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Abstract

Steady-state tokamak equilibria without current drive are found. This is made pos-

sible by including the potato bootstrap current close to the magnetic axis. Tokamaks

with this class of equilibria do not need seed current or current drive, and are intrinsi-

cally steady state.
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A tokamak is not known to be an intrinsically steady-state plasma confinement scheme

in the sense that it needs external current drive, either inductive or non-inductive, or both,

to maintain the equilibrium.1 Although there are high-bootstrap-current-fraction (>∼ 99%)

tokamak equilibrium with a small amount of the seed current in the region close to the

magnetic axis, they are still not intrinsically steady state.2−4 To find an intrinsically steady-

state tokamak equilibrium one needs to find at least a self-generated current in the region

close to the magnetic axis. It turns out there does exist such a current.5 The origin of this

current is associated with the unique orbit topology in the region close to the magnetic

axis.6−8 Because the variation of the minor radius over the width of the orbit is significant

there, the fraction of the trapped particles does not vanish. This is in contrast to the fraction

of the trapped banana orbits which vanishes on the magnetic axis. Because trapped particles

have the shape of a potato in the region close to the magnetic axis, we call these orbits the

potato orbits to distinguish from the well-known banana orbits in the region away from

the magnetic axis. It has been known that potato orbits associated with fusion-born alpha

particles can drive a bootstrap current.5 This result is extended to fuel ions and electrons.6

The magnitude of the bootstrap current for potato electrons and potato ions is larger than

that of alpha particles due to higher fuel density. For typical tokamaks, the potato bootstrap

current is a significant fraction of the banana bootstrap current. This makes it feasible to

have tokamak equilibria with only bootstrap current and diamagnetic current.6 Here we

demonstrate that such equilibria exist.

The potato orbits are quantitatively different from the banana orbits in that the position

of a potato orbit ψp, measured in poloidal flux function ψ, is comparable to the width of a

potato orbit ∆ψp; while the position of a banana orbit ψb is much greater than the width of a

banana orbit ∆ψb as shown in Fig. 1. Because of this difference, the radial variation of inverse

aspect ratio ε can not be ignored in the calculation of the potato orbits. The trajectory of

the particle orbit in tokamaks can be determined from three constants of motion: total
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particle energy E = v2/2 + eΦ/M , magnetic moment µ = v2
⊥/2B, and toroidal canonical

momentum Pζ = ψ − Iv‖/Ω. Here, B = |B|, B is the magnetic field, v‖(v⊥) is parallel

(perpendicular) particle speed, I = R2∇∇∇ζ ·B, ζ is the toroidal angle, R is the major radius,

Ω is the gyrofrequency, e is the charge, M is the mass, v2 = v2
‖+v

2
⊥, and Φ is the equilibrium

electrostatic potential. Assuming B = B0/(1+ε cos θ) where ε = r/R0, r is the minor radius,

R0 is R on the magnetic axis, and B0 is B on the axis, we obtain a general orbit equation

for a large aspect ratio (ε¿ 1) tokamak from the constants of motion

(ψ−ψ0)
2 +2

Iv‖0
Ω0

(1+ ε0 cos θ0)(ψ−ψ0)+
2I2

Ω2
0

(v2
‖0 +µB0)(ε0 cos θ0− ε cos θ) = 0+O(ε). (1)

The subscript “0” in Eq. (1) indicates the quantity is evaluated at a reference point (ψ0, θ0).

If ε is treated as a parameter, Eq. (1) describes standard banana orbits away from the

magnetic axis. If the radial variation of ε = C1

√
ψ, where C1 =

√
2q/IδR, δ is the elongation

parameter and q is the safety factor, Eq. (1) is a quartic equation in
√
ψ that describes a

general tokamak orbit. This quartic equation can be simplified by choosing ψ0 → 0. In that

limit, Eq. (1) reduces to a cubic equation in x =
√
ψ

x3 + 2
Iv‖0
Ω0

x− 2I2C1

Ω2
0

(v2
‖0 + µB0) cos θ = 0, (2)

which describes potato orbits close to the magnetic axis. As shown in Ref. 6, the so-

lution to Eq. (2) is characterized by the parameter σκ where σ = v‖0/|v‖0| and κ =

(8/27)(Iv‖0/Ω0)
3/[(I2C1/Ω

2
0)

2(v2
‖0+µB0)

2]. Circulating particles are characterized by −∞ <

σκ < −1 [class (i) and (iv) in Fig. 1] and 0 < σκ < ∞ [class (ii)] in Fig. 1]. Trapped par-

ticles, i.e., the potato orbits, are characterized by −1 < σκ < 0 [class (iii) in Fig. 1]. The

bootstrap current is induced by the friction between trapped potato orbits and circulating

particle orbits.

A convenient expression for the banana bootstrap current is given in Ref. 9. Here, we

express the flux surface and radial averaged potato bootstrap current
〈
J‖B

〉
b

derived in
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Ref. 6 in a similar form

〈
J‖B

〉
b
= J0

`b22µ̂
e
11

`eb11`
eb
22 − (`eb12)

2


(

1− `eb12

`eb22

µ̂e12

`e11

)Ae1 +

1

Zi

Ti
Te

(
Ai1 + αiA

i
2

) +
µ̂e12

µ̂e11

(
1− `eb12

`eb22

µ̂e22

µ̂e12

)
Ae2

, (3)

where J0 = −IcPe, c is the speed of light, Bt is the toroidal magnetic field strength, Pe = NeTe

is the electron pressure, Ne is the electron density, Te is the electron temperature, Aei =

P ′e/Pe, A
i
1 = P ′i/Pi, A

i
2 = T ′i/Ti, A

e
2 = T ′e/Te, Pi is the ion pressure, Ti is the ion temperature,

Zi is the ion charge, and prime denotes d/dψ. The electron potato viscous coefficients µ̂eij

are µ̂e11 = (NeMe/τee)xe(0.531 + 0.928Zi), µ̂
e
12 = −(NeMe/τee)xe(0.542 + 1.237Zi), and

µ̂e22 = (NeMe/τee)xe(1.282 + 2.732Zi), where Me is the electron mass, τee is the electron-

electron collision time, xe = 2.2(I0vte0/Ωe0)
1/3. [q0/(δ0I0R0)]

1/3, vte0 is the electron speed,

Ωe0 is the electron gyrofrequency, and the subscript “0” here indicates the quantities are

evaluated at the magnetic axis.

The parameter αi is defined as αi =
`i22(µ̂i22/µ̂

i
11

µ̂i22+`i22−(µ̂i12)2/µ̂i11

. The ion potato viscous coefficients

are µ̂i11 = (
√

2NiMi/τii) 0.376xi, µ̂
i
12 = −(

√
2NiMi/τii) 0.383xi, and µ̂i22 = (

√
2NiMi/τii) 0.907xi,

where Mi is the ion mass, Ni is the ion density, τii is the ion-ion collision time, xi =

2.2(I0vti0/Ωi0)
1/3 · (q0/δ0I0R0)

1/3, vti is the ion thermal speed, and Ωi is the ion gyrofre-

quency. The quantities `ebij are defined as `ebij = `eij + µ̂eij where `e11 = NeMe/τei, `
e
12 = −1.5`e11,

and `e22 =
(
13/4 +

√
2/Zi

)
`e11.

For the computational purpose, we have to connect potato asymptotic limit to the banana

asymptotic limit. There is no unique way to accomplish this goal. Here, we simply join the

viscosity coefficients µ̂eij(µ̂
i
ij) in the banana and potato limits by the following simple formula

µ̂eij =
[(
µ̂eij
)3

p
+
(
µ̂eij
)3

b

]1/3

. (4)

where
(
µ̂eij
)
p

are electron potato viscosity coefficients and
(
µ̂eij
)
b

are banana viscosity co-

efficients given in Ref. 9. The connection formula in Eq. (4) is motivated by the ob-
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servation that the potato modification on the standard banana orbit is of the order of

[(I0vtj0C
2
1/Ωj0)

1/3/
√
ε]3. Or in terms of the fraction of trapped particles ft,

(
fpt /f

b
t

)3
where

fpt is the fraction of the trapped potato which is proportional to xj and f bt is the fraction

of the trapped bananas which is proportional to
√
ε. The correction of the banana orbit

effects on the potato orbits is
(
f bt /f

p
t

)4
as shown in Ref. 8. Thus, our connection formula

overestimates slightly in the transition region. One could construct a more sophisticated

connection formula to account for this asymmetric asymptotic behaviors. But the resultant

formula is more complicated and not necessarily more accurate.

For simplicity, we assume Te = Ti and assume that γ = Lp/Lt = 0.5. Here Lp and

Lt are temperature and pressure gradient scale length. With these assumptions, parallel

plasma current is completely determined by the pressure gradient. The quantity II ′ in

Grad-Shafranov equation is determined by

〈
J‖B

〉
= IcP ′ − c〈B2〉

4π
I ′, (5)

with the vacuum value I = RBt as the boundary condition. The
〈
J‖B

〉
on the left-hand

side of Eq. (5) is given in Eq. (3) for our equilibrium calculations. Note that because there is

no other current source besides the pressure gradient driven current, our equilibrium current

density profile is exactly the same as the bootstrap current density profile. This is not

an assumption, but is a natural consequence of a complete pressure-gradient-driven-current

tokamak.

The fact that equilibrium exist follows from a theorem in Ref. 10. It is shown that as

long as pressure P and current I are analytic functions of ψ and that plasma current does

not vanish on the magnetic axis, tokamak equilibrium exist. The potato bootstrap current

is approximately a constant in ψ if pressure is a parabolic function of minor radius r or

a linear function in ψ in the region close to the magnetic axis. Thus, the property of the

potato bootstrap current is consistent with the existence theorem of the equilibria.

5



To demonstrate the existence of the equilibria explicitly, we solve Grad-Shafranov equa-

tion numerically with a fixed boundary code (TOQ).4 We have found equilibria in the pa-

rameter space we have searched. Here, we only show a typical one with an aspect ratio

A = 1.4. The vacuum magnetic field on the axis is 2T . In Fig. 2, we show the flux surface

of this particular equilibrium which has an elongation parameter δ = 3.0 and a triangularity

parameter κ = 0.522 at the edge. The plasma beta β on the magnetic axis is β0 = 52% and

the average β is 32.2%. The pressure gradient P ′ profile employed is shown in Fig. 3. The

increasing in the magnitude of P ′ in the region close to the magnetic axis is to reduce the

q value on the magnetic axis. Note that the safety factor q profile is reversed as shown in

Fig. 3. This is because the current density profile is hallow as shown in Fig. 4 due to the

fact that the fraction of the trapped population decreases towards magnetic axis. The total

current in this case is 9.6 MA. The reversed q profile is natural to this class of equilibria.

In fact, all the equilibria we have found so far have reversed q profile. This does not imply,

however, that there are no equilibria with monotonically increasing q profiles. It is just that

we have not searched for them. The pressure profile is also shown in Fig. 4. This particular

equilibrium is stable against high-n ballooning mode checked by the BALOO code.4 We

have not studied the kink stability property, which is beyond the scope of the present paper.

However, we do plan to study the kink stability for this class of equilibria in the future. We

would like to note that if kink modes are unstable, they could be stabilized by a close fitting

wall.

In conclusion, we have found a class of steady-state tokamak equilibria without current

drive. This is made possible by the existence of the significant amount of the potato bootstrap

current on the magnetic axis. The ratio of the potato bootstrap current density to the banana

bootstrap current density at normalized
√
ψ = 0.5 is about fpt /f

b
t ∼ (2q0ρe/δ0R0)

1/3/
√
ε/2.

For the equilibrium shown in Figs. 2–4, fpt /f
b
t ∼ 13% with Te = 10 keV, and R0 = 140 cm.

Note that because both q0/δ0 and (ρe/R0)
1/3 are not sensitive to the size of the machine,
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fpt /f
b
t is still substantial in reactors. This class of equilibria has naturally reversed q profile,

and is stable against high-n ballooning mode. Tokamak can, therefore, in principle, be

operated in this intrinsically steady-state mode in certain parameter space.

Acknowledgments

One of the authors (KCS) would like to thank D.A. Spong in helping create Fig. 1. This

work was supported by the U.S. Dept. of Energy Contract No. DE–FG03–96ER–54346.

7



References

1. L.A. Artsimovich, Nucl. Fusion 12, 215 (1972).

2. R.J. Bickerton, J.W. Connor, and J.B. Taylor, Nature Phys. Sci. 229, 110 (1971).

3. D.J. Sigmar, Nucl. Fusion 13, 17 (1973).

4. R.L. Miller, Y.R. Lin-Liu, A.D. Turnbull, V.S. Chan, L.D. Pearlstein, O. Sauter, and

L. Villard, Phys. Plasmas 4, 1062 (1997).

5. V.Ya. Coloborod’ko, Ya.I. Kolesnichenko, and V.A. Yavorskij, Nucl. Fusion 23, 399

(1984).

6. K.C. Shaing, R.D. Hazeltine, and M.C. Zarnstorff, Phys. Plasmas 4, 1375 (1997).

7. T.H. Stix, Phys. Plasmas 14, 367 (1972).

8. T.E. Stringer, Phys. Plasmas 16, 651 (1974).

9. S.P. Hirshman, Phys. Fluids 31, 3150 (1988).

10. T.H. Jensen, R.L. Miller, and Y.R. Lin-Liu, Phys. Plasmas 3, 1656 (1996).

8



FIGURE CAPTIONS

FIG. 1. Standard banana orbit and particle orbits close to the magnetic axis. Class (i), (ii)

and (iv) orbits are circulating particles with −∞ < σκ < −1 and 0 < σκ < ∞.

Class (iii) trapped particles, i.e., potato orbits, are characterized by −1 < σκ < 0.

The standard banana orbit is (v).

FIG. 2. Flux surface of a steady-state tokamak equilibrium with A = 1.4, δ = 3.0, and

κ = 0.522.

FIG. 3. Safety factor q profile and pressure gradient P ′ as a function of normalized radius
√
ψ.

FIG. 4. Pressure profile and toroidal current density as a function of major radius R.
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