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ABSTRACT

Charged particle motion near the null of a two~dimensional
magnetic field is studied. Specifically, the magnetic field is given
by the vector potential A = Ewo[(y/a)z + (ex/a)z], in which yg,2, and €
are constants with & parametrizing the ellipticity of the flux
surfaces. Conservation of canonical z-momentum p, reduce the number of

nontrivial degrees of freedom to two. Scaling reduces the number of

parameters in the syg;gm*tg_twgdga.andqugxheksignkof_~p24dﬂAAnalytical
and numerical methods are used to study the nature of the orbits. The
results are expressed conveniently in terms of € and Q = /55§7§;. When
e 1is wunity, the additional symmetry implies integrability. When ¢ is
less than unity (the case € > 1 is trivially related) three regimes are
found: (1) For 1Ql > 1 particle orbits are regular. (2) For
63/2 < 1ql {1 most particle orbits are stochastic. (3) For
1Ql <K 83/2 particle orbits are regular, with the third invariant being

the magnetic moment.

a) Present Address: Lawrence Berkeley Laboratory, Berkeley, CA 94720.



I. Introduction

The motion of a particle in a time-—independent magnetic field with
a symmetry 1is limited to a region of phase space by the existence of
two invariants of the motion: the energy and the invariant due to the
additional symmetry. If the configuration—-space extent of this region

is finité, hot particles may be confined for pefiodé 7l§hg enough for

fusion reactions to occur. This principle underlies several current

magnetic fusion concepts, e.g., the tokamak, the field-reversed mirror,
and the theta pinch. (Herein the term field-reversed configuration
will be used to refer collectively to the latter two systems.)lIn these
systems the second invariant, the canonical angular momentum, exists
because of axisymmetry. It 1s 1important to emphasize that these
concepts do mnot rely oﬁ integrability, i.e., that the particle motion
has a complete set of invariants. Only two invariants are needed for
particle confinement and, hence, for the existence and calculation of
equilibria (see, for example, Ref., 1).

However, the viability of such systems as fusion reactors depends
also on their stability, and stability analysis, at least in the
collisionless limit, does rely heavily on the existence of a complete
set of invariants. The reason is that in collisionless stability
theory one must integrate along particle orbits to find the
perturbation of the particle distribution. This is relatively simple
in concept2 when the particle orbits are integrable (although practical
difficulties may arise din the dimplementation), but it is extremely
difficult when the particle orbits are stochastic.S As a result, linear

2

stability theory for the tokamak systems,“ in which particles have a

full set of invariants, is fairly complete. In contrast, the linear
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stability of the field-reversed theta pinch, which lacks a rigorous
third invariant, is still in a primitive stage.

In fact, the stability of field-reversed configuration is very
poorly understood. Experimem:s4"6 indicate that these systems are
stable for many Alfvén times, the characteristic time for an Alfvén
wave to travel once around a flux surface. This contradicts the
simplest theory7'9 (magnetohydrodynamics), which predicts instabilities
with exponentiation time on the order of one Alfvén time. It is
believed that kinetic effects will resolve this contradiction. A

10 11 for the particle

kinetic theory using guiding—-center theory
trajectories has been implemented, but this theory runs into difficulty
because guiding-center theory breaks down near the magnetic null, a
closed curve encircling the symmetry axis on which the magnetic field
vanishes,

The presence of a magnetic null and the associated failure of
guiding-center theory indicates the lack of a third invariant. Near
the mnull, conservation of magnetic moment, the third invariant in the
tokamak, breaks down. A significant- fraction of particles are
stochastic. To analyze the stability of this system, new techniques
taking the stochastic orbits into account will have to be developed.
The first step in such an analysis is to develop an understanding of
the orbits.

The goal of this paper is to characterize the orbits of particles
near a \linear magnetic null. We use a linear, rather than toroidal,
null because it is simple, yet it retains the toroidal system’s

essential properties: the null, particle stochasticity, and the MHD

instability.8 We further assume that the region of dinterest is small
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enough that we need to keep only the lowest-order, linear terms in the
Taylor expansion of the field near the null. This allows one via
scaling to reduce the number of parameters in the particle Hamiltonian
to two, the ellipticity € and o the sign of the canonical z-momentum.

As a result a fairly complete parameter study of integrability is

ﬁoésibie:rﬁ

Adiabatic invariance analysis and numerical surface of section
analysis are used to study this system. The results of this study are
conveniently expressed in terms of the two parameters, £ and
Q= /§EEYPZ, which involves the particle’s energy E, mass m, and
canonical z-momentum p,, (1) For Q >> 1 and Q < -1, the particle
motion 1is observed to be regular. When € 1is close to unity the
additional invariant is the canonical angular momentum Pg. When € <K 1
holds, the additional invariant is given approximately by the adiabatic
invariant of the y motion. Significant resonance structure occurs only
for e = 0.5. (2) For intermediate values, e3/2 < Q< 1, nearly all
orbits are stochastic. For Q in the vicinity of unity, there exists a
small fraction of integrable particles which are trapped near the tips
of the ellipses. For Q 'near 83/2, \Fhe particle motion 1s like

12 40 the magnetic moments. (3)

guiding-center motion with random jumps
For very small values, [Q] <K 83/2, guiding-center motion with magnetic
moment conservation 1is observed.

Using these results we have estimated the character of ion orbits
in the field-reversed theta pinch experimentss’6 of the Los Alamos
National Laboratory. We find that ions near the magnetic null are

mostly regular, and ions near the plasma edge are mostly stochastic.

Only a wvanishingly small fraction of particles have energies small
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enough that guiding-center theory applies. Thus, both previous MuD’/~?

and kineticlo

stability analyses are suspect.
The results of this study are consistent with and complement
previous discussions of particle orbits. Finn13 observed stochasticity

for particles with o = ~1, (The symbol o, which is defined after

Eq. (5), is the sign of the ratio of the canonical z-momentum to the

magnetic flux.) However, his results lie outside the present discussion
since the previously mentioned Taylor series approximation is not wvalid

14 examined orbits for

for his field. [Later, Larrabee and Lovelace
particles with o = -1 in actual equilibrium fields and observed
primarily regular orbits. The present study agrees with these results
but goes further by discussing other vregions of parameter space as
well. Mynick15’16 discussed adiabatic invariance theory for some
classes of these particles. Here we extend Mynick’s work by discussing
other regions of parameter space and by determining the breakdown of
adiabatic theory.

The outline of this paper is as follows. Section II contains an
analysis of the particle orbits using adiabatic invariance theory. The
derivation of the limits of validity of this theory leads to rough
estimates of the breakdown of adiabatic invariance theory and the onset
of stochasticity. In Sec. III numerical results are presented to
refine the analytic estimates. In Sec. IV these results are

summarized., In Sec. V these results are used to characterize the

orbits of particles in typical experiments.
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IT. General Aspects of Particle Motion
We wish to analyze the motion of particles in the magnetic field
of an elliptical z-pinch. Specifically, we consider the magnetic field

obtained from the vector potential A = Ew(x,y), with the flux function

b = pole?x® + y2)/a? (1)

where Vg and a are constants. The contours of ¢, which are the:

magnetic field lines, are shown in Fig. 1. Such a field is intended to
be the large-aspect-ratio limit of the fields of reversed-field
configurations, for which the plasma is confined roughly to within the
flux contour ¢ = Vo

The Lagrangian for the particle motion in this system is

1

ny? + E-méz + ezp/c .

1 «2 1
= &
7™ T3

Since the coordinate z is ignorable in this Lagrangian, we immediately

deduce that the canonical momentum

p, = mz + e/c

is a constant of the motion. As a notational convenience we introduce

the symbol ¢ = cp,/e. Use of this invariant allows us to find the

effective Lagrangian (or Routhianl’/) for the reduced motion:
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2 .2
R=21mk?+Lay? - 27 [ypex,y)- 7]
2 2 a2

. (2)

We note that this Lagrangian describes two-dimensional motion in an

effective potential

2 _
Ux,y) = = [vGx,y) - 712,
2me

which depends on the value of the invariant ﬁ.

At first glance the effecfive Lagrangian R appears to depend on
many parameters. However, all of these parameters except € can be
eliminated by a scale change. Let us define new variables X,Y, and T,

whose relation to the old is x = XA, y = YA, and t = Tr, where A and T

are constants. With the additional definitions X = dX/dT and ¥ = dy/dT

we obtain

2 [ ° T)\e "'2
=" qlg2 12 1y ¢0(82X2+Y2)—ﬂ]},
2 2 2 2" 22, Ame

The overall multiplicative constant does not affect the equations of

motion. Therefore, by choosing the distance scale,

/2

- 1
A= alp/vgl (3)

and the time scale

- 1/2
T = amc/e|PgPl / , (4)
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we obtain the equivalent Lagrangian

2

L (EZXZ + Yz—c) , (5)

2

1

02__
¥ 2

L= t2R/m 2 =%>‘(2 +

where ¢ = %1 is the sign of @/wo. Of course, this scaling breaks down
for those special particles with § = 0, but then any number of scalings
yield a Lagrangian of the form (5) with ¢ = 0.

For the special case € = 1, the Lagrangian (5) has rotational

symmetry and, hence, an additional invariant Pg = Xy - ¥x. However,
for ¢ # 1, no special symmetry exists. In this case the only trivially

seen invariant is the Hamiltonian,

H:l
2

P+ 2 2h + 2 (%2 + ¥20) 2, (6)
where Py = X and Py = ¥.

Conservation of H allows us to classify particle orbits by the
values of €, 0, and H. The domain of the parameter e 1is given by
0<e< 1. Since H 1is positive, the remaining two parameters can be
combined into one, Q = Y2H/o. From (6) we note that H > %- must hold
for o = -1, while H > 0 must hold for ¢ = +1. Thus the domain of Q is
<0 { Q< -1 and 0 < Q € =,

Conservation of H also allows us to put bounds on the spatial

extent of the particle orbit. From Eq. (6) we deduce

o -VIH<Ce2X2 + Y2 <o +/7H , (7

which of course operates simultaneously with the bound



0<ex2 + Y2, (8)

For o - /2H < 0, Eqs.(7) and (8) simply state that the particle is

confined inside an ellipse. For o — V2H > 0 (i.e., 0< Q< 1), in

T T 77 “which case e must have ¢ = +1, Eq. (7) statés that the particle is

confined hetween two ellipses.

o o A. Guiding Center Motion v, S .

If 0 = 1 and H < %3 the inequality (7) states that the particle is
trapped between two flux surfaces. For small energy, the regioh is a
small region around a magnetic field line. Hence, omne would expect
guiding—-center theory11 to apply.

In guiding-center theory one eliminates the rapid perpendicular
motions from the system order in the adiabaticity parameter, which 1is
the ratio of the 1largest of other frequencies in the system to the
gyrofrequency. The results to lowest order 1is an effective

Hamiltonian,

152 '
HgC—EP + uB(s) , (9

describing motion along the field, where P is the momentum along a
field line, u = Wl/B is the ratio of the energy due to motion
perpendicular to the field to the magnitude of the magnetic field, and
s is the distance along the field line and is canonically conjugate to

P. Guiding center theory shows that u is a constant of the motion.
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To determine the validity of guiding-center theory, we compare the
guiding-center bounce frequency wg for particles trapped near the
magnetic minimum to the gyrofrequency . If the ratio wB/Q is small,
guiding—-center theory should be applicable.

From Eq. (6), we see that the motion for ¢ = 1 is equivalent to

that of a particle with e =m = ¢ = 1 in a flux function

=e2x? + Y2 .

<>
|

According to the inequalities (8), low energy particles are trapped
near the surface $ = 1. On this surface, the normalized magnetic field

or gyrofrequency,

1/2
o = 2(e%x? + ¥2) &

is smallest at the point X = 1/¢ and Y = O. Its value there is
09 = 26. Let us take s = 0 at this point on the surface. Expansion of

the expression (9) around s = 0,

a%

5= L1p24p0) +1 B (0ys2 ,
d32

gc = 3 7 M

shows that the bounce frequency is given by

2 1/2 2 1/2
By = (w, i0/m0) (10)
ds? ds?

Wy = (u

where W;y 1is the perpendicular energy of the particle at s = 0.
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Evaluation of these frequencies is straightforward. As a result, omne

finds that the criterion wy KL Q is

453

1-

Wi <<

For particles not trapped near the bottom of the magnetic well we
expect the criterion to be essentially the same, since those particles

see temporal variations in B given roughly by (10) as they pass through

the magnetic minimum. As we will show later by numerical analysis,
when all particles are considered, the condition for validity of

guiding-center theory becomes H << €3, or

Q<< €32, . (11)

Equation (11) states that guiding~center theory works best Whén €
is near unity. This is expected since then the magnetic field strength
varies little along a magnetic field line. Of course, in this case ome
must impose the restriction H <<-% so that the particle sees little
field variation within a gyroradius. However, it is surprising that
the condition (11) is so restrictive for small €; it scales as the
three-halves power of €. The expected condition of small gyroradius
compared with system size 1s simply W, 5 << 1, which is much less

restrictive.
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B. Jy Conserving Particles
When € 1is much 1less than unity, particles generally Thave
Y-oscillation frequencies much greater than X-oscillation frequencies.
In this case we expect adiabatic invariance theory18’19 based on

Wy >> wy to be approximately valid. If so we expect a good invariant

of the motion to be Jy, the adiabatic invariant associated with the

Y~-degree of freedom.

To illustrate the frequency disparity, we consider the Hamiltonian

for o =-1,

=152
H=2Pg+

L
2

2
P%+_21-(1+E2X2+Y2) . (12)
We estimate the frequency of X-motion by considering the special motion

Y = Py = 0. The period of this motion is found in the usual way.

Ty = § 4T = § ax/X

The integral is over one oscillation period. The velocity X is a known
function of the energy H and the position X via energy conservation.
The result of this calculation is that the frequency wy = 2n/TX, is
given by

[(2m)1/2-1]1/2

oy = [ duf2m - (D]
0

-1
2
t b (13)

Similarly we obtain Wy = wX/e. We conclude that a large frequency

disparity exists provided € << 1 is satisfied.
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Iy 2 51?95 Py(H,X,Py)dY .

~-13-
In lowest order adiabatic invariance theory, one introduces the
adiabatic invariant Jy, a new canonical momentum, as the action
integral around one oscillation in Y for fixed values of energy (H) and

the other coordinates (X,PX).

The corresponding canonically conjugate angle ¢y can also be found, but

Tit is not needed hetre; so it will not be further discussed.
For fixed values of X,Py and H, the Y-motion is given by the
Hamiltonian
1

1 2 2_.)2

This Hamiltonian describes oscillation in an effective potential
vV = %(SZXZ + Yz-o)z, which is plotted in Fig. 2. From the figure one
sees that the potential increases monotonically with Y if e 2x2 > o.

When e 2%2 < ¢ holds, the potential has a central maximum of value

lr_ 242 2
VO=§(EX—0) .

The turning points for this oscillation are found by setting
Py = 0 in Eq. (15). For (ZHY)l/2 < G-€2X2, the particle is confined to

one sign of Y by the potential maximum. The turning points of the

1/2
]

motion are given by Y{(X,Hy) = [0€2X? - (ZHY)l/Z and

1/2

Yo (X,Hy) = [o-e2x2 + (28y)1/2] If instead (28y)1/2 > o-e2x2, the

particle can cross the Y = 0 line and has turning points Y5,



~14-

With this information we can calculate the action invariant Jye.

We define two types of particles. Type—~l particles are those which

cannot energetically cross the Y-axis. They satisfy (ZPIY)l/2 < o-e2x2,

For these particles Eq. (14) becomes

. Yo (X,Hy)

T (v B T ' 292452 N2

Jy1(X,Hy) = ;—f dY[ 2Hy - (e “X%+Y%-0)4]
Y]_(XsHY)

V2o © O (16)

Type-2 particles can energetically cross the Y~axis. They satisfy

7_Z§ﬁ§31727§75:E2Y1. For these particles Eq. (14) becomes

Y5 (X,Hy)
1/2

1
Jyo(X,Hy) = ;‘f dy[ 28y - (82X2+Y2—c)2] . (17)
0

This differs by a factor of two from the definition (14), which would
have the domain of integration be [—YZ,YZ]. We take the definition
(17) in order to have Jy be a continuous function of Hy at
(ZHY)l/2 = o 2x2, Furthermore, for notational convenience we define
Y, = 0 for 2Hy > o-e X2,

The final step of adiabatic invariance theory is to invert either
Eq. (16) or (17), whichever is appropriate, to obtain the function
Hy(X,Jy). This is inserted into Eqs.(6) and (15) to obtain the reduced

Hamiltonian

1

H=2
2

P% + Hy(X,Jy) , (18)

which describes the motion of (X,Py,$v,Jy) via Hamiltonian equations.

For the system, Hamiltonian’s equations are:
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) 9H
S 4
X
X = Py (19)
:IY = 0
; dHy
Y = 370 ° Yy oo

We éeé Vthat ﬁé acts ésiaﬁ éffecfi&e po£ential fo£ thévavefaged mgtion
of X, For each value of Jy there is a different effective potential.
The effective potential HY(X,JY) versus X for various values of Jy is
shown in Fig. 3 for ¢ = 1 and in Fig. 4 for o = -1.

The transition point, where a particle changes from one type to

another, is very important. At the transition point, the frequency,

Y
3 2 1/2, "1
oy = g = o{f av[amy - X@Hv2-0) (20)
Y
Y
1

vanishes. Hence, adiabatic invariance theory, which is based on
Wy >> wy, cannot be correct near the transition point. Instead we
expect JY to change each time a particle passes through the transition
point.

Particles with ¢ = -1 are always type-2, but particle with o = +1
may change from type-2 to type-l and vice versa. For a given value of
Jy, (or Hy) this transition occurs at a critical position Xq, which is

found by solving the marginal condition,
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[ 28y (Xg,dp) ] /% = 0 - e22% .

The locus of these critical points in X~Hy space is shown as a dashed
curve in Fig. 3. A particle with a given value of JY has an effective
potential Hy given by a curve like one of the solid curves in Fig. 3.
The critical position for this value of Jy is at the intersection of
the dashed curve and the appropriate solid curve.

We observe in Fig. 3 that no intersection exists if Hy(0,Jy) > %w

This corresponds to Jy > Jy¢ = 22/3m. Thus, only particles with
Jy < Jyc can experience a transition. Whether a particle with Jy < Jyg¢
experiences a tramnsition depends on its energy. In Fig. 5 we show an
energy diagram for a particular value of Jy. A particle with the
energy at level b is confined away from the transition line and, hence,
cannot experience a transition. However, a particle with energy at

level ¢ may cross the transition.

C. Summary of Expected Types of Motion

The expected types of motion for € << 1 are shown in Fig. 6. For
very small energy, such that (11) is satisfied, we expect the X-Y
trajectory to look 1like that shown in PFig. 6(a), a regular
guiding—center like trajgctory. The iilustrated trajectory is confined
in the magnetic minimum at the ends. Of course other circulating
trajectories are also expected. A trajectory for JY > Jyc or 0 = ~1 is
shown in Fig. 6(d). In this case the motion will be regular. The
motion in Fig. 6(b), where the particle is confined away from the
transition point d1is also expected to be regular. However, the

remaining type of motion shown in 6(c), where the particle has JY < Jyc
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and H > Hy(Xs,Jy) is expected to be stochastic, since the particle will
experience a change of the invariant 'JY each time it crosses the

transition point.
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ITI. Numerical Analysis

In this section we present results of the numerical integration of
the equations of motion. Our purpose is to illustrate the types of
motion discussed in the last section, to verify and sharpen the
inequalities of the last section, and to certify that no other types of
motion exist. Most of the results presented in this section are
surface of section plots which are now used extensively in nonlinear
studies (for example, see Ref, 20). The surface of section plots are
used to determine the existence of an invariant. If one is found,
trajectories are followed to determine the functional form of the

invariant.

A. Variation With Q at e = 0.2

Figures 7 and 8 contain a series of surface of section plots for
the Hamiltonian (6) for € = 0.2 and for various values of ¢ and the
Eenergy. Each subfigure corresponds to particular values of ¢ and H.
Each figure is constructed in the usual way. Initial conditions are
chosen to be Y(0) =0, X(0) and PX(O) in the allowable region
1/2

% )2(+% (e%x2-0)2 < H, and Py(0) = [28-PF - (2x%-0)%] ", The

equations of motion are integrated forward to some large time. Each

time the trajectory passes through the Y = 0 plane with PY > 0, the
values of X and Py are plotted. Also shown as a solid line is the edge
of the allowable region. Only half of the surface of section plot is

shown since it is symmetric.
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The value of o is -1 in both Figs. 7(a) and 7(b). In Fig. 7(a)
H=5 (Q=-10) and in Fig. 7(b) H = 0.55 (Q = 1.1). The results of
six initial conditions are shown in Fig. 7(a); five initial conditions
are shown in Fig. 7(b). In both cases, the subsequent trajectory
points lie on curves. No large scale stochasticity is conserved. We
conclude that if e is small and ¢ = -1, a good invariant exists. In
fact, as we will shown later, the invariant is approximately given by
JY.
In Figs. 7(c), 7(b) and 8, 0 = +1. In Fig. 7(c) the energy is
large, H = 5. No large scale stochasticity is observed. This 1is
similar to the large-H result for ¢ = -1 as expected, since the effect
of ¢ is small in the large-H limit. However, as the energy is
decreased to H = 1 (Q = V2), as in Fig. 7(d) some stochastic orbits are
observed in the outer region of the surface of section plot. In
addition, a mnew type of regular orbit is observed. It shows up in
Fig. 7(d) as small island at PX = 0. These orbits are end trapped as
in Fig. 6(b). Upon decreasing the energy still further, to H = 0.5
(Q=1) as in Fig. 8(a), one observed a largely stochastic region and a
region of regular end-trapped trajectories. When H = 0.05, as in
Fig. 8(b) nearly all of the phase space region is stochastic. This
persists down to H = 5 x 10-4, as shown in Fig. 8(c). TFinally, at very
small values of the energy [see Fig. 8(d) for H = 5 x 10_5] primarily
regular behavior is again seen throughout phase space. The motion here
is guiding-center like as shown, for example, in Fig. 6(a). The
transition between Figs. 8(c) and 8(d) allows us to refine the

inequality (11) to
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1 < 0.2 e3/2 , (21)
for guiding-center motion to be applicable.

B. Observed Trajectories for € = 0.2

Figures 9-12  show sample trajectories of the types of métioh in
the surface of sections of Figs. 7 and 8. Various quantities are
calculated to determined the degree of conservation of proposed
invariants.

Figure 9 shows the trajectory of a particle with ¢ = 1 and H = 5,
corresponding to Fig. 7(e). The right half of the X~Y trajectory,
shown in Fig. 9(a), illustrates the particle bouncing in the X and Y
directions., One can see that many oscillations occur in the Y
direction during one X-direction cycle. Thus, Fig. 9(b), which shows
good conservation of the action Jy calculated from Eq. (17), should not
be too surprising.

Figure 10 shows the trajectory of an end-trapped particle for the
case ¢ =1 and H = 0.25, The X~Y trajectory [Fig. 10(a)] illustrates
the fact that the Y-frequency is much greater than the X-frequency.
‘'This fact distinguishes these end-trapped particles from guiding—-center
like motions, which have a Y-frequency much smaller than the frequency
of motion in the X~direction, Whicﬁ is perpendicular to the magnetic
field. Also, as shown in Fig. 10(b), the action Jy is a good
approximate invariant. Not shown is the fact that magnetic moment is a

very poor invariant.
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Figure 11 shows the complicated trajectory of a transitioning
particle. In Fig. 11(a) it is seen that the X-Y trajectory is not
regular. Although this example does not show it, particles in this
regime have been observed to be end-trapped for some period, then to
exist and behave like an untrapped particle for awhile. The periods of
being end—tréppe& and untrapped are very irregular. Figure 11(b) shows
the action Jy versus time. The action is observed to be constant for a
period of time, then to oscillate wildly before settling at a new
value. Comparing this figure with Fig. 11(d), which is a plot of the
position X  versus time, shows that two large peaks in the
JY—oscillations are observed whenever the particle reaches the end.
Presumably, these large oscillations occur when the particle is
transitioning between the type.discussed in Sec. IIB. Figure 1ll(c) 1is
a plot of the magnetic moment p versus time. As one can see, it has
substantial oscillations even when the particle is in the center of the
machine.

Figure 12 shows the trajectory of a low energy particle;

H=5x 100+ The plot of X vs. t, Fig. 12(b), shows that the particle
is circulating since it visits both ends., 1In Fig. 12(a) it is seen
that the magnetic moment is very well conserved between visits to the
ends. At the ends the magnetic moment oscillates wildly. The particle
leaves the end region with a slightly different wvalue of magnetic
moment. This behavior is similar to that observed for large-gyroradius

12

particles in mirror machines. The magnetic jumps do not imply the

lack of an invariant, since the particles may still be superadiabatic.
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C. Scaling with € at Fixed H

Figures 13 through 15 show how phase space changes as € varies for
a fixed value of H. Of course, when € = 1 the system is integrable with

Py as an invariant. As € 1is decreased, either the orbits remain

regular with Jy as an invariant, or the orbits become stochastic.

Figure 13 is a series of surface of sections for H= 5, 0 = 1, and
e = 1.0[Fig. 13(a)], 0.9[Fig. 13(b)], 0.5{Fig. 13(c)], and O0.2[Fig.
13(d)]. To understand this series it is best to first look at the two
limiting cases. In Fig. 13(a) (e=1) none of the invariant curves,
except the limiting curve for Pg = 0, are observed to intersect the

line X = 0. The reason is that the repulsive centrifugal potential,
1
2
In contrast Fig., 13(d) (e=0.2) shows all invariant curves intersecting

p%/rz, permits no particles with py # 0 to pass through the origin.

the line X = 0. The transition between these € values is shown in
Figs. 13(b) and 13(c). In Fig. 13(b) (£=0.9) half the trajectories are
similar to the pg-conmserving trajectories of the case € = 1. The other
half are similar to the Jy-conserving trajectories of the case € = 0.2.
At e = 0.5 the pg-conserving trajectories are destroyed. A large
stochastic region is observed. At € = 0.5 complicated structure is
usually seen for H > %u This 1is attributed to presence of large
resonance structure when wY/mX = 2, a small integer.

Figure 14 is a sequence of surfaces of sections for H = %3 c =1,
and e = 1.0 [Fig. l4(a)}, 0.9 [Fig. 14(b)], 0.5 [Fig. 14(c)], and 0.2
[Fig. 14(d)]. Qualitatively, this sequence is similar to that of
Fig. 13. Integrable Pg-conserving orbits are observed at € = 1.0. The

percentage of Pp—conserving orbits decreases while that of

Jy—conserving orbits increases as € is decreased. Rich resonance
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structure is observed at € = 0.5. As € is decreased still further the
fraction of orbits that conserve Jy remains roughly constant. The
details of the resonance embedded stochastic region change but its
relative size does not.
-3

Figure 15 is a sequence of surfaces of sections for H= 5 x 1077,

=1, andie = 1.0 [Fig; 15(a)], 0.9 [Fig. 15(b>j, O.SV[Fig; 15(ec)] and

0.2 [Fig. 15(d)]. Except for some interesting resonance structure at

e = 0.5, this sequence is wuneventful. Orbits are observed to be
integrable with guiding-center 1like motion wuntil € is decreased to

where the inequality (21) is violated.
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IV. Summary of Orbit Analysis
The analytical methods of Sec. II and the numerical methods of
Sec. TIII allow us to present a broad overview of particle motion near a
linear magnetic null, These results are conveniently expressed in
terms of € and Q. For Q { -1, most orbits are regular. For € near

“unity the canonical angular momentum py is the invariant. For small g,

Jy is the invariant. The results for positive Q are EFowniin Fig. 16,
a chart of the space of the parameters Q2 = 2mE/p§ and €. This chart
is divided into three regions: (1) For Q >> 1 the motion 1is regular.
For small ¢, JY is the invariant to lowest order. For € near unity, Po
is the dinvariant. (2) For 1 > Q> e3/2 post trajectories are
stochastic. The changes in Jy for € << 1 occur primarily when the
particle approaches the ends of the flux surfaces. For e < 1, there
do exist a few integrable trajectories that are trapped in the ends.

(3) For QI £ 0.283/2 the trajectories are regular. The third

invariant is the magnetic moment of guiding-center theory.
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V. Application to Experiment

The relevance of the present orbit analysis is determined by
applying these ideas to current experiments. For examples we consider
the field-reversed theta pinch5"6 series of experiments at the Los
Alamos 7Nati9nal Laboratory. We will see that a large fraction of the

particles are close enough to the null to be regular and Jy conserving.

be stochastic. Almost no particles have energy low enough to obey
guiding—-center dynamics.

Two examples will be considered for comparison. Of course, no
exact comparison can be made, since the experiment is toroidal, while
the present theory applies to a straight system. For example 1, we
take the values (roughly from p. 2078 of Ref. 5) a = 2.5em, € = 0.1,
and Ti = 200eV for deuterons. The vacuum magnetic field (BX at x=0 and
y=a) is taken to be 6.5kG, from which we infer that the constant ¢, of
Eq. (1) is roughly 8.1kGem. For example 2, we take the values (from
Sec. 5 of Ref., 6) a = 5cm, € = 0.1, and Ti = 150eV for deuteromns. The
vacuum magnetic field is taken to be 9kG, from which we infer that
Vg = 22.5kGem.

For the particle motion the relevant parameters are e and
Q = V2mE/p,. The results of Secs. II and III are : (1) The particle
motion is integrable for |Q] >> 1. (2) The particle motion is
stochastic for . 1> |qQ| » 0.2¢3/2, (3) The particle motion is
guiding—-center like for |Q] < 0.253/2. These regions of parameter

space are shown in Fig. 17(a).
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Depending on the particle position, only certain regions of
parameter space are accessible., Particles with many different H and P,
values can pass through a given point (x,y). For example, if the
vélocity distribution 1is roughly Maxwellian with temperature T,
particle energies generally satisfy /iﬁﬁ's Y 3mT. Secondly, if the
“particle dis at a certain position (x,y) at which the flux is ¢, then

the fact that the kinetic  energy is positive implies

Y2mE > ¥/2mU = Ip, ~ ey/c|. The accessible region of parameter space
for a particle at a given value of ¢ is shown in Fig. 17(b).

From these two figures and the associated inequalities we see the
following. Particles which pass through the origin, where y = 0,
satisfy {Q] > 1l and are mostly integrable. Of the particles a little
farther out, Q is in the ranges Q < -1 or 0 < Q < = with most particles
having Q of the order of unity. Farther out still, where
AR o/3nT/e, the Maxwellian cutoff insures that few particles have
negative Q. Instead most of the particles have 1 > Q > 0. Most of
these particles are stochastic wuntil one gets very far out to
b > ¢gc = SCJEETYeEB/Z, beyond which guiding~center theory applies.
The associated wvalues of y are given by yJ/a = (¢J/w0)1/2 and
Voo = Weelv) /2.

For example 1 we find yj/a = 0.66 and ygc/a = 19, Thus, the
central half of the plasma consists of Jy-conserving particles. The
outer half of the plasma contains mostly stochastic particles.

Essentially no particles obey guiding-center dynamics.
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For example 2 we find yj/a ; 0.37 and ng/a = 11. A somewhat
smaller fraction of the plasma consists of regular Jy-conserving
particles. Most of the plasma is composed of stochastic'particles.

Again, essentially no particles obey guiding-center dynamics.
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Fig. 2.

Fig. 3.
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Figure Captions
Contours of the flux function for € = 0.2.

. . 1 242.52_ 32
The effective potential V = E-(e X=+Y -c) versus y for o = 1

and various values of X. Curves are labeled byr the value of

eX.

The effective potentials Hy(X,Jy) for € = 0.1, 0 = 1, and
various values of Jy are shown by the solid curves. Values of

X and Hy below and to the right of the lower right solid curve

are unphysical. The dashed curve is the locus of transition

points discussed in the text.

The effective potentials HY(X,JY) for e = 0.1, 0 = -1, and
various values of Jy. Values of Hy and X below the bottom

curve are unphysical.

Energy diagram for € = 0.1 and Jy < Jyg. The solid curve is
the effective potential HY(X,JY). The dashed curve is the

locus of transition points discussed in the text.

Types of X-Y trajectories. Particles in a,b and d are

regular. Particle in ¢ is stochastic.



Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.
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Surface of section plots for e = 0.2: in (a) 0 = -1 and H = 5;
in (b) o =-=1 and H = 0.55; in (¢) 0 =1 and H = 5; in (4)
o =1and H= 1., The outer solid curve is the accessibility

boundary imposed by energy conservation.

Surface of section plots for € = 0.2 and o = 1l: in (a)

H=0.5; in (b) H = 0.05; in (c) H = 5.0x 107%; 1in (4)

il

H=5x 1072,

Trajectory for Jy-conserving motion for case e = 0.2, 0 = 1,

and H = 5. Initial conditions are X(0) = 5.00, Y(O0) 0,

P¢(0) 0, and PY(O) calculated from H. Fig. 9(a) shows the
right half of the X-Y trajectory. Fig. 9(b) shows Jy as given

by Egqs. (16) and (17) vs. time.

Trajectory of end-trapped Jy-conserving motion for the case
€ = 0.2, o0=1, and H = 0.25. Initial conditions are
X(0) = 3.14, Y(0) = O, PX(O) = 0, and PY(O) calculated from H.
Fig. 10(a) shows the X~-Y trajectory. Fig. 10(b) shows Iy

vs. time.

Trajectory of a stochastic particle for the case ¢ 0.2,

o =1, and H = 0.25. Initial conditions are X(0) 5.2,
Y(0) = 0, P¢(0) = 0, and Py(0) calculated from H. The right
half of the X-Y trajectory is shown in (a). A plot of Jy

vs. t 1is given in (b). The magnetic moment vs. time is shown

in (¢). In (d) is shown X vs. t.
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Fig., 12. Trajectory of a low energy magnetic-moment-conserving particle

Fig.

Fig.

Fig.

Fig.

Fig.

13.

14,

15.

16.

17.

for the case € =0.2, 0 =1, and H =5 x 1072, Initial
conditions are X(0) = 5.01, Y(0) = O, PX(O) = 0, and PY(O)
calculated from H. The magnetic moment vs. time is shown in

(a); X vs. time is shown in (b).

Surface of section plots for H= 5 and ¢ = 1: in (a) € = 1; in

(b) € = 0.9; in (c) € = 0.5; in (d) € = 0.2,

Surface of section plots for H= 0.5 and ¢ = 1: in (a) € = 1;

in (b) € = 0.9; in (c) € = 0.5; in (d) ¢ = 0.2.

Surface of section plots for H = 5 x 1073 and ¢ = 1: in (a)

e = 1; in (b) € = 0.9; in (c) € = 0.5; in (d) € = 0.2.

Diagram outlining stochastic and regular regions of H-e
parameter space for ¢ = +1. Surface of section analyses“ were

done at the parameter values of the dots.

(a) Shows the types of motion occurring in various regions of
parameter space. The slope of the dashed line is 63/2. (b)
Shows the allowed range of parameters for a Maxwellian of

temperature T at a position where the value of the flux is V.
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