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ABSTRACT

A new mechanism for outbursts from a black hole is proposed. A recent
work on general relativistic plasma equilibria around a black hole has shown
the possibility of equilibrium presence of matter and magnetic fields in the
neighborhood of the event horizon even where the corpuscular equilibrium is
not allowed (r < 3R,, where R; is the Schwarzschild radius). A large amplitude
Alfvén pulse in the black hole electron-positron atmosphere that propagates
away from the hole into lower magnetic field regions can experience resonance
and mode-convert itself into a large amplitude electromagnetic (EM) pulse. It
1s shown theoretically and computationally that through this process a large
amount of mass can be picked up by the solitary EM pulse capable of traveling
in vacuum, with which particles are accelerated to relativistic energies. Photon
spectra are obtained not inconsistent with observation, which follow a multiple
power law with log-log slopes of approximately —1, before a “knee” in the
spectrum at energies slightly greater than 1 MeV. It is suggested that this
may be a possible mechanism for the outbursts of the black hole binary GRO
J1655-40.
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1. Introduction

Black holes have long been suspected of generating outbursts, including ~-ray bursts,
via a variety of mechanisms (Tanaka 1989; Murakami 1988). A blackhole has some
properties, especially with respect to possible instabilities, that can generate bursts. In
particular, a prime black hole candidate, GRO J1655-40, has demonstrated bursty optical
properties that may indicatc an advection-dominated accretion flow for the inner regions of
the accretion disk (Orosz et al, 1997), and is generally believed to be a black hole binary.
As such, it is motivation to investigate the near-black-hole plasma physics and its role
in generating bursts. A framework of fully general relativistic plasma physics in both a
cosmological metric (Holcomb and Tajima 1989) and the Schwarzschild metric (Tarkenton
1996; Buzzi et al, 1995) has provided some progress, and a more detailed study is now
possible. Based on such a development, Tarkenton (1996) has investigated theory of general
relativistic plasma equilibria with or without magnetic fields around a Schwarzschild black

hole.

A corpuscular body whose equilibria are determined by the black hole gravity and the
centrifugal force does not have a stable equilibrium orbit for the radius within 3R,, where
R, is the Schwarzschild radius (Misner, Thorne, and Wheeler 1973). The gas (or plasma)
dynamics is different from the above corpuscular dynamics, where the fluid is under the
gaseous (or plasma) pressure (i.e. collisions-mediated force) influence in addition to the
above forces. It has been demonstrated, in face, that there exist equilibria of plasma (with
or without magnetic field) around the event horizon (Tarkenton 1996). At this moment we
do not know the stability of these equilibria. In fact, since matter is differentially rotating
in most of these equilibira, it is likely that many of these equilibria suffer instabilities from
shearing flows, just as matter in an accretion disk does through the magnetic shearing

instability {Balbus & Hawley 1991). Instabilities may be also generated from the accretion
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of disk matter into the region within 3R;. When such an instability sets in, perturbations
of vortices (clumps) grow. Different from the accretion disk matter, matter within 3R,
upon such clump formation suffers the corpuscular instability. The corpuscular instability
and a rapid infall of matter within 3R, can cause bending of the equilibrium magnetic
field, which triggers an intense magnetic pulse. This is equivalent to a (subcyclic or -
solitary) large amplitude shear Alfvén wave. Furthermore, non-general relativistic work
with PIC simulations in a highly stratified positron-electron atmosphere near a neutron
star demonstrate a possibility of particle (electron and positron) acceleration via Alfvén
waves (Holcomb and Tajima 1992). A variation of this method was briefly demonstrated
in a recent paper (Daniel and Tajima 1997), employing the physics of interaction between
a subcyclic pulse and a plasma (Rau, Tajima, and Hojo 1996), and is explored more fully

here.

In section II, we briefly review the formalism and theory behind our fully general
relativistic Schwarzschild plasma, as well as means of linearly analysing resonance, cutoff and
mode conversion. Section III shows linear and nonlinear simulations, the latter generating
both particle acceleration and apparent solitons. Possible means of particle acceleration
are also discussed. Section IV discusses the observable photon spectra generated by the

simulations of electron acceleration in III, and Section V contains discussion and summary.

2. Formalism
2.1. Conformalism approach

We have taken the 3+1 formalism of Thorne and MacDonald (MacDonald and
Thorne 1982; Thorne et al 1986) and employ a conformalism of the metric and physical

quantities such that the equations become “flat”: no covariant derivatives are involved in
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the equations, and the general relativistic effects are hidden only in the change of plasma
variables. Details of this formalism are can be found in (Daniel and Tajima 1997). The
conformalized variables are By = oF, B; = aB, ne = o’n, and J¢ = o J, where ¢ is the

conformalized spatial coordinate:
£(r) = (r — R,) + R, In{r — R,) + const, (1)

a(r) = m is the lapse function, and n is the local number density of all species taken
together. This spatial coordinate has been used previously for dealing with wave equations
in the Schwarzschild metric (Futterman et al 1988). The constant is chosen to be zero for
our simulations. The £ spatial coordinate has the property that velocities measured in this
framework are identical to locally measured velocities. The conformalism only considers
propagation in the & direction, and employs a ‘slab’ metric (we choose a particular 7
with 6 = 6y, ¢ = ¢p and treat it as cartesian coordinates), ds® = a~2dr? + dy® + dz*

(= &®d€* + dy® + dz?), which prevents spherically symmetric artifacts. This is useful if
we consider the (point-like} wave source is away from the origin (as a matter of fact, it

is close but outside of the horizon). In general, all the results to be considered will be
discussed solely in conformalized coordinates and parameters (£-space), and graphed in
these coordinates. While it is possible to show results in the non-conformalized (r-space)
coordinates, they are not as informative in this format, and the graphs would be unreadable:
in 7-space the { grid is compressed on the left side, with several hundred cells within

r < 100, and the amplitude of the F and B fields scales as ™!, so that the amplitudes
near r = K, are orders of magnitude higher than those far from the event horizon. Another
reason for showing results in -space rather than r-space is that several properties of plasma
physics can be readily employed in £-space, such as dispersion relations, resonant and cutoff

behavior, and mode conversion from one type of wave to ancther.

One concern of using the conformalized set of cquations is keeping track of how they
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relate to the real physics that might be observed far from the hole. As r — oo, o — 1,
so the local physics far from the hole is “flat”, and the time far from the hole is universal
time. The conformalized ¢-space physics is the same far from the hole as the local physics
far from the hole. If we model, for example, some phenomena occurring near the hole from
which is emitted some observable electromagnetic wave that propagates-far from the hole,
the frequency in the model is the same as that which would be observed. The main concern
is dealing with the proper time, 7, of the phenomenon near the hole, where the effects of
time dilation are significant. Since dr = adt, then w, = a~lw;, where w, is the locally
measured frequency, and w, is the frequency measured in £-space as well as the frequency
measured far from the hole. The proper time becomes important when there are physically
known frequencies, such as that of electron-positron annihilation, that must be translated

into universal time.

2.2. Electron-Positron Dispersion Relation

The plasma variables such as the plasma frequency and cyclotron frequency can vary
as a function of £ though the lapse function as the main result of our conformalism, even

for a plasma which is uniform in the physical (r) coordinate:

o = [ EEC O O)

- &
0, = @B ) @

High frequency electromagnetic waves in a nonuniform plasma (i.e., £-dependent w,
and Q) can be characterized by a local dispersion relation in the WKB sense. We will
be considering linearly polarized transverse EM waves in an electron-positron plasma.

We assume the proton density negligibly small compared with those of electrons and
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positrons. The wave vector is chosen to be k = ké and the background magnetic field is
By = By cos 6‘5+ By sin 8 z, where £ is the angle between the ﬁg and k. The main benefit of
the conformalism is that now the dispersion relation for this plasma looks completely “fat”
and only general relativistic effects appear through the modification of plasma parameters
through Eqgs. (2) and (3). It is given locally in £-space as (for perpendicular polarization:

E\=E, B = B, 2)

k2 2w, QPcos?d N2sin20 \ !
2 — — _ r e e
T.:'. = “"“—2 — e(kaw) - - U_}? (]- - w2 - w2 — 682k2) T (4)
and by (for parallel polarization: F), = E,2, B, = By}
AR N2cos?0\
2 _ r £

where 7 is the index of refraction, e(k,w) is the dielectric function for transverse
electromagnetic waves, (2, is the local electron cyclotron frequency, and w, is the local
electron plasma frequency defined in Eqs. (2) and (3). By choosing special particular values
for § we can simplify the above equations for Bo|/k (8 = 0):
AN
2 _ 212 _ o 2
w—ck-?wp(l—j) , (6)
and for By L & (# = n/2) with E,, B, polarity

-1
2 _2p2 9,2 (1_ 02 (7)
WhTeR = e 2k2)

and with E,, B, polarity

w? = Ak = 2wl (8)

We will exclusively concern ourselves with the dispersion described by case Eq. (6) (E,, B,

polarity, though the polaritics are symmetric for § = 0}.
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2.3. Mode Conversion

One of the important consequences of the dispersion relation obtained in Sec. 2.2 for
general relativistic plasma in the conformalism is that the radial (£¢) variation of the metric
and other background parameters comes through only w, and Q. and thus one can turn
the analysis of the effects of the metric into wave dynamics in a nonuniform background.
That is, the plasma frequency varies both as a function of background density and the lapse
function a, and the cyclotron frequency similarly varies as a function of both background
magnetic field and the lapse function. Given these background profiles and an initial
wave frequency and location, a WKB analysis reveals where in £-space resonance or cutoff
behavior will occur (n*(w) goes to infinity at a resonance, and to zero at a cutoff). There
are only two primary modes for transverse EM waves in an electron-positron plasma with
B||k: a shear Alfvén mode, which only exists for frequencies less than €. (the resonance
frequency for this mode) and cannot exist in vacuum, and an EM mode which is capable of
propagating in vacuum, but does not exist for frequencies less than m (the cutoff
frequency for this mode). It is possible for a wave of one mode to reach a point in £-space
where a cutoff {(or resonance) is reached, and evanesce through a region in which the mode
is evanescent (k% < 0) to a resonance (or cutoff) that is not far from the first critical point.
Upon reaching the far side of the resonance/cutoff pair (also known as a “Budden turning
point” (Budden 1961}), the original wave has excited a new mode, which will propagate
normally. If the cutoff of a Budden turning point is reached first (EM mode to Alfvén
mode conversion) some of the wave will reflect, some will be transmitted, and some will be
absorbed. If the resonant point is reached first (Alfvén to EM mode conversion), there is no
reflection, some energy is absorbed, and the rest is transmitted. The WKB wave equation
at a Budden turning point is

B+ K€, w) ¥ = 0 (9)



and k%(£,w) can be approximated as

2wy =Py P

where i—z = k2, x = |Aky|, A¢ is the distance between the resonance and the cutoff of

(10)

the turning point, ky is the wavenumber far from the turning point, and w is the particular
frequency of the mode (treated as a constant in this case). For mode conversion to occur,
X = |A&k,| should not be much greater than unity. When x is much greater than unity,
the Budden turning point acts as a near-perfect wave absorbing point for Alfvén waves, an

important property of the Budden turning point.

The local dispersion relation strongly affects the likelihood of mode conversion. In
an overdense plasma, the two branches are far from each other: Fig. (1a) shows such a
dispersion relation for w, = 1.0 and £2, = 0.5 as measured in code units (frequency in the
code is measured vs an average plasma frequency which is normalized to @, = 1, where
the overline indicates the average over the space of this nonuniform plasma, and without
the overline indicates the local quantity, time is measured in units of the inverse plasma
frequency @, = 1, and other normalizations will be explained in Section III where we
introduce the code). Fig. (1b) shows the relation for w, = 0.5w, and Q. = 0.25@,. For
a wave of frequency w = 0.35 W, (a typical frequency employed in our simulations), the
wave can exist in the first dispersion relation as an Alfvén wave, but it is evanescent in the
second. In order to have |Afk,| be of order one or less for an overdense (g > 1) plasma,
the local number density must change radically over a very short distance. In an underdense
(%‘1 < 1) plasma, the possibility of mode conversion is much more likely, especially if
wp € {1, so that the resonant and cutoff frequencies are nearly equal. Fig. (2) shows how
close the two branches get for the case of w, = . Fig. (2a) shows frequency w = 0.35 in
the Alfvén mode and Fig. (2b) shows the same frequency in the EM mode. The difference

between the two modes is small, so [Afky| can be small without an extraordinarily large
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change in the number density over distance. In weakly magnetized plasmas, therefore, we
can expect little or no mode conversion to take place, but a strongly magnetized plasma
can have efficient mode conversion from Alfvén to EM modes (and vice versa) because the

evanescent region will always be small.

3. Linear and Nonlinear Wave Dynamics
3.1. PIC code

We developed a 12 particle-in-cell (PIC) code (Tajima 1989) appropriate for simulating
self-consistently electromagnetic plasma phenomena near the event horizon and have
discussed it previously {Daniel and Tajima 1997). In Tajima (1989), a general discussion on
PIC code in a general metric is given. We also employ the absorbing boundary conditions
at cither end of the box {Tajima and Lee 1981). The PIC code is used instead of a fluid
code to study the high-frequency phecnomena in a plasma, and most especially to be able to

model particle acceleration, which would be precluded in a fluid model.

That the code is 1% dimenstonal means that quantities can be functions of only one
spatial parameter. There is only the one spatial degree of freedom in which particles and
waves can propagate. It also means that the electromagnetic field vectors can exist in any
direction, and that the momentum of the particles can exist in any direction (i.e., particles
are said to be planar). Typical runs are done with about 20,000 particles, half electrons and
half positrons, in 2048, 4096 or 8192 cells in the one-dimensional grid, and the size of a cell
is about two thirds of a particle size. The grid spacing corresponds directly to £-space, and
the code’s fields, density, and momenta are the conformalized quantities, not necessarily
the local quantities. The electron plasma frequency is defined as one, and time is measured

in inverse plasma frequencies. The time step is typically 0.1 &, !, where @, is the average
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(in &-space) plasma frequency. We will be graphing spatially-dependent parameters vs. &,
which is the grid spacing of the cells. Refer to Eq. (1) to recall the relation between the
distance to the event horizon and £. The numerical value assigned to the Schwarzschild
radius is B, = 220 (in a unit of the grid size A¢). The background density is chosen to
vary as n(r) oc e~ %" and the background magnetic field varies as By(r) oc e~ 7" where
h is an arbitrary scale height. Fig. {3) shows the typical conformalized background plasma
frequency (based on the conformalized density) and background cyclotron frequency (based
on the conformalized magnetic field. In the particular cases consider.ed, R, = 220 A,
and h = 150 A; (for £ far from the event horizon). These values are chosen such that
the phenomena to be observed fits within the framework of the code, and do not readily
translate to astronomical scales. The wave pulses we will be modelling will originate around
£ = 416 (about 40 units from the event horizon, as measured in r-space), near the peak

conformalized density and magnetic field

There arc four major sets of results to be presented here: {i) a demonstration of
mode conversion for the linear case (small amplitude) initial wave, (ii) a simulation of
particle trapping and acceleration by a short, high-amplitude sinusoidal pulse and by a
high-amplitude subeyclic pulse, (iii) an analysis of possible means of particle acceleration,
(iv) an analysis of the apparent soliton formation from particles ejected from the black hole

atmosphere.

3.2. Linear Mode Conversion Simulation

We have previously demonstrated mode conversion behavior in a black hole atmosphere
(Daniel and Tajima, 1997). Here, we revisit our previous results and demonstrate the

validity of the linear Budden turning point approximation. Fig. (4) shows the index of
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refraction as a function of £: in the background we have chosen, there is a Budden turning
point at about £ 22 1020. The function £%(¢} can be analyzed with Egs. (9) and (10). There
is no reflection coeffiecient (the wave recaches resonance first), and there is a transmission

coefficent of

|T| = e 7% (11)

where |T'| is the absolute value of the amplitude (not the square of the amplitude) and

X is as was defined for Eq. (10). In this case, the distance between resonance and cutoff
is AL =& 30 and &, = .0879 in code units, which implies a transmission coefficient of

|7 = 0.0159. By mcasuring the ratio %ﬁl = £ = & = 2 for the pulse as it propagates, we

can determine whether the pulsc is in the Alfvén or EM branch.

Fig. (5) shows the result of a simulation with |E,(t = 0)] = 0.005 in code units {i.e.,

—eE  — 0.005, where A is the grid size, and similarly for the magnetic field), which

Mg~ Ag

should demontrate the linear behavior predicted by the Budden analysis. Fig (5a) shows
the initial pulse caught at the resonance point (£ = 1020), with |B,| > |E,|. The amplitude
has already attenuated significantly, and the wave energy will eventually be completely
absorbed here. Some of the wave is transmitted, as predicted by the Budden analysis, and
is shown in Fig. (5b). Tts amplitude is very low, only about twice that of the background
oscillations, but the longer wavelength reveals that it is the transmitted portion of the
wave. Also, E, = B, everywhere for this graph, so all this field energy is propagating to
the right of the graph at the speed of light in the EM mode, as opposed to the previous
graph’s obvious Alfvén mode, so mode conversion has occurred. The amplitude can only

very roughly be measured, but |E,| ~ 0.0001 which means that the measured transmission

is |T'| = 0.02, which agrees very closely with the predicted value.
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3.3. Nonlinear Mode Conversion

With a much higher amplitude (|E,(t = 0)] = 2.5 in code units), the linear results
do not hold true any more. Fig. (6) shows the simultaneous E,, B, and n vs ¢ at two
successive times. At t = 200.0 @, !, the wave is past the resonance predicted at £ = 1020.
Furthermore, the amplitude is still about |Ey| & 1.0, which implics that the transmission
coefficient previously calculated does not apply in the nonlinear case. From an observational
standpoint, this is useful information. Linearly, only about 1% of the wave amplitude gets
through, and that is 0.01% of the initial wave energy. In this case, however, a significant
40% of the wave amplitude is transmitted, which improves the likelihood of detection for
a distant observer. Another property of the emitted wave is that it carries a significant
portion of particles (labeled as n in Fig. (6)), and the phase space graphed in Fig. (7)
indicates that the particles are traveling with the wave. At t = 300.0 @, !, the wave has
carried the particles well beyond the resonance point at £ = 1020. The mode of the wave
is indeterminate, however. There is a precursor (1500 < £ < 1650) in Fig. (6b), which is
definitely in the EM mode (E, = B,), but the main part of the wave has the property that

Uph

"k — 2t < 1, which is nominally the Aifvén mode.

Note that the Alfvén mode properties are existing well beyond the turning point
(1200 < £ < 1500), partly due to the locally high density which is orders of magnitude higher
than the background density. A phenomenon we may call as self-induced transmission has
occurred. [An optical parallel, self-induced transparency, has been discovered by (McCall
and Hahn, 1969).] That is, the highly nonlinear nature of the wave has captured many
particles, allowing the wave to continue self-consistently in the Alfvén mode, as if it had
never “seen” the Budden turning point. Its phase velocity is approximately EEL" = %ﬁ- =~ 0.8¢,

which means that particles can conceivably travel along with it, which would not be the



case if it converted to EM mode, with v, > c.

We can determine where the majority of the acceleration takes place in this simulation.
At t = 200.0 @', the maximum value of y8 (= 2, i.c. + is the Lorentz factor and
7* = (1 - £*)71) is up to about 4.2 in Fig. (7). At ¢ = 300.0 @, !, the value has increased
to 5.1, not significantly higher than before (when velocities were already relativistic. Most
of the acceleration occurred between ¢ = 100.0w,~"' and ¢ = 200.0,7!: Figure (8) is a
parametric plot of Y0max (= 2=} vs £, at cven (25.0 @, ') time intervals. The momentum
increases geometrically in the Alfvén region (§ < 1020), but the acceleration slows down
after the mode conversion (¢ > 1050) into the EM branch. At around ¢ = 1200, the

acceleration picks up again, and continues until it reaches a maximum value far from the

hole.

3.4. DBursty Acceleration out of a Black Hole Atmosphere

Particle acceleration possibly triggered from a violent motion of matter near the event
horizon may be simulated with this computational model. We have done this previously
(Daniel and Tajima 1997), but now we analyze our results in more detail. We can imagine
a situation where accreting matter (Blaes 1987) interacts with the magnetic field of the
blackhole magnetosphere (Mobarry and Lovelace 1986) and this accreting mass motion
can trigger Alfvén wave pulse(s). This situation is a bit similar to that considered for
(compressional) Alfvén wave acceleration around a neutron star (Holcomb and Tajima
1992). The initial setup is similar to the mode conversion discussed in the previous
subsection. In fact, the initial amplitude we employ is the same as that of the previous
case. The main difference is that the Alfvén pulse is a solitary wave, with a, sech2(§ — Vgrt)

profile. (It is imperfectly generated, so part of the initial pulse travels toward the horizon
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on the left side of the grid, and bounces off the reflective boundary condition there, which
also decreases the initial amplitude of the right-propagating wave. This is because the
frequency of this “wave” is broad banded and instantaneous wave turn-on is difficult. The
physics of interest is elsewhere on the grid, and the secondary pulse does not change the
qualitative results.} Fig. (9) shows the index of refraction for the wide range of frequencies
of this pulse. As the figure shows, resonance will oceur for the various frequencies over a
range of £ =2 1150 to £ ~ 1175, with the lower bands of frequencies hitting resonance further
out. Beyond this point, in the linear approximation, only EM waves will exist, transmitted
as per the Budden approximation, Eq. (11). Figs. (10) and (11) show the progress of the
initial pulse and the attendant particle acceleration. Fig. (10} graphs E,, B,, and n near the
pulse. The pulse is still in the Alfvén mode and has not trapped many particles at ¢ = 200.0
w, ! in Fig. (10a), and it has not quite passed the resonance region depicted in Fig. (9). In
Fig. (10b), the pulse can be seen splitting (a distinctive double peak at & =~ 1550), the left
half of the peak is the Alfvén mode, where |B| > |E{, and the right half is partly in the
EM mode, where |E| ~ [B|. Another intriguing property here is the distinctive “wake” left
by the subcyclic pulse (1300 < £ < 1500 in Fig. (10b)). Fig. (11) shows the £ vs £ phase
space. As the pulse propagates to the right, some particles are trapped, but not so many
as in the case of the high-amplitude wavetrain, nor does the momentum increase as much,
though it does become mildly relativistic. As in the previous case, a large fraction of the

amplitude is transmitted, far more than predicted by the Budden approximation.

3.5. Particle Acceleration

Low intensity electromagnetic waves crossing a narrow turning point have little lasting

effect on the plasma medium: the wave reaches the turning point, heats the plasma a bit at
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resonance and is reflected and/or transmitted depending on the orientation of the pair of
turning and resonance points. Particle acceleration enters physical consideration with large
amplitudes, such that the magnetic component of the amplitude is on the order of or greater
than the local background magnetic field. There are three mechanisms that can contribute
to such acceleration. One possible mechanism is that of a subcyclic pulse. Rau et al. -
(1996) have shown a means by which a subcyclic (or nearly subeyclic) pulse can accelerate
particles. A strong subcyclic pulse can give particles in a plasma a net acceleration in the
direction of propagation, whereas a wavetrain with more than a few oscillations will not

demonstrate this property. The momentum gained by the particles is

V8= A /_Z B, (u)du, (12)

obtained from integrating the Lorentz equation mgcd (v8) = —e(E + 8 x B) where

u = z — ct, and E is the y-component of the initial electromagnetic pulse. For long
wavetrains, A vanishes in accordance to the Lawson-Woodward theorem (Lawson 1979;
Woodward 1947}, but it can be large for a subcyclic pulse. A significant property of this
means of particle acceleration is that v, < vy, = ¢, where v, is the speed of the particles.
The particles are not in phase with the wave, and the resulting particle motion is ballistic.
The net gain in energy is

A€ o EZ, (13)
where Ej is the initial amplitude of the pulse at ¢ = 0.

Another means of particle acceleration is via the pondermotive force {Ashour-Abdalla
et al, 1981}: the strong forward exertion of light pressure causes a pile up of particles in
front of the light pulse. In this case, the wave is not necessarily subcyclic, but can consist
of a short wave train within an envelope. The strong light pressure expels particles from

where the pulse is located, both forward and back, and those expelled forward continue
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to feel the pressure of the wave and are accelerated more. In the frame moving with the
interface, pressure balance yields

1EZ + B2

2<n>w<px>wvg:2 Fy—

(14)

where v, is the wave-front velocity, the subscript w indicates that the fields, momentum,
and density are evaluated in the moving frame (which is moving at v,), and < n > and
< pg > arc, respectively, the average density and momentum at the leading edge of the
pulse. Also, since these particles are accelerated to relativistic speeds near ¢, the wave

packet is Doppler shifted to a frequency below cutoff with respect to them. The Lorentz
transformation into the laboratory frame vields

<N > <Py > 1E?
2% L<Pz>L _ 5_;, (15)
79 FYQ ’Y_q

1
-
-4

. for momentum, this gives us p, & E%. In the relativistic extreme, v8 = £z >» 1 and

where L indicates values as measured in the laboratory frame and Yo = Solving

£ = Xi(% — 1)me?, so both energy and momentum scale as -y, which implies that

A€ x Ei x E? for relativistic cases, scaling similarly to the subcyclic pulse means of
acceleration. The group velocity of the wave packet can be less than ¢, allowing the wave
and the particles to travel together and accelerate over time, as opposed to the ballistic

result of the previous method.

Yet a third means of acceleration, clearly demonstrated in our simulations, is
acceleration by means of particle trapping in Alfvén waves (Tajima and Dawson 1980). If

the initial amplitude of the wave is high enough, there is an associated trapping condition:

2
Fw_g_ﬂﬂ < 2AVITE ~ 1 sin ¢y, (16)

— _ 2
where v is the component of the particle velocity parallel to k, A = %;, II = ﬂ‘;‘mm_“’)_’ and ¢,

13 the initial angle between B, and vj. If the parallel velocity of a background particle, Y|,
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satisfies this condition, the particle is trapped. There is an approximate “trapping width”
assoclated with this condition, v; = (%) %, and the condition can be approximately written
as vy ~ vy < vy < v4 + vy, Where vy = % is the Alfvén speed. Thus, if the amplitude
is extremely large, all particles are thecretically trapped (particle interaction and other
nonlinear phenomena will always free some particles from trapping). This trapping occurs
not only in the compressional Alfvén mode, but also the shear Alfvén mode. This model
has va = vy < ¢, so the wave can start out slow in a high-density region and accelerate to
higher velocities as it enters a low-density region. This mode of acceleration appears to be
prominent in the simulations presented in this paper, insofar as the Alfvén mode region of
the simulation is concerned: acceleration after mode conversion into the EM region is likely
due to the two means of acceleration previously mentioned, in particular the pondermotive
force for the case of the non-subcyelic pulse. For not entirely coincidental reasons, the

theoretical energy gain due to this means of particle acceleration is also AE o« EZ, since the

rate of energy transfer to the particles is:

d& (eBz)2 )

dt * \'me

wherc B, is the current amplitude of the magnetic component of the wave.

3.6. Soliton Formation

Over the long term, both nonlinear simulations {the short wavetrain and the subcyclic
pulse) exhibit apparently steady-state solutions far from the hole. The trapped particles
propagate self-consistently with the electromagnetic fields far into the region where the
background density and magnetic field is zero (for all practical purposes). We have done a

1

very long run (to 1500, !, in a grid of 8192 cells) to determine that the acceleration does

have a limit. Simulations show that while the §~ of particles increases from a maximum of
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By~ 20.5 at ¢t = 400.0w," to a maximum of By ~ 27.5 at ¢ = 500.0 w, !, the increase from
t = 14000, ! to t = 1500.0w, ! is only from 87 ~ 41 to B ~ 42. This demonstrates both
that the burst continues far beyond the black hole atmosphere and that the momentum of

the burst has a maximum.

The case for each type of wavc is shown in Figs. (12) and (13). The wavetrain in
Fig. (12a) is relatively complex to the subcyclic counterpart in Fig. (12b), but there are
several features in common. Each has an EM mode precursor, traveling as an ordinary
“light wave”, and decoupled from the trapped particles and their associated fields. As for
this slower mode, the concentrations of particles are highest where the electromagnetic
fields are zero, and least where the fields are highest, which implies that the pondermotive
force is the primary means of acceleration. Finally, these slower modes have |B,| > |E,|,
implying a kind of Alfvén wave: local density and magnetic field is high, so even though the

background is essentially vacuum, this “Alfvén” wave carries its own particles and field.

There are some distinct differences between the two sets of results. The wavetrain
capturcs several peaks of particles, which propagate mostly in tandem, but slowly spread
apart from one another. The subcyclic pulse, on the other hand, captures only a single
peak, with some particles that gradually fall behind, but most stay with the main peak. The
phase space in Fig. (13a) for the wavetrain is much more chaotic than that of the subcyclic
pulse in Fig. (13b), with particles falling in any of the several peaks, and apparently
hopping from one peak to another. The subcyclic phase space, however, shows a single
graceful loop, wherein particles receive an initial boost to near relativistic velocity by the
EM precursor, quickly accelerate from there while gradually falling behind the main peak,
then hit the rear end of the pulse (at £ & 2210 for ¢t = 500.0 @, !) and accelerate back up
to the main peak in front (£ a2 2250). These particles then slowly lose momentum until

they are gradually lost behind the main body of the pulse. We suspect that the complex
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behavior in Fig. (13a) is the chaotic overlapping of several modes like those in Fig. (13b).

The relative magitudes of acceleration and number of particles differs between the
two simulations, but this can largely be explained by considering the dependency of the
number of captured particles and their relative accelerations upon the initial amplitude
of the wave. We performed four simulations at varying amplitudes in order to establish
dependencies for the amount of particles trapped and the amount of acceleration produced.
Similar simulations in which we merely varied the temperature of the plasma by several
orders of magnitude did not appear to suggest that these quantities are dependent upon
temperature. Fig. (14) shows the variation of the local number density of particles that had
been accelerated and trapped (measuring the actual number is much more difficult, since
the peak is narrow). These measurements were taken at the same point in time after the
beginning of the simulation (¢ = 500.0@,™!), but the actual location of the trapped particles
varies, since they have been accelerated more for the large initial amplitude than for the
lower amplitudes. The amount of particles trapped appears to be directly proportional to

the initial amplitude of the pulse.

A graph showing the maximum gain of momentum (8+v) of the particles trapped is in
Fig. (15). The logarithmic scale plot is very close to lincar, and measurements indicate a
power law relationship of about B¥mez ¢ B.o'?®" 1%, Since this measures the momentum
at a certain point in time in each case, as opposed to the maximum (saturated) amount
of momentum after all acceleration has taken place, the power law obtained indicates a
general trend rather than a physical property, and cannot be used to confirm or deny the
EZ law for the overall boost to the particles accelerated. The lower level of acceleration in
the subcyclic case, as well as the lower number of particles trapped, appears to be entirely
due to the lower effective amplitude of the subcyclic wave (which was originally set with

B,(t = 0) = 2.5 in code units, but a fraction of that initial energy propagated to the left of
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the grid, and the actual initial amplitude is approximately B,(t = 0) = 1.4).

As solitons, these phenomena differ from previous theoretical models by virtue of one
main characteristic: previous soliton models have a single envelope with many oscillations
{Tajima and Taniuti 1990; Kaw, Sen, and Katsouleas 1992). In our case, especially in the
subcyclic simulation, a solitary pulse is by itself the wave oscillation (i.e., ours is not an

envelope soliton).

4. Photon Spectra and Applications to Black Hole Qutbursts

Via means discussed in Section 3, we can postulate particles accelerated from nearby a
black hole to distances several R, away and beyond. Linear arguments indicate that most
such energy would be absorbed, and very little energy would escape the region near the
event horizon, but our nonlinear simulation shows that a violent cutburst is very capable
of capturing particles (via Alfvén mode wave trapping near the horizon), and accelerating
them to the theoretical resonance point, beyond which the pondermotive force takes over

and accelerates them to a saturation energy level far from the hole.

We plot photon energy spectra converted from electrons generated by the two main
simulations in Figs. (16) for the wave packet and the subcyclic pulse, at ¢ = 500.0 ;L.
The photon spectrum is calculated based on the bremsstrahlung from accelerated electrons

as

me? oo 1
Ge) = Mo € /e (1+ Ex/mc?)

3 f(ER)dEy, (18)

where Fy, is the kinetic energy of the electrons, and f(E}) is the kinetic energy distribution
of the electrons obtained from our simulations. This formula was obtained by changing from

velocity to kinctic energy in the standard expression, and is approximately valid for both
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nonrelativistic and relativistic regimes, as long as the particles are not ultrarelativistic. Ny
is an arbitrary normalization factor. Both photon spectra in Fig. (16) have a “knee” where
the power law changes slightly, both at about 1032 keV more sharply defined. The slope of
the low energy (< 1MeV) range is about —1, though it gets harder for the very low energies.
After the knce, the slope decreases very sharply (about —6).! In thesc observations, the

low-energy slopes vary from —1 to —1.3, and the slopes at high cnergy vary from —4 to

—6 or higher, and the position of the knee varies from 10?9 to 10*8 keV. The typical high
energy slopes should range from —2 to —4 (Pelaez et al. 1994), but Comptonization rather
than bremsstrahlung is likely the responsible process here. (In our work, Comptonization is
not incorporated yet.) The “lump” at about 10? keV in Fig. (16b) comes from the reflected
pulse that was inadvertently generated. It accelerates particles much as the main pulse

does, but since it has not accelerated them very much yet, it appears at a lower energy. In
the wavetrain spectrum, a similar phenomenon occurs (several distinct wavefronts, each at

a different energy level), but it is less distinct since the energies are relatively close together.

5. Conclusion

We have employed a conformalism for general relativistic plasma physics that greatly
simplifies the dynamical study in a strong Schwarzschild background and a simulation
model based on this formalism, which has enabled us to simulate a possible mechanism
for outbursts from a black hole atmosphere. Bursts as we conceive them can be caused

by at least two possible mechanisms. The obvious mechanism is that there is an accretion

'This is qualitatively consistent with observed spectra of bursty X-rays and y-rays which

in many cases have multiple power laws (Nolan et al 1984; Harding, Pe, and Teegarden

1986).
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disk, which could spew out matter through some instability towards the event horizon.
This can excite an Alfvén wave similar to those we have modelled, capable of accelerating
the precipitated matter away from the hole. A prime application of this type of model
would be the black hole candidate GRO J1655-40, which shows evidence of an accretion
disk and displays bursty behavior of the type we discuss. A second mechanism would be
given a moderately stable black hole “atmosphere” within 3R;, as discussed in Tarkenton
(1996), numerous instabilities are possible (since there is no “bottom” to the atmosphere)
which can excite Alfvén modes near the event horizon and accelerate particles in a manner
similar to that which we have modelled. These specific examples should not be construed
as the only two possibilities: a wide varicty of possible initial conditions involving an event
horizon may conceivably excite Alfvén waves as described and modelled in this paper, and
the model can be scaled to a stellar mass black hole or tc an AGN. We have shown that
internal magnetic modes can be converted not only into external electromagnetic emissions,
but can trap and accelerate particles to relativistic velocities. Furthermore, we have shown
that the mode conversion for high amplitude waves occurs much more efficiently when
linear WKDB analysis no longer applies and the self-induced transmission phenomenon
arises. This means that the strong near-horizon magnetic disturbance has a much greater
transmission percentage into the upper atmosphere than the linear theory prediction and
thus may provide a scenario for a realistic strong wave excitation associated with a outburst
episode. This anomalously efficient mode conversion into EM waves combined with the
above cflicient acceleration of electrons presents an excellent candidate for the source of

encrgetic electrons for bursty episodes.

Photon spectra of the emissions from electrons accelerated by this process away from
the horizon are simulated which are qualitatively consistent with previously observed bursty

phenomena. This is a 1-d simulation, however, and results in two or three dimensions can
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be important. A new means of examining phenomena arising from a plasma in a strong
gravitational field has been provided that allows us to adopt the techniques developed in
“fat” plasmas to this new regime of plasma wave behavior. The general relativistic plasma
physics begins to offer some observable signatures in electromagnetic waves (optical and

X-rays and y-rays) near a black hole horizon.

Work was supported in part by US DoE and NSF.
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Overdense local dispersion relation (Alfvén mode) (a)
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Fig. 1.— An overdense plasma inhibits mode conversion, since there is a large difference between
the resonant and cutoff frequencies. The intermediate region, where w{k) has no real valuc for either
branch, is cvancscent: waves of these frequencies decay cxponentially. Plot (a) shows a wave of
frequency w = 0.35 in a region of Alfvén propagation, and {b) shows a wave of the same frequency

in the evanescent region at a later point in space and time.
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Underdense local dispersion relation (Alfvén mode) (a)
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Fig. 2.-- An underdensc plasma facilitates mode conversion, since the region between the
cutoff and resonant frequencies is small. Graph (a) shows a sample Alfvén case where the
given frequency lies in the Alfvén branch, and (b) shows the same frequency at a later point
in time and space, now in the EM branch. Note how the two branches almost touch in the

underdense case, allowing for efficient mode conversion.
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£} and w, vs &
| | |

Fig. 3.— The typical conformalized background cyclotron frequency 2.(¢) and plasma frequency

wp(€) profiles for the simulations to be discussed.
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2
n° vs € for w = 0.35
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Fig. 4. This plots #* (the index of refraction) vs £, for the primary frequency of the wave
packet discussed in Section 3.2. There is a turning point at £ & 1020 (where a resonance

oceurs) to £ &2 1050 where there is a cutoff.
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Ey and B, vs £ at t = 300.0 w,* (a)
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Fig. 5. Electric and magnetic fields in &-space for a low-amplitude wave going through
mode-conversion. The wave has reached resonance in (a), and some has been transmitted in

EM mode in (b) at £ = 1600.
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Ey, B, and n vs £ at t = 200.0 w,* (a)
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Fig. 6.— Electric and magnetic fields plotted along with local number density n. In (a),
mode conversion has already occurred (£ > 1050), and the a large number of particles have
been carried out from the atmosphere, where (b} the wave packet spreads out into several

modes, including a precursor (with F, = B,, to the right) and what is apparently a type of

soliton.
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Fig. 7.— Phase space of the particles near the wave packet. Particles are clearly trapped in

(a), and continue to be trapped and accelerated beyond the nominally Alfvén region.
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Fig. 8.— This is a parametric plot of y8m.; vs § at even time intervals {every 25.0 @, ")
as particles are accelerated to relativistic velocities (v4 > 1.0). The rate of acceleration
increases geometrically in the Alfvén region (£ < 1020), to reach relativistic velocities as it
approaches resonance. After resonance and mode conversion into the EM wave region, the

acceleration slows until £ = 1170, well past the turning point.
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n? vs £ for wy = 0.371 and w_ = 0.186
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Fig. 9.— We plot n? {the index of refraction) vs & for a range of values of w, which represent
the range of frequencies found in the solitary wave. The two turning points shown represent

the range over which resonance will occur for most of the wave.



— 36 —

Ey, B, and n vs £ at t = 200.0 w, (a)
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Fig. 10.— The transverse electromagnetic ficld {E, and B,) of a solitary wave (initial amplitude
= 2.5 in code units). It propagates from the left to the right, exhibiting mode conversion in (b),
where there is a distinctive double peak at £ = 1600: the left peak is still in the Alfvén mode of

the original pulse, and the right peak is approaching the electromagnetic mode.
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2 vs € at t = 200.0 w; (a)
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Fig. 11.— % (=0v) vs £ phase space. Positrons and electrons of the plasma are accelerated to

relativistic velocities. Note that particles are not trapped as in the the short wavetrain (see Fig. (7),

and arent accelerated to high velocities as quickly.
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Ey, B, and n vs £ at t = 500.0 w, (a)
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Fig, 12.-- The electromagnetic fields and densities late in the runs {(at t = 500.0 @,™!) for

the wave packet (a) and the subcyclic pulse (b).
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Fig. 13.— The T%i—: (=) vs £ phase space for the wave packet (a), and the subcyclic pulse

(b).
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Tmaz (€} vs initial amplitude
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Fig. 14— Maximum number density vs initial amplitude of trapped particles at ¢ = 500.035,?,
which is a rough measure of the total number of particles trapped. {The number density is fractional

since the density is a weighted guantity.)
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Fig. 15.— The quantity % = [ is graphed here as a function of initial amplitude. It is a measure
of the maximum magnitude of momentum imparted to the particles after 500w, ! as a function
of initial amplitude of the solitary pulse. The initial amplitude was doubled for each successive

measurement from 1.25 to 10.0 (as measure in code units}).
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Photon Spectrum (a)
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Fig. 16.— Photon spectra for the wave packet simulation (a) and the solitary wave simulation

(b) run (at t = 500.0 @, 1).



