Quantum Fields in Curved Space (Cambridge Uni-

versity Press, Cambridge, England, 1982).
[10] Unruh, W.G., Phys. Rev. D14, 870 {(1976).
[11] Unruh, W.G. and Wald, R.M., Phys. Rev. D29, 1047 (1984).
[12] Narayan, R. and Yi, 1., ApJ 444, 231 (1995).
[13] Breit, G and Wheeler, J.A., Phys. Rev. 46, 1087 (1934).

[14] Misner, C., Thorne, K. and Wheeler, J., Gravitation (W.H. Freeman and Company, San
Francisco, 1973).

[15] Thorne, K.S., Price, R.H., and MacDonald, D.A., Black Holes: The Membrane

Paradigm (Yale University Press, New Haven, 1986).
[16] Chiu, H., Stellar Physics (Blaisdell Publishing Co. Waltham, MA, 1968) p140.

[17] Landau, L.D. and Lifshitz, E.M., Statistical Physics 3rd Ed., {Pergamon Press, New
York, 1980) p315.

22



[18] Weinberg, S., Gravitation and cosmology (Wiley, New York, 1972) pp.528-545.
[19] Heckler, A.F., Phys. Rev. D55, 480 (1997).

[20] Heckler, A.¥., Phys. Rev. Lett. 78, 3430 (1997).

[21] Buzzi, V., Hines, K.C. and Treumann, R.A., Phys. Rev. D51, 6663; 6677 (1995).
[22] Buzzi, V. and Hines, K.C., Phys. Rev. D51, 6692 {1995).

[23] Gratton, F.T., Gnavi, G., Galvao, R.M.O. and Gomberoff, L., Phys. Rev. E55, 3381
(1997).

[24] Lovelace, R.V.E. Mchanian, C. Mobarry, C.M. and Sulkanen, M.E., ApJS 62, 1 (1986).
[25] Mobarry, C.M. and Lovelace, R.V.E., ApJ 309, 455 (1986).

[26] Lang, K.R., Astrophysical Formulae Second Corrected and Enlarged Edition (Springer-
Verlag, Berlin, 1980) p290.

[27] Schwarzschild, M. Structure and Ewvolution of the Stars (Princeton University Press,
Princeton, 1958) p.46.

28] Page, D.N., Phys. Rev. D14, 3260 (1976).
[29] Cline, D.B., Sanders, D.A. and Hong, W., ApJ 486, 169 (1997).

[30] Shakura, N.I. and Sunyaev, R.A., A&A 24, 337 (1973).

23



FIGURE CAPTION

Fig. 1 Schematic picture showing the density profile of the black hole atmosphere. Region I
is an opaque, spatially isotropic layer of electron-positron plasma (QED sea) generated
by the Hawking effect. Region II is an optically thin, spatially anisotropic layer (QED
atmosphere). Region 111 is composed of circularly rotating gases where the gravita-
tional force is balanced by the pressure gradient and the centrifugal force. Region IV
and V contain spirally falling gases but the pressure term may be neglected in region

V. Region VI is the place where the standard accretion disk is considered.
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