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ABSTRACT

This paper discusses a genera. method for approximating two-dimensional and quasi-
geostrophic three-dimensional fluid flows that are dominated by coherent lumps of
vorticity. The method is based upon the noncanonical Hamiltonian structure of the
ideal fluid and uses special functionals of the vorticity as dynamical variables. It
permits the extraction of exact or approximate finite degree-of-freedom Hamiltonian
systems from the partial differential equations that describe vortex dynamics. We give
examples in which the functionals are chosen to be spatial moments of the vorficity.
The method gives rise to constants of motion known as Casimir invariants and pro-
vides a classification scheme for the global phase space structure of the reduced finite
systems, based upon Lie algebra theory. The method is illustrated by application to
the Kida vortex (Kida, 1981) and to the problem of the quasigeostrophic evolution of
an ellipsoid of uniform vorticity, embedded in a background flow containing horizon-
tal and vertical shear (Meacham et al., 1994). The approach provides a simple way
of visualising the structure of the phase space of the Kida problem that allows one
to easily classify the types of physical behavior that the vortex may undergo. The
*accepted by Physics of Fluids A, March 1997
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dynamics of the ellipsoidal vortex in shear are shown to be Hamiltonian and are rep-
resented, without further approzimation beyond the assumption of quasigeostrophy,
by a finite degree-of-freedom system in canonical variables. The derivation presented
here is simpler and more complete than the previous derivation which led to a finjte
degree-of-freedom system that governs the semi-axes and orientation of the ellipsoid.
Using the reduced Hamiltonian description, it is shown that one of the possible modes
of evolution of the ellipsoidal vortex is chaotic. These chaotic solutions are noteworthy
in that they are exact chaotic solutions of a continuum fluid governing equation, the

quasigeostrophic potential vorticity equation.

I. INTRODUCTION

An ubiquitous feature of fluid motion is the occurrence of long-lived localized vorti-
cies. Notable naturally occuring examples are: the recirculating vorticies generated
at vorticity fronts associated with western boundary currents in the ocean, Meddies
(saline lenses that originate near the Strait of Gibraltar), and Jupiter’s Great Red
Spot and White Ovals. Since such vortices can exhibit relatively uncomplicated be-
havior, several authors have developed low degree-of-freedom models to describe their

'=5. Melander et al.?~ used moments of the vorticity as dynamical vari-

dynamics
ables and showed that their reduced model was Hamiltonian. The model of Kida! K
hereafter] is also Hamiltonian, but Meacham et al.’> [MPSZ hereafter] had some diffi-
culty deciding whether their stratified quasigeostrophic (QG) model was Hamiltonian
in the most general case. MPSZ used a classical Eulerian approach to determine a
finite set of ODEs that exactly described the motion of a uniform ellipsoidal vortex
in a shear flow given by a streamfunction that was quadratic in the spatial variables.
For a restricted set of forms of this background shear, they were able to obtain an ap-
propriate Hamiltonian by inspection of the ODEs. For the case of a general quadratic
background streamfunction, the ODEs did not vield their secrets so gracefully. In the
present paper, a systematic procedure, based upon the Hamiltonian structure of the
ideal fluid equations, is given for obtaining exact or approximate moment reductions

where the resulting finite degree-of-freedom model is manifestly Hamiltonian. We

illustrate the procedure by applying it to the problems of K and MPSZ.



3

In our application of the Hamiltonian reduction technique to the Kida problem, Sec.
I1I, we obtain a simple way of classifying the possible types of phase space trajectory.
This consists of looking at different ways in which Hamiltonian and Casimir surfaces
can intersect in the three-dimensional phase space. The different types of intersection,
which are readily visualised, correspond to different types of physical behavior of the
vortex (tumbling, nutation and stretching). Useful choices of variables with which
to represent the Kida problem are already known, e.g. ref. 2; we will see that they
arise naturally in the Hamiltonian approach once the problem has been couched in
terms of normal coordinates. We are led to similarly simplified sets of variables in
the more complicated problem of the quasigeostrophic ellipsoidal vortex in Sec. IV.
The Hamiltonian reduction results in a much simpler set of equations for the three-
dimensional problem than those derived by MPSZ. We go on to use these equations to
demonstrate that one type of behavior that the quasigeostrophic ellipsoid can undergo
is a chaotic tumbling. Since solutions of the reduced Hamiltonian equations for the
quasigeostrophic ellipsoidal vortex are exact solutions of the inviscid quasigeostrophic
governing equations and since these latter equations are continuum equations, the
chaotic solutions we observe correspond to chaotic behavior in a continuum model of

a rotating stratified fluid.

The Hamiltonian form possessed by the ideal fluid equations arises in many guises,
because of the various variables that are used to describe fluid motion. The natural
Hamiltonian structure of the ideal fluid equations is most clearly seen when the fluid
is represented in terms of Lagrangian variables. One describes the fluid as a contin-
uum of fluid particles and it naturally inherits the Hamiltonian description of particle
mechanics®~7. The Hamiltonian form of point vortex dynamics® and the Hamiltonian
form of the Euler equations in terms of Clebsch potentials can be shown to arise from
this underlying structure. However, in terms of Eulerian variables, the Hamiltonian
nature of ideal fluids is less immediately evident. The degenerate Lagrange bracket

description!®~11

, the commutator description!?, and the noncanonical Hamiltonian
description in terms of a degenerate Poisson bracket!® can also be shown to arise from
the underlying Lagrangian form. The same is true for the noncanonical Hamiltonian
description of vortex dynamics in three!3~14 and two'>~17 dimensions. It is this lat-
ter description that is the starting point of this paper. (For review see the works by

Salmon'® and Morrison!®.) We now briefly sketch this noncanonical formalism.



4

The noncanonical Hamiltonian description amounts to writing the fluid equations in

‘the form 5
X _

where x(x,?) is a short-hand for the set of fluid variables, e.g. pu, p,... and Hlx] is

the Hamiltonian functional. The noncanonical Poisson bracket, {, }, has the following

form for Eulerian media fields:

(1.2)

{F.G} = <X! {55’ 6G}> |

kS
where F and G are functionals, (, ) is (for the purposes here) an integration over the

volume corresponding to the spatial variable x, and the functional derivative is defined

by

) §F
6F[x;dx] =: <5x, 5—X~>-

The bracket of (1.2) is a Lie algebra product for functionals, i.e. is bilinear, antisym-

metric, and satisfies the Jacobi identity, {F,{G, H}}+{G,{H, F}}+{H,{F,G}} =0,

provided the “inner bracket” [, ] is a Lie algebra product for functions. Brackets of

(1.3)

the form of (1.2) are called Lie-Poisson brackets. The analogous bracket in finite
degree-of-freedom systems can be written out in coordinates as follows:

ki 9f 99

¢ S
k 9zt 5z’

{f.g} == L k=1,2,...N, (1.4)

where f and g are functions of the dynamical variables z*, which span the phase space,

and the quantities cf are the structure constants for some Lie algebra. Repeated sum

notation is used here (and henceforth).

Suppose now that a physically significant class of functionals F' and G of (1.2) is
comprised of those that depend on x only as functions of a finite set of simpler func-
tionals of x. We will call these simpler functionals, “moments of x”, and refer to the
class as 7. What we mean by moments can be left fairly general, but we have in
mind a procedure that involves integration over the spatial variables. The number of
moment variables may be arbitrarily large. Since variations dx induce variations in
the moments, the chain rule can be applied to map the bracket of (1.2) to one on the
moments. This procedure results in a bracket where the inner bracket is a filtered

t?D——?.l

Lie algebra produc . Significantly, it is possible to obtain reduced descriptions

in terms of a finite number of the moments where the Lie algebra product is closed.



Details of the general mathematical structure will not be presented here, rather we

will demonstrate this by specific examples.

The moment reduction described above does not give the whole story, since specifi-
cation of the dynamics requires the Hamiltonian as well as the Poisson bracket. The
above procedure is only of interest if the Hamiltonian belongs to F or can be suf-
ficiently closely approximated by an clement of F, i.e. if the Hamiltonian can be
written in terms of these variables. In general, this is not possible. However, for a
restricted class of initial conditions it may be possible, which is the case for the exam-
ples presented here. Alternatively, there may exist an expansion in terms of a small
parameter that renders the Hamiltonian a function of the moments. This is the case
for the Hamiltonian structure in terms of moments given by Melander et al.?, which
has been generalized to include background flow and worked out from first principles

by the methods presented here??—23,

The paper is organized as follows. In Sec. II, we review the noncanonical Hamiltonian
structure for a class of vorticity-like systems and sketch the general procedures of
moment reduction. Then, in Sec. 111, we illustrate this with the Kida! exact reduction.
Kida obtained the equations of motion for an elliptical vortex patch in a background
flow, where the dynamics involves time dependence of the ellipse aspect ratio and
angle of orientation. Later, in an ad hoc manner, Melander et al.? and Meacham
et al.* showed that Kida's equations were Hamiltonian. Here, we briefly review the
Kida reduction and derive the Hamiltonian structure by projecting the noncanonical
Poisson bracket for the two-dimensional Euler equation onto quadratic moments of
the vorticity. Constants of motion are described and related to the underlying Lie
algebra structure, whence, new and natural sets of canonical variables are obtained.
A qualitative description of the motion is given by comparing the dynamics of the Kida
vortex, which is shown to possess a phase space described by the Lie group SO(2,1),
to that of the free rigid body, which posseses the phase space SO(3).

As a model for an intrathermocline vortex in a shear flow, Meacham et al.® considered
a blob of uniform potential vorticity embedded in an unbounded, uniformly stratified,
quasigeostrophic flow. The motivation for this work, which is a generalization of the
Kida reduction to an ellipsoid in the quasigeostrophic flow, was to understand the

conditions under which a shear flow might cause a vortex to break up. In MPSZ it



6

was conjectured, but not shown, that the equations which describe the ellipsoid are
Hamiltonian. In Sec. IV this is shown by beginning from the noncanonical Poisson
bracket that describes continuously stratified quasigeostrophic flow and projecting
onto moments. The resulting moment algebra is decomposed into the direct sum of
semi-simple and solvable components. The decomposition allows one to obtain the
Casimir constants of motion and points to natural sets of variables which can be used
to classify the dynamics. In the absence of vertical shear, the system is integrable.
Using the equations of motion based on the natural variables, we consider the way
in which phase trajectories are perturbed by the addition of weak vertical shear. We
demonstrate empirically the presence of chaotic dynamics near homoclinic trajectories

in the or:sinal system.

In Sec. V the paper is summarized, concluding remarks are given, and generalizations

are suggested.

II. VORTEX DYNAMICS AND MOMENT REDUCTION

A. Review of the noncanonical Hamiltonian structure of vorticity-like sys-

tems

Consider a class of vorticity-like systems with dynamics governed by

o4

5 +[dl =0, (2.1)

where ¢(z,y, z,t) is a vorticity-like variable,

_ 9% _990f

is the normal Jacobian or Poisson bracket, and ¢ is a “streamfunction” that is related

to § by means of § = L3, where the linear operator L is formally self-adjoint, i.e.
f fLgdrdydz = / gLfdzdydz . (2.3)
D D

Here D, the domain of integration, can be taken to be IR? in the case of the 2-D
Euler equation. The conserved field §(z,y,t) is the scalar vorticity, and L := V2 =
9% /82% + 8% /0y? so that



|

- - ot 97N -
G=V* = (53:—2 + 3—3{-2‘> w. (2.4)

For continuously stratified quasigeostrophic flow, the domain is R?, §(z, vy, z, t) is the

(&, apo .
1=\322 "52 T v 55 | ¥ (2:3)

where f is the Coriolis parameter and N(z), the Brunt-Vaisala frequency. In the case

potential vorticity and

of uniform stratification, which we assume in Sec. IV, » can be scaled by V/f so that
the potential vorticity relation becomes isotropic: § = (92/9z? + §%/8y? + 92 /022).
Multi-layer quasigeostrophic potential vorticity dynamics and other systems are given

by different choices for L.

The noncanonical Poisson bracket for this class of system?*15 is given by

{F,G} “/ [?f,i—GJ dzdydz , (2.6)

from which (2.1) is obtained in the form

dq _
5 = (@A}, (27)

with the Hamiltonian functional given by

H(g) = / G dzdyd: . (2.8)

The evolution equation (2.7) can be verified by observing that §H /8§ = —), making

use of the identity

/f[g,h]dxdydz :_—/g[f,h]d;rdydz, (2.9)
D D

from integration by parts and the neglect of surface terms (which is justifiable in the

case of interest here where f has compact support), and by using the relation

§q(=',y",2',t)

0G(x,y,z.t) =d(z—2")o(y —y') (2 - 2),

which follows from (1.3).
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In the examples considered below, we wish to include stationary background flows
with horizontally uniform vorticity, §(z) and streamfunction, . The uniformity of §
means that integrals such as those in (2.3) may not formally converge. This is easily

remedied as follows. We introduce the decomposition

1&:1,{3(.3,9’,2)+2;>($,y,2,f), q=14q(z) +qlz,y,2,t), H=H+ Hlq
where ¢ = Ly and
_ 1 R
H=- / (b + 2 0) (2.8)

We will make the restriction that the perturbation vorticity, ¢, has compact support,

although this could be relaxed a little. Then, using the self-adjoint property of L, we

have that
5H e
R (¥ +¢)
The perturbation vorticity satisfies an evolution equation similar to (2.1)
dq __—
-1 / — '
5 T vd =0, (2.1)
Defining a new Poisson bracket
SF 6G
FG =/ [——3 -—] dxdydz , 2.6/
{F,G} U T y (2.6")
this becomes 5
q —r
5 — le.H}, (2.7)

In addition to the modified Hamiltonian (2.8’) (the “excess energy” ), the system (2.1')

conserves the Casimir invariant

Clq] :=/ C(q)dzdydz , (2.10)
D
where C is an arbitrary function. Casimir invariants are defined by
{C,F} =0, (2.11)

for all functionals F'. This type of invariant is a property of the noncanonical Poisson
bracket and should be distinguished from invariants that depend upon the particular

form of the Hamiltonian, namely,

{P,H} =0. (2.12)
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Of course, {P} D {C'}. The following linear momenta are examples of this latter type

of invariant:
P, = -/ r gdzdydz, P, = / y qgdzdydz , (2.13)
D D

and follow if H has spatial symmetries (invariance with respect to translations in y

and z.)
B. Reduction

There are physical situations in which parts of the fluid are behaving coherently so
that the number of “interesting” degrees of freedom is finite, at least over some limited
time. Examples include the evolution of a vortex blob of finite size in an external shear
flow and the interactions of multiple blobs of vorticity. In the latter case, though the
vortex blobs may eventually filament in a complicated way, if they are not too close
together, in the initial phase of their evolution the blobs will behave qualitatively like
point vortices. In this phase, the many internal degrees of freedom that correspond
to rearrangement of fluid parcels within each vortex may be relatively unimportant.
We are interested in obtaining a kinematic reduction that allows us to focus on the
degrees of freedom that dominate the dynamics when the vorticity field is distributed
in coherent lumps. This amounts to finding a particular set of reduced variables for
describing the dynamics that contain less information than g(z,y, z,¢). In general, this
approach will yield low-order approzimations to the full equations of motion. However,
there are special cases for which the reduced equations are an exact representation of
the flow dynamics. We provide examples of exact reduction in Sec. III and Sec. IV.
Since we would like the set of reduced variables to inherit a Hamitonian structure, we
begin with the Poisson bracket of (2.6'). In actuality, we are seeking a Lie subalgebra
associated with this bracket; this amounts to expressing the Poisson bracket in terms
of projections of ¢, which will be seen to be an exercise in the chain rule for functional

derivatives.
Suppose we have a set of functions m’(z,y, z) and define the projections of ¢ on them
al = / m? qdrdydz . ‘ (2.14)
D

If the set of functions m’ is not complete, the transformation between g and the a’s

is not invertible; however, the chain rule can still be effected in “one direction”. To
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this end, suppose that the functionals of ¢ that we choose to deal with are restricted

so that their dependence on ¢ occurs only through functions, f, of the moments q, i.e.
Flg] = f(a), (2.15)

and consider variations in a that are induced by arbitrary variations in g:

sat =/ m' §q dzdydz . (2.16)
D
Variations in F' and f are thus related according to
. SF )
6F[q;6q] = / — dqgdzdydz = §f(a; da)
an o of (2.17)
_ 5 : = = : .
B a a0 /s m' éq dzdydz
Since dq is assumed to be arbitrary, comparison of the second and last terms of (2.17)
results in 5 of
F i
Substitution of (2.18) and a counterpart for the functional G into (2.6") yields
af 69‘ 1 j S
(.6} = g5 5% [l ] dudyds = {1.9) (2.19)
with 5 5
f +i; 99
= —.J“}”——f 22
{f,9} da'  Oal (2.20)
where the matrix J, the cosymplectic form, is given by
JH = f g[m*',m?] dzdydz . (2.21)
D

The crucial closure property necessary for reduction is evident from (2.21), namely

that J can be expressed in terms of the reduced variables, a. The moment reduction

used below is a special case of a more general situation where reduction leads to
Lie-Poisson form: if
[mt,m] = Cij k (2.22)
the cosymplectic form becomes
JU = cq* T (2.23)
and the Poisson bracket takes the form (1.4) with the a' variables serving as coordi-

nates,
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III. QUADRATIC MOMENT REDUCTION — THE KIDA PROBLEM

A. Kida review

The Kida reduction presupposes a two-dimensional (z—independent) velocity field com-
posed of an elliptical patch of uniform vorticity in a background shear flow. It is
assumed that the elliptical vortex patch has unit vorticity, and that the background

flow is given by a quadratic streamfunction,
T_ L o2 L2 o
b= (@ + i) + pela? - ). (3.1)

where w is the background vorticity and the principal rates of strain in the directions
y = +z are :t%e. Kida'! showed that the subsequent evolution of the vortex patch
maintains the elliptical shape, though the semi-major and semi-minor axes of the
ellipse, a and b respectively, and the ellipse orientation, ¢, are time dependent and

governed by

= gesin%)

. b .
b= —5651112(;‘0 (3.2)
ab 1 1 a®*+45b2

PO T S

e 2¢.
(a+b)2 2 5T — g2 0%

Incorporating the constraint of area preservation, these equations may be simplified,

A= —eAsin2¢

: w  el+A\? (3.3)
= Tr o T2 T aT e 0
where A :=b/a is the aspect ratio of the ellipse.

The above equations can be expressed as a simple Hamiltonian system with one degree

1,2,4,25:
[ A2\ OH
“2\1-)2) 3¢

of freedom

o
.1 A2 0H (34)
P T2 \1oN ) an
where the Hamiltonian is given by
1 — )2 1+ )2 1+ ))?
H=¢ cos 26 +wtl Lo UTA (3.5)

A A
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Equations (3.4) are Hamiltonian and canonical up to the prefactor %1;\_12’ which is

easily transformed away. Other canonical variables are discussed in Sec. III.H.

B. Bracket quadratic moment reduction

For ellipses, the quadratic moments completely characterize the orientation and aspect

ratio. Therefore we shall examine the projection of ¢ onto the functions

m- = z°, m® = zy, m’ =y, (3.6)

with the moments given by

ai=/ gmidzdy i=1,2,3. (3.7)
D

The closure property necessary for reduction, (2.22), follows by examining the product

(m*,m?):

[m',m?] =2z =2m!, [m!,m®] =4day =4m?*, [m*,m’]=2"=2m. (3.8)

Therefore, the matrix J can be written in terms of the moments as follows:

0 2a'  4a?
J=| —2a! 0 2a% | . (3.9)
—4a* -24° 0 '
Since .J is proportional to a, this has the Lie-Poisson form, c¢.f. (1.4). In Sec. IIL.D
we will discuss the corresponding Lie algebra. Consequences of the form of J are
discussed in Sec. III.C & Sec. IIL.D below. We postpone a consideration of H until
Sec. IILE.

The closure property observed above nccurs for quadratic and lower moments, but
in general fails for collections containing higher moments. However, there do exist

special sets of higher moments that result in closure.
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C. Casimir invariant of reduced system

As observed in Sec. II, associated with noncanonical Poisson brackets are special
invariants known as Casimir invariants, which for the finite dimensional bracket ob-

tained above satisfiy

_9f ;00
(r.0)= Fhrig =0, a1

where f is an arbitrary function. Since f is an arbitrary function, the phase space

gradient of a Casimir invariant corresponds to a null eigenvector of J. Since

0 2a! 44 al
—2a! 0 2d° —2a® | =0, (3.11)
—4a% —24° 0 at
1t 18 seen that
C =da'a® - (a*)? (3.12)

is a Casimir and hence a constant of the motion.

In terms of the vorticity, ¢,

C = [/D xzqdmdy] [fpyzqdwdy} - {[Dqudxdy}g} (3.13)

Observe that by Schwarz’s inequality, C > 0 when ¢ is uniform. C has a simple
physical interpretation when ¢ is uniform within an elliptical area centred on the

origin (Kirchhoff’s elliptical vortex). Then,

2

¢= 1672

(Area)* . (3.14)
In this case, constancy of C is equivalent to constancy of vortex area.

We can make a related interpretation of C in the case of a spatially varying vorticity
distribution with a Gaussian profile,
\H/\lx\g — LA 22 Any2 .
g(z,y) = Q""_‘j;_—e 2(AasT ey (3.19)

4

Contours of constant g are ellipses with semi-major and semi-minor axes in the ratio

(A1/A2)1/2. The area within the contour

IL'2/\1 + ylz)\z =1
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1s
T

Asp = .
SD N

and the value of the Casimir is

2

e 1
C=9% AN
Thus ,
C = 155 (4sp)* (3.16)

Eq. (3.16) remains true even when the orientation of the elliptical Gaussian is rotated
around the origin. Again we see that C' is related to the fourth power of the area inside
a particular vorticity contour of the vorticity distribution. This should remain true
for any smooth vorticity distribution that contains vorticity of only a single sign and
has a single extremum. However, it is unclear how to generalize this interpretation of

C when the vorticity distribution is more complicated.
D. Lie algebra normal coordinates.

The matrix (3.9), being linear in the dynamical variables, is of Lie-Poisson form and

can be written as .
JU = ok, (3.17)

where, as noted above, cij are the structure constants for some Lie algebra. Since
the indices range over 1,2, 3 this Lie algebra is of dimension three. It is knownZ?®
that all Lie algebras of dimension three belong to one of nine equivalence classes,
where equivalence is defined by identification under real coordinate transformations.
It remains to determine which algebra is associated with (3.9). This is an easy task,
which can be based upon a quantity called the Killing form, and leads to natural sets

of coordinates, both for the algebra and for the dynamics of the Kida problem.
The Killing form, for the purposes here, is defined by
it Jjk

g = cited® (3.18)

Since ¢g*/ is symmetric under the interchange of i and j, it possesses three real eigen-

values. If none of these eigenvalues vanish, i.e. g*/ is nondegenerate, then the algebra
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is called semi-stmple. This is the case for the algebra associated with (3.9) for which

the Killing form is

0 0 2
-8(0 1 0. (3.19)
2.0 0

The eigenvalues of (3.19) are 8 and £16. There are two semi-simple Lie algebras of
dimension three, which are distinguished by the signature of the eigenvalues: either
all the eigenvalues have the same sign or one sign is different. The first case is so(3),
the Lie algebra associated with the Lie group SO(3), the group of rotations, while the
second case, which applies to the algebra of (3.9) that was obtained here by reduction
of the noncanonical bracket, is so(2,1), the algebra associated with the group SO(2,1),

where the arguments indicate the number of eigenvalues with positive and negative

signs, respectively.

In terms of the Killing form, the Casimir invariant for semi-simple algebras can be

written as follows:

C = gijaiaj f (320)

where g¢;; is the inverse of g'/. For the case here, (3.20) is equivalent to (3.11). In

order for the expression (3.20) to be a Casimir it must satisfy
JU = =2clg;ata* =0. (3.21)
With af =: g*%a, and af =: g*%a;, (3.21) is equivalent to
Ck gjtg aag bap = c‘“gkbabaa = c}f‘cffcgtabaa =0, (3.22)

where the first equality follows from g;¢'* = ¢? and the second from (3.18), the
definiton of g*®. To establish the last equality we use the Jacobi identity for the

structure constants,

Bkt 4 oeateht Lo clicke = ¢, (3.23)

which results in
cilertettapa, = —cb (Btep! — citell) apas = 0, (3.24)

where the last equality is now evident because of the antisymmetry in a and b of the

term 1n parentheses.
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One can define normal coordinates as those in which the Killing form is diagonal. For
our present system normal coordinates can be obtained by the following orthogonal

transformation:
2! :(a1+a3)/\/2, z':az, :/:3=(al —a3)/\/2,

or equivalently

1 1 0 1
z = Aa, A=—|0 V2 0
V2\1 0 -1

The associated cosymplectic matrix transforms according to

i 0 223 —42°
J=AJAT = | =223 0 —=2z!
422 221 0

7

and can be expressed as J¥ =: ¢ z¥, which defines the structure constants in terms

of the normal coordinates.

In what follows, we will use a non-orthogonal transformation to an alternative set of
normal coordinates which has the advantage of making the Casimir symmetric with

respect to z? and z* and simplifying the cosymplectic matrix, i.e.
2t = (a' +d%)/4, 22 =a?/2, 2* = (a' —d®)/4, (3.25)

or equivalently

1 1 0 1
z = Aa, A=-10 2 0 }|. (3.26)
1 0 -1

The corresponding cosymplectic matrix transforms as

0 23 =32
J=A474T = | =22 0 =2! (3.27)
22 2 0

and can be expressed as J* =: ¢ z*, which defines the structure constants in terms

of the normal coordinates.

In the normal coordinates, the Casimir invariant possesses the following diagonal form:

C = 4(z")? - (%) - (2)7]. (3.28)
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The surfaces of constant Casimir are hyperboloids of revolution with the Oz! axis the
axis of symmetry. Since these surfaces extend to infinity, the algebra so(2,1), although
semi-simple, 1s not compact. We note that C is a homogeneous polynomial in 2. We
can rescale any positive value of C' simply by applying a uniform rescaling to the z*
without affecting the nature of the kinematical constraint imposed by the Casimir.
Similarly we can rescale any negative C' into any other negative C. Whether or not
this rescaling affects the dynamics of the motion will depend on how the Hamiltonian
is affected by the rescaling. In the particular case of the Kida ellipse, we know?7 that
the dynamics are insensitive to the area of the vortex and so inspection of (3.14) tells
us that the way in which trajectories on any single positive Casimir surface vary as e
and w are varied (and so as the positions of constant H surfaces vary) will provide a
representative picture of all of the possible behavior of the elliptical vortex in shear.

In Sec. IIL.LE, we will choose to fix the area of the elliptical vortex at m which means
that C' = 7?/186.

E. Hamiltonian moment reduction.

Now we return to the remaining task of reduction, writing the Hamiltonian (3.3) in
terms of the moments. It is at this point of the reduction process that we introduce
the assumption that the initial condition for the vortex dynamics is an elliptical vortex
patch. Since, as Kida' has shown, an initially elliptical vortex remains elliptical in
background flows of the form of (3.1), the reduction is exact. The crucial reason for
this is that the Hamiltonian can be written exactly in terms of the quadratic moments,

a, which in turn determine the semi-axes and orientation of the ellipse.

The centroid position is determined by the linear moments, which together with the
quadratic moments form a closed algebra. However, for the Kida problem these mo-
ments are not needed, since in the background flow (3.1) the vortex centroid remains
fixed. In the case of two or more vortex patches with dynamics as described in Refs.

2, 22 & 23, the linear moments possess time dependence.

Relative to the fixed coordinate frame Ozy, the principal axes of the ellipse are deter-
mined by the time-dependent orientation ¢(t), as described in Sec. IILA. We define

coordinates & := (#,7) in the frame instantaneously co-rotating with the ellipse:

& =MTz, (3.29)
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where

T = ( cos @ sinq‘)). (3.30)

—sin¢g cosg
Using (3.29), moments in the co-rotating frame can be related to those relative to the

nonrotating frame.

The Hamiltonian is the excess energy for the system, i.e. with the logarithmic diver-
gence subtracted off, and has two parts, one associated with the background flow (3.1)

and a contribution due to the elliptical vortex patch:
_ 1 | \
H:—/ Q(ﬁ")-i-;?,-"))d:cdy = H+H, (3.31)
D -

where ¢ = V2t is unity inside the ellipse and zero outside, and H' describes the

self-interaction.

From (3.1) we have

(w+e)m! + Z(w —e)m?. (3.32)

Recall that w is the background vorticity and e is the background strain. From (3.32)

the first term of the Hamiltonian is readily calculated:

_ 1 . 3
H-—4(u+e)a 4(0; e)a’ .

To evaluate the self-interaction term we use the expression for the streamfunction due

to an elliptical vortex patch, which can be found in Lamb (art. 159)%7,

1A +7% 1
“"—‘——y—"—*{-@i’o £ <&
=142 1+A 4 (3.33)
| 1 LA=1 o(e—o) s 1o ’ '
3(6 —60) — é—l/\—_{’le o COSQ‘;D*“?P() 6 > 60

where € 1s an elliptical coordinate,

T =+/(1 =A%)/ Acosh€cos o,
g=+/(1—=XA%)/Asinhésing,

and tanh & = A. Here we have normalised the area of the ellipse to 7 so that the

(3.34)

semi-major and semi-minor axes are A™1/% and \1/2 respectively. Note that this fixes
the value of the Casimir surface, on which the motion lies, to be C = 72/16. The

quantity o is necessary for obtaining the correct behavior at infinity?®. This quantity
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is not trivial since it depends upon the time-dependent ellipse aspect ratio, . To see

this, we write ¥ in terms of the Green’s function as follows:
b= /D G(|x = x'|)q(x") dzdy, (3.35)
and observe that this expression asymptotes to
i l f ! ! !
Y~ G(r) | qdzdy - ;EG (r)x- [ x'gdz'dy". (3.36)
; D D

The terms of (3.36) are, respectively, the monopole and dipole terms of the two-
dimensional multipole expansion. The important point here is that this representation
of the streamfunction has only a In(r) term, with no constant term. Requiring the

same of expression (3.33) selects 1¢. Since
1
£ =& ~In(r) + 3 In(A) —In(1 4+ A) +1n(2), (3.37)

the asymptotic form of ¥, according to (3.33), is

1 1 1
Wb~ 5111(?‘) + z[in A=2In(1 4+ N)] + 3 In(2) + vo . (3.38)
Thus
1 L1 -
W = —z 11’1 m - const = 1 II].Q 'Jr‘ const. (339)

where € := A/(1+))? is the natural rotation rate of the Kirchhoff ellipse. The constant
terms do not depend on the time-dependent ellipse parameters and therefore can be

dropped from the Hamiltonian.

We can now evaluate the self-interaction energy. First, the part of the streamfunction
that depends upon & and 7 yields
l-/)\iz—l—y”z TA+1l ow
D

dedy = — 272 _ T 3.40
4 T+ A YT 610 16" (3.40)

which is constant and can be dropped. The integral of the —1/4 term likewise is not
important. This leaves only the contribution from vg. Using equation (3.40) and the
fact that the area of the vortex has been set to m, gives ‘

H =Z1Q. | 3.41
3
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The complete Hamiltonian is thus

l V1 1 ) T

H in (3.42) still depends upon A in addition to the moments a' and a®. It remains to

express the rotation frequency §2(A) in terms of the moments. The moments are seen

to be

al = % (A" cos® ¢ + Asin? ¢)
a’ = z()\“l - /\) sin ¢ cos ¢ (3.43)
a® = g ()\_1 sin® ¢ + A cos® )
Equations (3.43) 1umply
1 3 w1
=—(=+A
a +a 4()\ + A),
at —a® = %(% — A)cos2¢,
2 (3.44)
alaii _ (02)2 _ E__
16’
4 3, T, (L+A)?
?T(a Ta 2) B A

Using the last of Egs. (3.44), 2 can be expressed in terms of the moments as follows:

4 ™
-1 _*1, 3, T .
Q7' = 7r(a +a’ + 2). (3.45)
The remaining equations of (3.44) are recorded for later use. The Hamiltonian, H, is

then given by

1 ;1 3 7 1 g T :
H(a) = 4(w + e)a 4(w €)a 3 In [a +a’ + 5| (3.46)
where we have dropped a constant term. Making use of

al =2(z' + 2%, &d =21 =27, of =227, (3.47)

the Hamiltonian in terms of the coordinates z of Sec. III.D becomes

H(z) = —wzt —ez® — —gln {zl + g] + const (3.48)

and is —7/16 times the quantity (3.5).
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The equations of motion, either in terms of a or z, are given in a straightforward

manner. Using

@ ={a" H} = JU'% ,
with (3.9) implies
al =2 12:; +4a"‘g§§
a? = 24° % — 2a! %
a® = —4a? gi - 24d° gf; ;

whence, with (3.46) we arrive at the noncanonical Hamiltonian system

g o 7
a = —a {w—e+a1+a3+%}

. 1 Z(at —a?)
2 _ 1 3y (Al 3 2
“—5{‘3(“””"‘"(“ Dt araTz
g2, 5
a” =a {d+e+al+a3+§}'
Similarly, using (3.27) and (3.48), in
. _ . OH
VLR 1 HY = JuZI—
z {Z ¥ } J 82-}"
vields
3l = ez?
2 _ 1 3 ). m/8
2" =ez" 4+ z {w+_—zl+ﬁr/8}

3 _ 2 ) 7/8
2V = -z {d+7zl—+—ﬁ/8}‘

(3.49)

(3.50)

(3.52)

(3.53)

As a check, we show that Egs. (3.51) imply (3.3), the equations derived by Kida.

Differentiating (3.44) yields
M1 = ,\—2)34’- = (&' + &%) = 2ed® = ——ge)\(l — A"2)sin2¢,
where the last equality follows from (3.43). Therefore

A= —eAsin2¢.

(3.54)
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Similarly, from (3.44),

(a' — af*‘)_ir = %(/\—1 — ) cos 2¢

| | (3.56)
= -AA"? +1)cos 26 — 2(A7! — \)sin 206,
while from (3.51) and (3.43)
4 2\
1 -3 _ -1 : . fn o=
(a —a);——(/\ —/\)sm2gb{w+m}. (3.57)
Equating the terms of (3.56) to (3.57) and making use of (3.55) yields
. A ' 14 A2
b= 2 1SN 0526 (3.58)

(T+A2 2 212

Equations (3.53) and (3.58) are the equations of Kida.
G. A geometric characterization of dynamics: comparison to rigid body.

From the preceding sections it is evident that in the Hamiltonian description of a
dynamical system, one can distinguish two aspects: the “dynamics” as embodied in the
form of the Hamiltonian and the “kinematics” represented by the algebraic properties
of the underlying cosymplectic structure. In the case of three-dimensional systems like
that of the Kida problem, the kinematics implies that the system is integrable, i.e. that
one can use the Hamiltonian and the Casimir invariant to write down a quadrature
that determines the dynamics. For systems of this type there 1s a geometrical Yé\fa.y
to understand the qualitative nature of the solutions. To demonstrate this, we now
compare the Kida problem to the free rigid body. (This should be compared to the

characterizations given by Meacham et al.* and Bayly et al.?%)

The free rigid body is governed by Euler’s equations, which is the statement of zero

torque in the rotating principal axes frame of reference. They can be written as follows:

b; = {¢;,H} = “E:’jkgk?‘f'{" , (3.59)
3t °

where ¢ is the angular momentum, and

1702 22 22
HO==-(2+2+2 :
9 2(11+I2+13), (3.60)
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with Iy, I, and I3 being the three principal moments of inertia. The structure con-
stants, €;;;, are represented by the Levi-Civita symbol for the completely antisym-
metric tensor. (Note, since the structure constant is completely antisymmetric all the
indices have been written in the down position. Repeated indices are still summed.)
The algebra associated with the cosymplectic form in this case is so(3) and the Casimir

invariant is the square of the magnitude of the angular momentum,

Cll) =102 + 02 +¢2. (3.61)

Conventionally, the qualitative description of the rigid body dynamics is given by
examining the intersection of the Casimir sphere with the Hamiltonian ellipsoid. This
1s depicted in Fig. 1, where we have selected a value for C' and then used a color scale
to show the values of H on the Casimir surface. Lines of constant color correspond to
the curves along which the Hamiltonian ellipsoids intersect the Casimir sphere. The
principal moments of inertia are assumed to be distinct. As H increases, we first
observe a point of tangency, which corresponds to the equilibrium point of rotation
about the axis of the dominant principal moment of inertia. The nearby ellipses of
intersection, for larger values of H, indicate that this equilibrium point is stable. As
H is increased further the point of tangency corresponding to the equilibrium point of
rotation about the intermediate principal axis is observed. Nearby locally hyperbolic
intersections indicate that this equilibrium point is unstable. Finally, for still larger
values of H the point of tangency corresponding to stable rotations about the smallest
principal axis is seen. Hence, an examination of the intersection has characterized the

equilibrium points and qualitative nature of the solutions of this system.

For the Kida problem in normal coordinates, z, the Casimir surfaces are hyperboloids
of revolution and the Oz' axis is an axis of symmetry. From (3.14), we see that, on
physical grounds, we are restricted to the sheets C' > 0. These fall into two groups —
those wholly above the plane z; = 0 and those wholly below. Since a; + a3 must be
> 0, we have that z; > |z3| and so we are restricted to the sheets in z; > 0. These
surfaces are depicted in Fig. 2. A simplification occurs in the Kida problem because,
in terms of the z coordinates, the Hamiltonian has a symmetry direction; i.e., it is
independent of z?. Surfaces of constant H are curved sheets with symmetry in the

% direction and these sheets can intersect the Casimir hyperboloid in various ways
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depending on the parameters w and e. Because of the symmetry we need only examine
these intersections in the z!-2z3 plane in order to understand the motion. In Fig. 2 the
various kinds of intersections are depicted. Case (a) of the figure shows intersections
of the Hamiltonian surface with the Casimir hyperboloid that correspond to two types
of trajectory. One is a curve that extends to infinity and is topologically equivalent
to a hyperbola. (The reader must imagine the continuation of the intersection in
the z? coordinate.) This type of intersection represents a continual elongation of
the elliptical vortex patch; it typically occurs when the background strain e is large.
The second corresponds to an intersection that is topologically circular but does not
enclose the z! axis. The motion in this case corresponds to nutation of the the elliptical
vortex patch. Case (b) of the figure represents an intersection that corresponds to a
closed curve, topologically equivalent to a circle that does enclose the z; axis. This
type of intersection represents a rotation of the elliptica.l.vortex patch with periodic
dependence in the aspect ratio, A. From Eqs. (3.25), (3.43), (3.44) we see that motion

around the circle is related to rotation of the patch according to
tan ¢ := zp/z3 = tan2¢, (3.62)

and similarly since z' = {%(1/X + )), excursion in the z' coordinate corresponds to
variation in the aspect ratio. Warping these coordinates yields action-angle variables.
A further case (not shown) relies on the effect of the logarithm in the Hamiltonian to

produce two regions of nutation delineated by a “figure-8” separatrix. (For details,

see Refs. 4 and 25.)
H. Reduction of order using a Casimir — canonical coordinates.

We can use the Casimir C' = 4[(21)? — (2%)% — (22)?] [see (3.28)], to reduce the system

(3.53) as follows. We introduce coordinates b defined by

bl =22, B =2 B =C =4[z - (2*)? - (%) (3.63)
Then
0H vo L a2 0H OH O0H ., 0H OH 0H _,0H
o SO s Gt Y o wm Yo



whence (3.53) becomes

il p142 L (2342 1f'2‘5_H.

b' = -8[C/4+ (b')* + (b*)?] .

b = S[C/4+(b1)2—|—(b2)2]”2—g§ (3.64)
= 0

Thus we reduce the problem to a Hamiltonian system with one degree of freedom
(which is therefore integrable — phase trajectories are just contours of H over the (b,
b?) plane). The use of the Casimir as a coordinate brought about two simplifications
that follow directly from the defining property of a Casimir, [F,C] = 0 for arbitrary
functionals F: i) one coordinate, b*> — the Casimir, is a constant, i) 0H/8b> does
not appear on the right-hand side. We will employ a similar technique to reduce the

ellipsoidal vortex problem in Sec. IV.

Given the normal form of the algebra asociated with the Poisson bracket, we can deduce
two natural families o1 canonical variables that are near to action-angle variables. The
first set of variables, which is appropriate for bounded motion, is given by (z!, ¢, C),

where
¢ =tan"1(22/2°). (3.65)

Here z! is the coordinate along the symmetry axis, while ¢ is the angle around the
closed curve defined by the intersection of the plane 2! = const with the hyperboloid
C' = const. Action-angle variables would be obtained by warping these coordinates so

that the intersection is a circle.

The second set, which is appropriate for motion that asymptotes, is given by (1, 2%, C),

where

P = tanh™!(z1/25%). (3.66)

Here the O22%, 023 axes are given by a rotation of the 0z?, 02® axes through an arbi-
trary fixed angle around Oz'. Now OZz? is a coordinate direction normal to the sym-
metry axis and lying in a plane that includes the symmetry axis. ¥ is a pseudo-angle
denoting position along one of the two hyperbolae that result from the intersection of

the plane perpendicular to Oz? that includes the symmetry axis, and the hyperboloid

C = const.
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IV. ELLIPSOIDAL VORTEX IN CONTINUOUSLY STRATIFIED QUASI-
GEOSTROPHIC FLOW

A. MPSZ review.

The intrathermocline vortex model of MPSZ considered an ellipsoidal blob of uniform
potential vorticity embedded in an unbounded, uniformly stratified, quasigeostrophic

flow. The background flow of this model is given by a streamfunction of the form

v

1 . 1, .
Eu.:(:c2 +y%) + Ze(:r2 -y —1yz. (+.1)

In MPSZ it was shown that an initially ellipsoidal blob of potential vorticity will
remain ellipsoidal for all future times, which is clearly a generalization of the Kida

result of Sec. III.A

In the MPSZ model, the motion of the ellipsoid is described by the three variables that
describe the shape of the ellipsoid — the semiaxis lengths, a(t), b(t), c(¢) — and three that
describe its orientation — the Euler angles ¢(t), 8(¢), ¥(¢). The equations that govern
these variables are given in Appendix A. These equations are rather complicated, a fact
which limits their utility and makes it difficult to classify all of the modes of behavior
of the vortex. It was noted in MPSZ that the equations (A.1 & A.2) possess conserved
quantities: vortex volume, particle height, and excess energy. Volume conservation
can be exploited quite readily to reduce the system from sixth-order to fifth-order, but
it is cumbersome, without the insight afforded by the Hamiltonian structure, to achieve
any further reduction of order by using the other integrals of motion. The Hamiltonian

moment approach leads to a considerably simpler formulation of the problem.

B. Moment reduction.

The state (shape and orientation) of an ellipsoid is uniquely determined by the values

of its six quadratic moments defined by

m! = z?, m? = zy, m3 = y?, m* = yz, m® = zz, mb = 22
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(Expressions for the a’s in terms of axis lengths and Euler angles can be found in
Appendix A.) For this selection of the m’s, closure is achieved; in light of the above

and Sec. IL.B, the cosymplectic matrix is seen to be

0 2al 4a? 24° 0 0
—2al 0 2¢3 a* —d® 0
—4a? =24 0 0 =2¢* 0

i —2a® —a* 0 0 —-a® 0] (4.4)
0 a®  2a* 4f 0 0
0 0 0 0 0 0

which, being linear in the a’s, 1s of Lie-Poisson form.
C. Casimirs of reduced system.

We search for Casimirs as in Sec. IIL.C, which amounts to finding null eigenvectors

of the symplectic matrix J. The characteristic equation of this matrix has the form
N(A* 4+ AN+ B) =0,

where A is an eigenvalue; since there are only two zero roots, there are only two

independent Casimirs. The first Casimir is seen immediately to be
Cy =d°, (4.5)

while the second Casimir, which is found by calculating the second null eigenvector

and then integrating, is the quantity
Cy =4 [2d%a*a® + a'a’a® — a'(a*)? — a®(a®)? - a®(a®)?] . (4.6)

A discussion similar to that of Sec. III.C reveals that these invariants correspond
to an effective height and volume of the ellipsoid. For the case of a uniform blob of
vorticity it was shown in MPSZ that C; corresponds to the conservation of particle
height in the quasigeostrophic system and C'; was seen to be proportional to the fifth
power of the ellipsoidal volume. (In quasigeostrophic flows, fluid parcels maintain their
z coordinate, even though horizontal velocities are z-dependent. Vertical velocity is

relegated to a higher order in the quasigeostrophic approximation??.)
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D. Lie algebra splitting—normal coordinates.

It 1s well known that Lie algebras can be split into the sum of a semi-simple part plus
a part that is called solvable (see e.g. Ref. 26). We will not go into the details of how
to effect this in the general case, but simply present the following transformation to

normal coordinates:

1 (04)2 (a5)2
1_ (1 3 \a )
== 4 (a Ta ab ab
aad (et
2 a® (4.7)
4 ab ab
2t =gt 22 =d 2% =a,

which has the inverse transformation

=z
5
2 2, £ =
a“ =2z .
* 28 (4.8)
412
3 1 3 (z)
a =2(z —~z)+ p;
at = z* a® = 2° a® =35,

The cosymplectic form in the normal coordinates is conveniently obtained by calcu-
lating JY = {z%,27}, e.g.

jlz = {21,22} 233’

whence
0 22 =22 0 0 0
-z2 0 =2' 0 0 0
% 22 ! 0 0 0 0 ,
=1 0 0o o 0o - o0 (4.9)
0 0 0 28 0 0
0 0 0 0 0 0

The transformation J — J has evidently split the algebra into two blocks, i.e. into the
direct sum of two 3 x 3 algebras. The algebra of the upper diagonal block is identical to
the semi-simple algebra of Sec. III, while that of the lower diagonal block is solvable.



29

An algebra is solvable if its sequence of derived algebras; i.e. the algebras of products,

eventually reduces to {0}. In this case

L= {{z*2°},{=* 2%}, {2°,2°}} = {—ZG,G,U}

4.10
L" = {0}. ( )

The Casimir for the upper algebra is clearly the same as that of Sec. III,
Cu=4[(")? - (%) - (%], (4.11)

while that of the lower algebra is

6
CL=Z 3

To see that (4.11) is equivalent to (4.6) we substitute the transformation for the a’s
into (4.11), and obtain

1 . < 2
Cu = — (20%a*a® +a'a’a® —a'(a*)’ - &(a*)” = (a¥)%a®) . (4.12)

The normal coordinates have a relatively simple form when expressed in terms of

%{/;/(ﬁw%—(ﬁz)z“(f”)z}
sl fomfuf=}
%{/22/(:82—'92)-&-(/3;2) ‘(/>}

E. Moment Hamiltonian.

spatial integrals:

Q)

=
W
Il

In a manner analogous to Sec. IIL.E, we turn to the task of writing the excess energy,
the Hamiltonian, in terms of the moments. Since MPSZ have shown that an initially
ellipsoidal vortex remains ellipsoidal in the background flow of (4.1), the reduction is
exact; the Hamiltonian can be written exactly in terms of the moments, which uniquely

determine the shape and orientation of the ellipsoid.

As in Sec. ITII.E, the excess energy is again the Hamiltonian and is given by

<1
H = -f q(v + 52;,) dzdydz =: H + H', (4.13)
D
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but now ¢ is the contribution of the background flow, as given by (4.1), ¢ is due to
the uniform ellipsoidal vortex, and q = (0%/9z% + 82/3y? + 0%/022) is unity inside
the ellipsoid and zero outside. The integral involving the background flow is readily

seen to be

1 1
Ho= =gt e~ fw = e’ + 7t (4.1

From Chandrasekhar®® or Ref. 5,

e

H' = ?—;(abc)z /m dsK(s), K(s) = [(a® + s)(b* + s)(c* + s)] (4.15)

0

where a, b, c are the principal axes lengths and the quantity abc is proportional to the

volume and is fixed.

To write this in terms of moments, we will use two Cartesian coordinate systems:
Ozyz, which is fixed with respect to the underlying f-plane and OZyz, which moves
with the principal axes of the ellipsoid. In both cases, the origin coincides with the
center of the ellipsoid. The transformation between the fixed and co-rotating reference

frames is given by the following expression in term of the Euler-angles:

z=MTe (4.16)
where
cosy siny 0 cosf 0 —siné cos¢ sing 0
MT = [ —sinv cosyp 0 0o 1 0 —sing cosé 0 | . (4.17)
0 0 1 sinf 0 cosf 0 0 1

Equation (4.16) will be used to relate moments in the co-rotating frame to those in

the nonrotating frame for evaluation of the Hamiltonian.

First define a matrix of moments

at a* @
Aij :/ qriT; = a? a® at
D 05 (14 aﬁ

Now,
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where _
) Va? 0 0
Apq Z/ gipEy=| 0 VB* 0 |,
b 0 0 Ve?
where V' = 4drwabe/15 is proportional to the volume of the ellipsoid. The eigenvalues

of A and A will be the same so we may identify the coefficients in the respective

characteristic equations
A - /\3 *[G] +a3+a6]A2 +[a3a6+a6a1 +(11(13 _{(a2)2+(a4)2+(a5)2}]/\
— [2a%a%a® + ala®a® — al(a*)? — a¥(a)? — af(a?)?] = 0

A A = V] + 6% + AN+ VIR + ca? + PN — V3[a?h2 ] = 0
(4.18)

This allows us to evaluate the coefficients of the various powers of s in the expression

(4.15) for K(s)
In terms of the moments, the vortex Hamiltonian is

H' =

LI =

(CLCy)® /m dsK(s), (4.19)

0

where
f((s)"zzss—i-[al«i—a:; +a6]52+[a3aﬁ+a6a1+a1a3—{(a2)2+(a4)2+(a5)2}]3

+ [2(12(14(15 + ala(}as _al(a4)2 s 03((15)2 _ aS(a‘Z)Z]

In terms of the normal coordinates of Sec. IV.D the Hamiltonian takes the form

H=—u [ . (u_ﬂm)*)} o { . ((24)2;(35)2)} i

oo (4.20)
+%(CLCU)%/O dsK(s)

where

[Nl

K(s) = [33 —i—p232 + ps +p0]_
and

p2 = [4212° + (%) + (2°)% + (2°)?]/<°

o
5
Il

2SR+ (A7 4 (B4 2P ()7 - 2282) 4 4l - ()2 = ()]
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F. Moment equations of motion.

As in Sec. III, the equations of motion are given by

oS OH
N — JiJ
a={a",H}y=J 57

As noted above, we use the chain rule to evaluate the equations of motion, which

means we need to calculate 9H'/Ja’. First note that

oH'

i . J{ 2 2y 7! 2 2 g1
37| Hy + (b + A H! + b2 2 H], (4.21)

where

1, L[
H; — _Z(CLCU)E / SJI{S(S) dS}
]

OH'/0b* and OH'/Oc? are given by expressions similar to (4.21) with {a*,b%,c?}
cyclically permuted. Thus
O0H' 0 , 0

a3 =H£_(§(—}T(a2 +52+C2)+H1%

3 (b%c* + ?a® + a®b?) + H{Ji a’b?c?)

da’

The partial derivatives occurring on the right-hand side can be evaluated fairly simply

from (4.18). The resulting equations of motion are

a' = —(w —e)a® + 2rd® — 2{[a*a® — a*d®|H] + a’Hj}
.1 1
a® = 5(@; +e)a' — 5(&; —e)a® +rat
+{la°(a' —a®) +[(a*)® = (¢*)?]]H] + (a' — &®)H}}
@* = (w+e)a® +2{[a’a® — a*a®|H] + *H}} (4.22)

1
at = §(w +e)a® + {[a®a® — a*a?]H] + a’Hj}

< 1
a® = —§(w —e)a* +ra® — {[a'a* — a®a®|H| + a*H}}

a® =0

These equations can be verified by using the expressions for (}‘5,1,(:’,05, (a‘z), (b‘z), (c.z)
obtained by Meacham et al.® (see Appendix A) to independently compute &' as a

“function” of e, w, 7, H| and Hj.
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In terms of the normal coordinates, we can take advantage of the constancy of the

Casimirs and obtain the following fourth-order system:

. 12 552
2;2 — 6[—6:1—0 +(22)2 + (23)2]1f2 +23 {w_{_ (20.-5 + [(z ) C_;("’ ) ]) H; +ZH£}
Cir 242 (452 ,
F- [__-9_ +(Zz)2 -l—(zs)z]lﬁ [( ) ( ) ]Hl
4 CL
442 542 4.5
B =2 w+ (20 + ()" + ()] H; + 2H, Jrz[gfi (24 (PR
Cr_. 4 CL
. 1 I C ! I
2= {Flerort B G (274 (P o+ 2

5 = {%(e —w)—H) - 2[% +(2%)? + (z?’)?]”?} 2 +2(2%2° - 22YHH! +7C
(4.23)

This form has several appealing features. It is a simple set of equations to integrate nu-

merically and, unlike (4.25) below, it does not contain any artificial singularities. The

four-dimensional space, (2%, 2*, 2%, 2%), decomposes relatively naturally into a product

of two two-dimensional spaces, (2%,2%) and (2%,2%). The latter two are associated
wi~ . the upper and lower algebras respectively in the decomposition of the algebra
associated with the Poisson bracket. When there is no vertical shear, r = 0, the space
(22,2%) is an invariant subset of the full phase space in that if both 2* and 25 are
initially zero (one axis of the ellipsoid is initially vertical), they remain zero. The
structure of the (z?,2%) phase space is then similar to the phase space of the Kida

problem, as proven explicitly in the next section.
G. Canonical Coordinates.

One of the a coordinates, a® = C, is already a Casimir. We can reduce the dimension
of the active dynamical variables to four if we change to a new set of variables in which
the second Casimir, Cy, is also used as a variable. Further simplification ensues if

we use variables deduced from the normal coordinates. We therefore use the variables

R,a,.5.53,Cy,Cp defined by

[
|

o1 1
P = %R, 22 = 5(R2 — Cy)?sin2a, 2°= E(R2 — Cy)t/? cos2a,

(4.24)
1= (QCLS')”2 sin3, 2° = (QCLS)UQ cosfB, 2°=Cy

oy
|

H;
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In the new variables, the Hamiltonian takes the form
H= —%{R LS} g{w cos2a + Scos 23} + 7(2CL.S) /% sin 3
+ %(CLCU)% /OOO {s*+ 2R+ 25+ C)s?
+[2R(CL + §) — 2W S cos 2(a — B) + Cyls + CLCy} 1/

where W = (R? — Cy)1/2. Note that for an ellipsoid enclosing uniform vorticity,

R* > Cy. The equations of motion in the new variables are

dR OH de 0H

dt 9o dt  OR
dS _9H  d3 _ 9H

5 _9H  d3 _ o
it~ 983 dt EX (4.25)
dCy dcy
w0 w0

The new variables constitute a set of canonical coordinates for the system, with a form
similar to action-angle variables. Two of these, a, 3, are effectively angles. When there
is no vertical shear in the background flow (r = 0), the system depends on o and 3

modulo m. When vertical shear is present, the system depends on 8 modulo 2.

When one axis of the ellipsoid is vertical, S = 0 ([ 2z and [ yz vanish). If there is no
vertical shear then S will remain zero and one of the axes will remain vertical, The

system then reduces to a simple two-dimensional form

dR _0H da _ OH

dt  da’ dt  OR

and

H = —%}R - g(l—?,2 — Cu)Y? cos 2a

1 L [ -
+3(CLCu)? / {s* + 2R+ C1)s* + [2RCy + Culs + CLCy} H*
0

If we write

QR) = %(CLCU)% / (s> + Crs){s® + 2R+ CL]s? + [2RCL + Cy]s + CLC'U}-sﬂ
0 .
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and iR
— = e(R* = Cy)'/?sin2a
a (4.26)
da w e R '
i (5 + Q(R)) + SR _Cy)it cos 2a

{2(R) is the rate at which the ellipsoid rotates around the vertical axis when no back-
ground flow is present, and in the presence of horizontal shear and strain the system
behaves like the Kida ellipse with the rotation rate of the 2-D ellipse, A/(1 + ))2,
replaced by Q.

To see this explicitly, we normalise the volume of the ellipsoid to be 47/3 (the dynamics
are independent of the volume) and note that when one axis of the ellipsoid is vertical,

say the c-axis, then the normal coordinates, z1, z;, 23, become

z] = p(a2 + bz)
22 = p(a® — b%)sin2(¢ + )
z3 = p(02 el 52) cOSs 2(@5 + d))

where p = 7 /15. Defining a horizontal aspect ratio A = b/a,

7 = %(A‘l +3)

[ | . , ;
D) E(,\ —A)sin2(¢ + ¢)
z3 E(/\_1 — A)cos 2(¢ + o)

In Euler angles, when § = 0 (the c-axis vertical), & := ¢ + ¢ is Jjust the total angle

through which the coordinate frame has rotated about the vertical axis. Thus,

R=22014)), a=é,

c
and (4.26) reduces to

dA

r = —e)sin2¢
da w el + A2
T (§+Q)+§1_A2c052a

which should be compared to (3.3).
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H. Chaotic motion.

The system (4.23) is four-dimensional and, with the exception of the Hamiltonian itself,
we have used all of the invariants that we may anticipate on physical grounds in order
to reduce the dimension of the system to four. This suggesté that the system is likely to
be non-integrable and we anticipate the occurrence of chaotic solutions. This is intrigu-
ing because the system (4.23) is an ezact reduction of the original quasigeostrophic
problem. Solutions of it are exact solutions of the continuum quasigeostrophic equa-

tions of motion.

We can use the form of the equations of motion given in (4.23) to verify non-integrability
by looking for an example of chaotic motion in this system. We first note that when
T =0, (4.23) admit an invariant manifold, z4 = z5 = 0. Ph}’sically this corresponds to
one of the principal axes of the ellipsoid being aligned with the Oz axis. In the absence
of any vertical variation in the background flow, such an axis, if initially vertical, will
remain so. Note also that, when 7 = 0, there is a negative threshold value of w, w,. say,
a function of |e/w|, such that when |e/w| < 1 and 0 > w > w,, this invariant plane,
with coordinates {zs, 23}, contains a homoclinic trajectory that begins and ends on a
saddle point and encloses a neutral fixed point®*!. An example is given in Fig. 3 which
shows the contours of the Hamiltonian: H(z2,z3;24 = 0,25 = 0) over the coordinate

plane {z,, 23} for the case w = —0.1, e = =0.01, C, = 0.27 Cy = 12.0.

A second result that guides our thinking is the observation that when the background
flow is absent, an ellipsoidal vortex with one axis vertical is not unstable to small
perturbations that tilt that axis slightly away from the vertical provided the axis in
question is not the axis of intermediate length. The near-vertical axis just wobbles
around the vertical. When a background, horizontally sheared flow with |e/w| < 1
and 0 > w > w, is present, we anticipate similar wobbles when the vertical axis is
tilted slightly (provided it is the longest or shortest axis). These wobbles produce
oscillations in the right hand side of the dz;/dt and dz3/dt equations. We wish to
see if these oscillations can produce chaotic motion. (One possibile way in which this
might occur is if the wobbles remain small and simply produce splitting and transverse
intersections of the stable and unstable manifolds of the saddle point on the {2, 23}

plane.)
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The formal Melnikov analysis of the perturbed system is difficult so instead we resort
to direct numerical simulation. Picking initial conditions close to the saddle point in
Fig. 3, we follow the resulting trajectories for small non-zero values of the vertical
shear. Poincaré sections are made by first recording the successive points of intersec-
tion of the trajectories with the hyperplane z5 = 0 (z5 increasing) and then projecting
these points onto the {z;, 23} plane. Fig. 4a shows the Poincaré section for r = 10~5.
An expanded view of the region around the location of the original hyperbolic point
(Fig. 4b) shows the island structure characteristic of invariant tori delimiting chaotic
regions. This remains true when r = 107* (Figs. 4c and 4d). Further evidence for
the chaotic nature of the solution can be seen in the power spectrum of a time series
of the variable z3(t) taken along a trajectory when 7 = 10™* (Fig. 3). There are
several dominant peaks but broad-band noise is also present at a level several orders
of magnitude greater than the noise associated with the numerical integrator. This

allows us to distinguish the time series as chaotic rather than quasiperiodic.
V. CONCLUDING REMARKS.

In the work we have presented above, we have been guided by the observation! that the
two-dimensional elliptical vortex in shear is a finite-dimensional Hamiltonian system
together with the observation® that the three-dimensional, quasigeostrophic ellipsoidal
vortex in horizontal shear is Hamiltonian and the conjecture that this remains true
when vertical shear is added. In the two-dimensional case, an explicit Hamiltonian
form can be readily obtained from the standard Eulerian equations of motion, but for
the three-dimensional problem the task is much more difficult. The equations of motion
for the ellipsoidal vortex derived by MPSZ are unwieldy. In this paper we have shown
that, by beginning from a description of the continuous Euler and quasigeostrophic
equations n noncanonical Hamiltonian form, one can obtain a much simpler set of

equations for the motion of the three-dimensional vortex.

We have then used the equations of motion for the ellipsoidal vortex to show that
the ellipsoidal vortex in shear can exhibit chaotic motion. This is unusual for the
following reason. The majority of mathematical examples of chaos in fluid flow involve
approximations in the form of finite truncations. Though our final system, e.g. (4.21),
is of finite dimension we have not made any truncation; our solutions are ezact solutions

of the inviscid quasigeostrophic equations for a stratified fluid. However, one must
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recall that our solutions are “weak solutions” of the QG probiem in the sense that the

vorticity field contains discontinuities.

We note in closing some generalizations. The technique we have described can also
be used as a method for approzimating the interaction between more than one vortex.
This idea is in the spirit of Melander et al.? and has been applied successfully by Ngan

et al.?® in the study of two interacting vortices in a shear flow.

Also, in the stratified algebra of Sec. IV.B, the variable z plays the role of a constant.
Setting z = 1 gives the algebra of Ngan??:2%, In the two-dimensional setting examined
by Ngan et al.**??| the transformation (4.7) is equivalent to, first, transforming the
quadratic moments based on a fixed origin to their counterparts based on the centroid
of a vortex patch, and then, applying the transformation to normal coordinates used
in the Kida problem (3.23). Note that z can be replaced by a set of functions of z,

fi(z), ..., fn(z), and one may still obtain closure. Consider

ml =22, mP=gy, md=y?
together with
mbt = yfi(z), mM=zfi(z), 1<i<N
and
m® = fi(2)f(z), 10N
Observe that
{m',m**} =2zf; =2m>*  {m* m®I} = fif; =m® | et

Therefore, it 1s possible to generalize the approach described in this paper to different
classes of moments which may prove more appropriate in different situations. For
example, one can represent three-dimensional quasigeostrophic vortices in which the
potential vorticity is horizontally uniform, but varies with z in an arbitrary manner,

by considering a set of f; that form a basis.
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Figure captions.

Figure 1. An isosurface of the Casimir, C, for the rigid body problem, (3.59-61). The
value of the Hamiltonian on this surface is shown by the colored shading. Trajectories

are constrained to follow lines of constant color (Hamiltonian) on the Casimir surface.

Figure 2. Each plot shows an isosurface of the Casimir, C, for the Kida vortex in
shear. The colors correspond to values of the Hamiltonian, H, at different points on
the Casimir surface. Trajectories are constrained to follow intersections of the constant
H and C surfaces. (Because of the z? independence of H, surfaces of constant H are
sheets parallel to Oz?.) The projection of the Casimir surface on the z!-z? plane is
indicated by the dotted curves; the intersections of various sheets of constant H with
the z'~z% plane are shown with solid curves. (a) Case: C =1, e = 1.5, w = —1
includes two types of trajectory: (i) open (hyperbola-like) and (ii) closed trajectories
that do not circle the Oz! axis. (b) Case: C' =1, e = 0.5, w = —1 exhibits closed

trajectories that circle the 02! axis.

Figure 3. Contours of the Hamiltonian for the QG ellipsoidal vortex with z* = 2° = 0,
in a background flow with 7 = 0, on the {22, 23} plane for the case w = —0.1, ¢ =

—0.01, Cp = 0.25, Cy = 12.0. (Contours are unequally spaced.)

Figure 4. Poincaré sections for trajectories started close to the hyperbolic point in
Fig. 3. Values of w,e,(Cr, and Cy are as in Fig. 3;

(a) 7 = 1073,

(b)

(c) 7 =1071,
(d) r

= 107> - expanded view near the hyperbolic point,

= 10™* - expanded view near the hyperbolic point.

Figure 5. Power spectrum of long time series of z%(t) from a trajectory started near the
hyperbolic point in Fig. 3. w = —0.1, e = —0.01, 7 = 10™*, C1 = 0.25, Cpy = 12.0.
(a) Linear-linear plot,

(b) Log-linear plot.
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APPENDIX A

An ellipsoid can be described by the lengths of its three principal semi-axes, a(t), b(t),
¢(t) and three Euler angles, ¢(t), 6(t), ¥(¢), that specify its orientation relative to a
fixed reference frame. For an ellipsoidal vortex in a shear flow such as that given by

(4.1), the equations of motion for these variables are:
(a?) = ea? {cos Bsin 2¢ cos 2¢ + [cos 2¢b — sin? § cos? ] sin 26}
+ ra’siné {sin 21 sin ¢ — 2 cos 8 cos? ) cos o}
(blg) = —eb? {cos 6 sin 2y cos 2¢ + [cos 24 + sin® sin? ¢] sin 2¢} (A.1)
— b sinf {sin 2t sin @ + 2 cos #sin? ¥ cos qb}
(c?) = ¢*sin6 {esin O sin 2 + 27 cos § cos o},

and

¢ = 5(91 +Q2) + 5(91 —§2y) cos 2y + 3v

1 o2 2
53¢ 1+ T a T = cos 2¢

c? c?
N ( T2 2) (cos 2y cos2¢ — cos fsin 2¢ sin 2(;';)}
—c

a? — ¢?
]_ T CZ 02 ‘ |
+§sin9 a? — ¢2? +bzhc2 cos@sin ¢

2 2
- (azc_cz - bzc Cz) (COSHSinﬁbCOSQw+008295in2u’)cos¢)}

% sin6sin 2¢(Qy — Q)

Sesing |1 < < 6sin 26
—pesm + 7t )| costsin

c? c? |
+ ( - ) (cos @sin 2¢ cos 2y + sin 21 cos 2@)}

a? —c2 b2 —¢2

L[ 2sin? 6~ cos20 (= ¢ f
+§r 5111. — cos az—c2+62——c2 cos @

2

2
+ (QQC_ 7 ; C_ .:2) (cos @sin 21 sin ¢ — cos 26 cos 21 cosq’))}




Y = cosf {Q - "(Ql + Q2) — "(Ql - 02)(:0321;)}
1 c2 |
§ — 02 + SR cos § cos 2¢
2 2
+ C _ C ( 26 ; 2} T . 6 5. Py
2o m_a cos” #sin 21 sin 2¢ — cos cosuumbucp)
b? 1 _
-I-aq a 7 (cosé‘cos 29 cos 2¢ — 5(1 + cos? §) sin 2% sin 2@5)}
ac —
1 7 Cz + 62 29 .
9 sinf a2 _ 2 2= 2 cos“ fsing
c? c? 5 S o
T\ 2T 2 (COS 0 cos 2y sin ¢ + cos 8 cos 26 sin 2 cosq))

—sin® #sing —

(sm fcos2ysing + % sin #sin 26 sin Qw cos <;b)}

_ (A.2)
The (s are the principal rotation rates of the ellipsoid, i.e. the rate at which it would
rotate around a given principal axis, in the absence of any background flow, if that
axis were vertical. These are elliptic functions of the lengths of the semi-axes:

Q1 =a*I; + I, Qy = B2 + I, Q=5L+1,

1

0o\ - A3
I; = —abcf s’ {(az+s}(bz+3)(c2+s)} 2 4 J =12 (43)
0

2

)

The moments can be expressed in terms of the semi-axis lengths and the Euler angles
as follows:
a' = cos® ¢[cos” G(a® cos® 3 + b* sin® 1) + ¢ sin® 6]

+ sin® ¢(a® sin® ¢ + b% cos® ¥) — %(a2 — b%) cos 6 sin 2¢ sin 29

a’ = % sin2¢[cos® 8(a® cos? ¥ + b% sin® ¢) + ¢? sin® 6 — (@ sin® ¥ + b% cos? )]
+ %(az — b%) cos §sin 2t) cos 26

a® = sin® ¢[cos® B(a® cos® ¥ + b? sin® ) + ¢* sin? 4] (A4)
+ cos® ¢(a® sin® ¥ + b* cos® 1) + —;-(a2 — b*) cos Bsin 24 sin 2

a* = —sinf[sin é cos (a’ cos® P + b sin® ¢ — ¢?) + =(a® — b?) cos ¢ sin 2]

a’ = —sinf[cos ¢ cos §(a’ cos® ¥ + b sin? ¢ — ¢?) — =(a® — b?) sin ¢ sin 24|

b B

a® = (a® cos® ¢ + b% sin® ¢) sin? 6 + ¢? cos? 6.
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