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ABSTRACT

The kinetic theory of the global n=1 instabilities of finite-B
tokamak plasmas with circular cross—sections is investigated in the
collisionless limit. (n: toroidal mode number, B plasma pressure
normalized to the magnetic pressure). The wave-particle interactions
and the finite gyroradius effect are included as kinetic corrections.
The toroidal effect is incorporated up to the first order of ¢ = a/R,
the inverse aspect ratio. The raaial—poloidal eigenmode equations are
directly solved numerically in the parameter range q(0) ~ 1 (q: safety
factor). Analytical studies of the modes are made by use of the energy
integrals and compared to the numerical results. Special attentions
are paid for studying the transition between the MHD-type mode and the
kinetic instabilities.

The w=1 internal/tearing mode, n=1 ballooning mode and m=2
tearing mode with a fixed boundary condition are identified in
connection with the MHD modes. When the g=1 mode~-rational surface
exists in the plasma, the m=1 internal mode has large growth rate in
finite-B toroidal plasma; this mode turns out to be' the wm=1
collisionless tearing mode in the low 8 regime. The transition occurs
around the parameters where the condition 82 ~ ezpi/a is satisfied
(pi/a: ion gyroradius divided by the plasma radius). The pressure
driven ballooning mode, which becomes unstable when g-value becomes
large and B8 > a/ZqZR in the MHD 1limit, is connected to the
electrostatic-like ballooning mode which is unstable with the growth
rate of the order of the drift frequency. The m=2 tearing mode 1is

destabilized by the parallel current and 1s stabilized due to the
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coupling with the drift branch when B~value increases.

coupling further stabilizes the

m=2

tearing mode.

The

toroidal




l:_ Introduction

Analyses based on the magnetohydrodynamic (MHD) theory have shown
the existence of global unstable modes in tokamaks such as the kink
mode, ballooning mode (pressure-driven mode) and tearing mode. 1% These
modes are destabilized by either the plasma current or the pressure
gradient (or ©both), and 1limit the stable region of operation to the
low-pressure and low-current domain. As the plasma temperature
increases, the kinetic interactions between plasma particles and waves
are no longer negligibly small. The kinetic corrections on the MHD
unstable mode has recently attracted attentions"1O concerning the
stability of the short-wave-length ballooning model!»12 which is also
one candidate of the origin of the B-limit of toroidal plasmas (B is
the ratio of the plasma pressure to the magnetic pressure). The
kinétic effects have influences on the plasma stability in two ways:
one is the change of the growth rate in the MHD unstable region, where
the finite gyroradius effect is important. The other is the change of
the stability criterion associated with the residual instability in the
MHD stable  region. These two effects are often competing and it has
been shown that both the finite gyroradius effect and wave-particle
resonance must be taken into acéount simultaneously. These effects are
also important for the global mode stability. For example, the tearing
mode stability 1is subject to a considerable change if one employslnot

13-17

the fluid resistivity but the kinetic parallel conductivity, since

the tearing mode is destabilized by the parallel resistivity near the
rational surface. The previous work has indeed shown that the m=2

14,15

tearing mode turns to be a collisionless tearing-mode and is

stabilized by ion Landau damping in high temperature and high-8
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plasmas.16’17 However the work has been restricted to the cylindrical
plasma, and no clear understandings have been obtained in the toroidal
geometry, where the two dinstability origins - plasma current and
toroidal curvature - coexist simultaneously.

In this paper we investigate the stability of the n=1 mode (n:
toroidal mode number) in a circular-cross—-sectional tokamak with small

but finite B values (Bp ~ 13 B being the plasma pressure normalized

P
to the poloidal magnetic energy), by employing the kinetic analyses.
The study is performed in the large—aspect—ratio. limit of the
collisionless high temperature plasmas, and the stability of
incompressible mode (i.e. the toroidal magnetic field perturbation is
neglected) is investigated. In order to study the kinetic effects near
the marginal stability condition of the MHD mode and the toroidal
effects on the intrinsic kinetic dinstability, we take the VB  and
curvature drift of particles into account and keep the lowest order
toroidal corrections. Our model satisfies the criterion that it
recovers the stability condition of the reduced-set MHD analyses in the
MHD limit where ﬁ" + 0 and the gyroradius is neglected.

The radial-poloidal eigenmode is obtained with the fixed boundary
conditions. The "m=1" internall820 and tearing modes,21'22 n=1
(pressure—driven) ballooning mode and '"m=2" tearing mode are
identified. The stability region is investigated and attentions are
paid to the transition near the MHD stability critefia. The "m=1"
internal mode, which is unstable in the finite-8 toroidal plasma if the
g=1 rational surface exists in the plasma column, turns to be the "m=1"

collisionless tearing mode in the low-8 region. Other strong

instability is the ballooning mode which has the critical 8 value
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(Bc ~ a/2q2R) in the MHD theory. This mode dis connected to the
electrostatic~like ballooning mode (associated with the ion drift mode)
which persists to be unstable in the low-B limit. The '"m=2" tearing
mode 1is stabilized due to the coupling with the drift mode if the
B~value increases. The tbroidal efféct further stabilizes the m=2
tearing mode. Contrary to the high-n modes,9 the mode coupling does
not prohibit the radial convective damping of the m=2 tearing mode,
since the distance between =2 and q=1 surfaces is much larger than
the ion-~Landau-damping length, lw/kﬂvil. The toroidal coupling allows
the energy flow from m=2 mode to the m=1 mode, and this energy flow
acts as an additional damping mechanism of the m=2 tearing mode,

The constitution of this paper is as follows: In Section 2 the
model and the basic equation are given. In Section 3 the eigenmodes
and eigenvalues for n=1 modes are obtained. Summary and discussion
are given in the final section. The trapped particles contribute
principally to the dissipation and the 'poloidal coupling is not
enhanced much by the existence of trapped electroné. We therefore
neglect the trapped particle contributions for simplicity and the

analytical insight.



_g# Model and Basic Equation

We take the plasma equilibrium with circular magnetic surfaces.
Due to the toroidal shift of the magnetic axis, the geometrical axis of
the magnetic surface of the radius r deviates from the major axis of
the torus by the quantity A(r). The Figure 1 shows the schematic
geometry of the equilibrium. The coordinates (r,0,z), where r,® and ¢
are the minor radius, poloidal angle and toroidal angle, are given by
the cylindrical coordinates (R,z,z) as R = Rg +A + r cos® and
z =1t sin®, We wuse the coordinates (r,n,z) which represent the

magnetic field line to be "straight', defining

© =n + A sim (1)

and A= -A’ + r/R. The poloidal magnetic field 1is given by

By = Ee(r)(l—A’cosO). The metric tensor 81 j is calculated to be
g11 = (1 +A%cosn)? + (A" = rA”)2sin%n | (2-1)
g12 = r(-A’" + rA’)(1 + Acosn)simn , (2-2)
899 = rz(l + Acosn)2 (2-3)
22 ) v '
= n2 1 2 2-4
g33 = RG{l + (r/Rp)cosn}” . (2-4)

Due to the toroidal shift of the axis, 812 remains finite and the
coordinates are mnot orthogonal. The safety factor is given by the

derivative along the field line as

q(r) = dg/dn . (3)
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Since we treat the cases of the moderate Bp where Sp ~ 0(1) holds

(BP is the poloidal B-value), we keep the first order terms of the
toroidal corrections. The Jacobian of the transformation is
approximated to be VG = Ror{1+(2r/Rp)cosn}. The equilibrium magnetic
field and pressure profile must be determined by the toroidal
equilibrium equation. Expanding the pressure profile with respect to

the inverse aspect ratio, r/RO, and keeping the first order terms, the

toroidal equilibrium is given by the corresponding cylindrical

distribution a323
¥ = vo(r) + ¥y(r)coso , (4)
g .r 1 r’ pen dPg 2 » 4P
V() =g [f e =0 " MR —g}]  (4-2)
1 dr a r'(dlpo/dr’)z 0 R‘dr 0 dr

where ¢(r,0) is the poloidal magnetic flux function. Therefore, up
to the first order corrections of a/RO, the MHD equilibrium can be
specified by po(r) and q(r) (or Jo(r)). The toroidal shift of the

magnetic surface A 1is given as

1 r' dlp() 2 "2 dp

) - 2110]2‘ —r%} . (5)

O "
b= @ T (&

I or(&g/dr)? 0
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We introduce the Fourier  decomposed representation for

fluctuations, e.g.,

ﬁr(?,t) = Z Byp(rdexp(im - ing - iwt) .
m
Owing to the axial symmetry, each toroidal component can be treated
separately and the suffix for n is suppressed.

The equilibrium distribution function is chosen to be shifted
local Maxwellian. The density N is inhomogeneous (and is a function
of the poloidal angular momentum PC)' The temperature is assumed to
be constant to satisfy that the plasma is collisionless in the whole
plasma column. The pressure gradient is, in this article, due to the
density gradient.

The linearized equations for the Vlasov-Maxwell system are solved

to get the perturbation distribution function *t. The quasi-neutrality

condition and the Ampere’s law yield the basic equation for ﬁn and ﬁr’

The coupled differential equation is derived,24

a2(V )y - o [Pm«bm + )

+ R H{(m-1) - x ;—X}cpm_l + {(m+l) + x :—x}¢m+1] ]| = 0 (6-1)
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me ./ 2u 2
a2V - —Qlc—s— :‘—2 Y+ 287 [[Pm(qsm T
1
€ Ry 5 3
+ [{(m-1) - x 5;}¢m_1 + [ (m¥1) + x 5;}¢m+l]]] =0 m> 1 (6-2)

where ¢ = xﬁnm, by = /aﬁiiﬁrm/c,x =r/a, a is the plasma radius,

0 = w(ZscTe/azeB)_l, No(x) = N(O)exp(—srz/az), Cp = w//ikﬁm)vi,

kfm) = (m/q-n)/R, vZ = Tj/Mj (j=1iore),e=1L,/R, T =T./Ty, p;j 1is

J
the ion  gyroradius, u = -Jy/Npe, By = 4nNOTi/Bz, cg = To/My,

B = 2(1""1')81’

a2 m Qr-+m kﬁm)u Q-m
Pp = 5l 2 Gen) = —5— 2 Egp) - e {z& ) + = Een? Een)}]
Py \/Zlk"m ]Ve
a2 m-{2 ’ Eenm n QTmy ., im _,
R, = p_z_ [_79_ {Z (gem) —5 Z (Eem)} + LS {Z (Elm) 5 Z (E:Lm)}] ’
i

Z is the plasma dispersion function of the argument Ejm =w/V2
Ikﬁm)lvj. In deriving Eg. (16), we use the orderingvfor the kinetic
corrections, i.e., such as p%Vf, E", B and u/ve are of the first
order smallness. Another simplification is the expansion with respect
to €. By taking the toroidal drift of particles, we retain the
driving source of the toroidal MHD mode. The MHD limit of Eq. (6) is
equivalent to the reduced set equations. Since we are interested in

the small B.

i Pplasma, we neglect the compressional component of the

magnetic field perturbation %C and the m=0 component of the
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perturbations. By Eq. (6), one can study the transition between MHD
mode and kinetic mode as well as see the toroidal effect on the
intrinsic kinetic mode in the medium BP regime.

The equation (6) is a set of coupled equations, and in principle,
all m components can contribute to the eigenmode. However, we can
truncate the m—-summation at a certain value of m for n=1 mode by
the following reasons. When m is far from the q value of the
'column, the m-component is successively induced through toroidal
coupling and is of the higher order of r/RO: such component is to be
neglected due to the ordering of €. We study the n=1 fixed-boundary
mode in the low-q regime, i.e., q(0) ~ 1, and the main Fourier
component is m=1 and 2. We truncate the m~summation at m=3 or 4. The

truncation is also found, a posteriori, to be a good approximation.
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3. Stability Analysis

We solve Eq. (6) for n=1 modes with the fixed boundary condition
and find the "m=1" internal/tearing mode, the '"m=2" tearing m@de
and the n=1 ballooning mode. To solve the perspective view about the
various modes, we illustrate the stability diagram in q-B plane in
Figure 2. The temperature of the plasma is taken into account through

the parameter pi/a. As the equilibrium we chose the Gaussian profile

for density and current as no(r) = noexp(—sxz) and
Jo(r) = Joexp(—sxz)- The q profile is given as
sx?
q(x) = q(0) —— (7)
l-exp(-sx*)

and the average B-value, <B>, is given as <B> = B(0)(1-e”%)/s. We

choose the parameter such as a/R = 0.25 and s = 2.25. q(a)/q(0) 2.52

holds. For kinetic parameters, we choose p;/a = 1/200, M;/M, = 1836

and T; =T The "m=1" 1instability appears when the mode rational

e
surface ry, q(r) = 1, exists in the plasma column, and the transition
between internal and tearing modes is found. When BP becomes large,
the ballooning mode becomes unstable by the MHD mechanism, but turns to
be electrostatic-like ballooning instability25 in the low—Bp region.
The importance is the stability of the "m=2" tearing mode din the
finite-8 region, which was. not eXplored in the MHD analyses. The
figure shows that there always exists dinstability for any plasma
parameters. Therefore, analyses are focused to know their growth

rates, etc. In the following subsections we study, one by one, the

stability condition, parameter dependence and the mode structure.
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3-1. "m=1" Mode

The "m=1" mode is destabilized by two mechanisms. One is the

pressure gradient of the plasma, and the MHD theory18 predicts the

2

instability with the growth rate which is typically scaled as Bp.

Secondly, the wave-particle interactions near the mode rational surface
causes the residual kinetic instability, when the plasma B8 value
decreases while the g-value and other parameters are fixed. In this
case, the electron drift which carries the parallel current, u, becomes
large. The transition between the MHD mode and the kinetic mode is
found. This transition is important to understand the g—-dependence of
the m=1 mode stability and c¢onsequently the internal disruption
problem.

The m=1 Fourier component 1is dominant for this mode. The
amplitude of the m=3 component is 0(52) and gives a small
correction. We truncate the m—summation up to m=2 or m=3 and compare
the results. We have confirmed that the coupling between m=1 and 2
modes is essential. Therefore we calculate the energy integral keeping
the m=1 and wm=2 components to obtain the analytical understandings,

i.e.,

2 1 2
f (kmfwm) +Wp = f 9—'f —— Pplép + ¢m!2XdX (8)
0 ,2y2
CEAY

m=1 m=1" k§m>c

where
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w 1 2
L o(w +-_jJ [ xdx & {I¢ﬁ|2 + k2|¢m12}
T 0 V2
A
1 ' kJ4
= -l 12 4 (k24 80 2
Wy [} fO xdx{lwml (k " kﬁm)BO) Uhnl}
w _ l CZ O 2{ %* 2 B ES 1 3
12 = fO xdx 8 —E-B( )s7191(2 + x 5;) ¢g + 205(1 - x 5§)¢1} )

a

Wp = VA/RO, Vp = BO//ZFEBEI sy Wy = 2msTec/eBa2- Terms K, W, and Wjo
in the left-hand side correspond to the kinetic energy of the
perpendicular motion, the restoring magnetic energy and the one due to
bad curvature and the ballooning of displacement through toroidal
couplings, respectively. The right-hand side is due to the dissipation
via wave-particle interaction through parallel electric field.

Let wus evaluate each term for this mode. The MHD theory predicts
that the amplitude of $1 vanishes outside of the mode rational
surface, q > 1, for the most unstable mode.18 Tts eigenmode structure
has sharp gradient near the mode rational surface. When the parallel
phase  velocity 1is much smaller than the Alfvén velocity,
Vi >> |w/k§1)12, the Alfvén potential associated with the bending of
the field line dominates; MHD mode is most unstable with the radial
displacement & .;, &, ~ ¢1/x, which satisfies the condition
d€,.;/dx~ 0 for q< 1.18 on the contrary, in the vicinity of the

rational surface, kﬁl) goes to zero and the condition

|1<"(1)VA|2 < wi? (9
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is satisfied across the surface X =8 <x<x; +8. In this region,

the kinetic effect becomes noticeable. We estimate §, to be

§ ~ o] ) (10)
aldk{ D /drv,

and divide the plasma column to obtain the approximate solution. The
most wunstable mode is realized for Wi, Wop ~ 0. Noting the condition

of Erl’ we choose

(

$x 0< x < x;-8
-~ (X1—5)
(1)1 ~< (1) ——-—2—6——(xl+6—x) xl—G € X< X1+6 (11_1)

\

¢o is then given as
by~ (B, ¢ x° 0< x < x;-8 | (11-2)

$ x% xl—S < x < x1+6 .

The derivative ¢j] becomes large for x1=8 < x < %1+ and is

approximated to be -$/26. Hence W;, 1is evaluated to be

. 2
Wiy ~ lZEZBpB(O)SZ ¢ EE (12)
a

and the kinetic energy is approximately given as
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wwtwg)

e pa el
28

Ky ~
1 2
VA

. (13)

The parallel electric field exists in the ‘vicinity of the rational
surface, |x-x;| < §, and the integrand in the right-hand side of
Eq. (8) is non-vanishing for Ix-x1] < 8. Since we  treat the
wave-particle interaction to be the first—order smallness, we evaluate

E”1 in the cylindrical limit. The equation (6-1) gives

w g wtox ¢

—~ - . 14
¢’l + kél)c (14)

Py 62

Substituting this relation into the integral of Eq. (8), we have

1 .2 wpy 2 2 b2
w2 [T e it xdx ~ xS (wwg)? e O (15)
0 2g2 1T T 152

where <P;> is the average of Pi. The Vp x VB driving force,
kinetic energy and dissipation by wave-particle interaction balances to

give

w (Wt )
28

X1 1

—_—, (16)
<P1> 63a

+ 12 BPB(O)szwﬁ = (wtwy)?

The first term includes the finite gyroradius stabilization effectd10
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and the right-hand side gives the dissipation and residual/intrinsic
kinetic instabilities; two essential kinetic corrections are included.

The dispersion relation (16) gives two kinds of instabilities and
the transition between them. Two limiting cases are solved as

( 6233-—————£————— MHD-1imit (17-1)
ar|k{1) g2

(DA ’

1/3 P
| [8s%s%k{Dx)] " T6}/3 kinetic-limit (17-2)
a

where we wuse <Pl> ~ (w*—w)<l+£ez>/m and evaluated the average of
Eeexp(—Eg) to be of the order of unity. The MHD growth rate gives
Y/UJAuc 8285 while the kinetic growth rate shows a weaker dependence on
€ or B.* The mode becomes MHD-like for higher B-~values, while it turns
out to be the kinetic mode in the low-f region. The transition occurs
for Yvap ~ Ykinetic: the result in Figure 2 is wunderstood from
Eq. (17).

Numerical calculation is performed for the "m=1" mode, keeping
m=1,2 and 3 components.

The Figure 3 shows the growth rate of the "m=1" toroidal mode as a

function of B We choose the parameter p;/a = 1/200, q5 = 0.9,

p.
s = 2.25, R/a = 4, T,/T; = 2 and Mi/Me = 1836. The dashed line is for

the MHD limit approximation, where we take %" 0 and pi/a = 0, which

shows Yﬁ»A(MHD) o« Bg.confirming Eq. (17-1). The solid 1line is the

* TIf one decreaes B; by reducing the density, the electron parallel
velocity increases and the current-driven term dominates in Im<P>, and

Y/wA_deviates from Eq. (17).
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growth rate in the presence of the kinetic interactions. For larger
BP, Y « 8% holds, while the deviation becomes large for small B
values. The mode turns to be the residual instability caused by the
Landau resonance. The contribution of the resonance is proportional to
pi/a as estimated in Eq. (17-2). The Figure &4 shows the pi/a
dependence of the growth rate for various values of B;. The growth
rate linearly increases as p;/a increases, conforming Eq. (17-2).
The a/R dependence of Yy, Figure 5 shows the toroidally induced MHD
mode and the kinetic instability in the a/R+ 0 limit. The
g-dependence of vy more clearly shows the transition between the
kinetic mode and the MHD mode in Figure 6. Also shown are the MHD limit
(dotted 1l1ine) ~ we . call it MHD internal-like — and the cylindrical
kinetic limit - that is the m=1 collisionless tearing mode where the VB
drift is neglected (dashed line). As q dincreases, Bp increases for
fixed B-values accordingly the connection length becomes larger, and
dk#l)/dx decreases at the same time. The MHD type driving force
dominates the instability mechanism. On the other hand, as q(0)
becomes small, q is reduced and the mode rational surface approaches
the edge. Accordingly, xlkﬁl)' increases and the cylindrical m=1
kinetic mode is strongly destabilized.

The mode structures are shown in Figures 7a and 7b for the
MHD-like internal mode and m=l tearing mode. The Figure 7a is for
By = 1/200 and q(0) = 0.9, where the m=l internal mode is
destabilized by the MHD mechanism. The m=1 component is found inside
the gq=1 surface and the m=2 component is also confined inside of
the g¢=2 surface. ¢, = XE ] shows a sharp decrease at r = ry,

confirming Eq. (11). The corrugation near the rational surface shows



-19-
the coupling with the drift branch. The lower column is for the
parallel electric field which becomes large in the vicinity of the
rational surface. The Figure 7b is for the "m=1" tearing mode, which
is found in the low q; case, qg = 0.4. One sees that B,.j is
non-zero at r=r; and the mode has the character of the tearing mode
with localized parallel electric field and is not subject to the radial
convective damping. The exudation of the B.; across the q=1 rational
surface 1is, however, much smaller than the lcase of the simple
resistivity driven m=1 mode.21 The associated reconnection may become

much more moderate in high temperature plasmas.

3-2 Ballooning Mode .

When g-value becomes high and q(0) is greater than unity, ﬁhe m=1
internal mode disappears and the most unstable mode is characterized by
the dominant m=2 component. The MHD instability ballooning mode and
tearing instability are possible in finite-B toroidal plasma; these two
modes are different branches from the view point of the eigenmode
structures.

We first study the ballooning mode. This mode is characterized as
an MHD type instability driven by the VpVB force if 8—vélue is high
and exeeds a critical value. The terms in the energy integral is also

derived for the test function

('¢x x £ x9=8
by~ L Al 8)P(xgisx)  xp=6 < x < xyiS - (18)
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where we consider the case q(0) < 2 < q(a) and q(x9) = 2 holds. In
this case m=2 component is the dominant term and m=1 and 3 component

are excited by toroidal coupling and is estimated to be

¢1 GBPJ;X
~ 0<x< Ko o (19)

t3 €8 %

The fluid motion is also localized in the vicinity of the q=2 mode
rational surface, similar to the m=1 case. The kinetic energy Koy
can be estimated to be K, ~ w(w+w*)c2$2/25V%. For m=2 mode, the
magnetic restoring energy, Wy, has a stabilization influence of the

order of

Wy = = %2 a?ik 2 . (20)

Hence the energy integral for the ballooning mode is given as

w (wHo %) 2
2,2 _ 02,2821/ (2 = 2 2 1 21
—g—— T 24 B8 (0)sTwE ~ wiaRIIKky |7 = (utwy) <Py> 53, 20

with the condition § ~ lwl/alkﬁz)'IVA. This equation shows the
balance between the inertia term, ballooning destabilization term,
Alfvén potential which is stabilizing and the wave-particle interaction
contribution. Note that, in Eq. (21), w4 is defined by m=2 and
terms such as 6§, wg, wp, lkjfl and py are evaluated by the plasma

parameter at r=r,.
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When the kinetic correction is weak, the MHD instability appears

if the condition

__’_‘| R (22)

holds. The critical poloidal beta value ch is given in the form

B

pc ~ C R/a, where the numerical coefficient C is approximated to be
1/3 or 1/2 and has a weak dependence on the q value. On the
contrary, the kinetic instability with the growth rate of the order of
Wy 1s possible if the condition Eq. (22) is not satisfied.

The PB-dependence of the growth rate is shown in Figure 8 for the
parameters of q9 = 1.7, s = 2.25, a/R=1/3, pj;/a=1/200 and
Te/Ti = 2. The mode is found to be always unstable, showing the
transition near the critical B value of the MHD stability. The
dashed 1line is the growth rate derived by the MHD approximation
(pi/a+0, §R+O), and the dotted line denotes Y/wy which shows that
the growth rate of the residual instability is proportional to Ww4.
The residual mode, which is connected to the electrostatic branch in
the zero-B 1limit, has the growth rate proportional to /E; so that the
B~dependence is fairly weak; the growth rate can be comparable to the
MHD 1limit in the region Bp < ch. The MHD destabilization force is
governed by Bp, and the transition is observed by changing q while
other parameters such as B are fixed. The kinetic effect is more
clearly seen by studying pi/a dependence of the eigenvalue, The
Figure 9 shows m/wA' and y/w, for the MHD unstable parameter qg = 1.7

(solid lines) for the parameters B; = 1/200, R/a =3 and s = 2.25.

For the MHD wunstable case the noticeable is that the real frequency
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downshift appears. This is understoodhas follows; when one neglects
the wave particle interaction, i.e., the right-~hand side of Eq. (21),

w 1is given as

W%

assuming that vyupn >> wx (Yygp is the growth rate in the MHD limit).
This 1is because the kinetic energy of the fluid motion is proportional
to w(whwg) not to wz; therefore the stability condition for the

reactive mode is relaxed as
1
Y MHD > P W g (24)

not Y MHD > 0. This result is known as the finite gyroradius
stabilization of the MHD mode.s’26 However, the wave-particle
interaction has the contribution of the same order of pi/a as
compared to the simple wy correction. The destabilization by the
Landau damping cancels this stabilization and Byla(pi/a) + 0 in the
zero—p;/a limit. For this kind of global mode the destabilization by
the wave-particle interaction results in a weak increase of Yy as
pi/a increases, if the ion Landau damping is not effective. On the
contrary to the MHD unstable case, the instability is purely kinetic
driven in the parameter range BP < BPC' In Figure 9, also shown 1is
the Y/wA> value for the MHD stable parameter, qq = 1.2, (by dashed
line) which is positive only if pj/a is finite. Thus the mode

connects to the branch of the electrostatic ballooning mode.
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The mode structures are shown in Figure 10 and these two cases are
compared. The Figure 10(a) is for the MHD unstable case. The mw=2
component is the main component, and the peak of §92 near the n=2
surface is broad since the growth rate 1s large. Typical to the
MHD-like mode, the m=2 component of the parallel electric field has
very small amplitude near the q=2 surface To. The parameters are
q9 = 1.7, B4 = 1/200, R/a =3, s = 2.25 and other parameters are
standard. By reducing B-value, this mode reduces to a kinetic mode.
It is noted that for this n=1 ballooning mode the radial magnetic
field perturbation vanishes on the rational surface as 1is shown in
Figure 10(a). For instance, B., changes sign across the surface r,.
This mode is twisting mode like and is mnot connected to the "m=2"
tearing mode. The Figure 10(b) is for B; = 1/1000. The electric
component Eg shows a strong peaking near the q=2 surface, but has
still a finite width due to the w4 effect. It should be noted that
the m=2 parallel electric field component peaks near ¢=2 rational

surface.

3-3 "m=2" Tearing Mode

The '"m=2"  kinetic tearing mode is also identified in the
toroidal plasma. This mode is characterized by the radial magnetic
field perturbation which does not vanish at the mode rational surface.
Also the parallel current at the rational surface plays an essential
role for stability. This mode propagates in the electron diamagnetic
drift and belongs to the shear—-Alfvén  branch of the plasma
oscillations.2/»28 The Figure 11 shows the eigenmode structure of the
"m=2" tearing mode for the parameters qp = 0.9, B; = 0.001, s=3,

R/a =3 and other parameters are standard. The eigenvalue is given
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w/wy = 140.02i. The parallel electric field clearly shows the coupling
to the drift mode associated with the out-going energy propagation.
The energy is absorbed by ions through Landau damping.l5_l7 This is the
important mechanism to dictate the stability. 1In addition to it the
coupling to m=1 mode also acts as an additional damping. The
distance between mode rational surfaces, lry-ril, 1is larger compared
to the ion~Landau-damping-length, Iw*/vikﬁ]. Therefore, the coupling
to the m=l mode does not prohibit the convective damping but acts as
an additional sink far the m=2 mode energy.* The stabilization by the
finite-B effect 1is first found in the cylindrical geometry.16 This
stability improvement in higher-8 regime persists in toroidal plasmas.
The Figure 12 shows the growth rate as a function of Bi. The
cylindrical case is also shown by the dashed 1line. The critical
stability condition is studied and illustrated in Figure 13 and we find

the condition

B >B. (25-1)
for stability and
Bo=opila . (25-2)

* The case is contrary for high-n modes, where distance between two
successive mode rational surfaces, 1/|ngq’|, is much shorter than the
ion Landau damping length. The stabilization by the toroidal effect is

also observed for electromagnetic drift mode.
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The Equation (25) shows that the critical condition for the stability
is determined by the kinetic process, analogous to the cylindrical
calculations.l® From Eq. (18), one sees that the marginal stability

condition is given by

1.2 )
In ) fo_;“sz"bm*“(_:’n‘)““’M xdx = 0 (26)
m - PiVA ke

which means that the excitation by electrons and convective damping
balances. This condition is essentially the same as the drift aﬁd
drift-Alfvén wave stability if ome applies Eq. (26) for short wave
length modes. As is shown by Eq. (15), the resonance contribution,
Eq. (26), is of the order of Jwge/(W-wg) | X p%/az. Therefore, for the
modes which have the real frequency w ~ wy (such as drift mode or
m=2 tearing mode), the resonance term, Eq. (26), has the leading
contribution in Eq. (21). The stability condition, in the first

approximation, is given as?8 (e+0)

.Ln

Lg

e
AV4
Q
| =

(27)

<
o
?
=
(¢]

where L, and Lg are the density gradient scale and the shear length
respectively. C is the numerical coefficient of the order of unity.
The parallel current have upper limit for stability. Recalling the

relation
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v _2al’i (28)

and Ln/LS ~ a2q'/2qu2, Eq. (27) gives an evaluation at the gq=2 mode

rational surface as

p-
Bi 2 g o
Caq qQp 2

(29)
stability. The coefficient l/Caq'(rz)qo is of the order of unity,
and Eq. (29) confirms the result of Figure 13. The stability diagram
on the 9y - B; plane is given by Figure 14 for the parameters
pj/a = 1/200, R/a =3, s=3, and other parameters are standard.
Comparing to the cylindrical limit, the critical B-value as well as the
critical current density are reduced by the factor 2 due to the
toroidal coupling. The Figure 15 shows the eigenmode structure for the
stable _"m=2" tearing mode where B; is taken to be 0.01. The

coupling to the m=1 mode is noticeable. The eigenvalue is given as

w/wge = 1 - 0,051, -
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4. Summary and Discussion

In summary, we have studied kinetic efects on n=1 global modes
of the large aspect ratio tokamak in the collisionless limit. By
solving the kinetic equation, the 'm=1" internal/tearing mode,
ballooning mode and '"m=2"  tearing mode are identified. The MHD
driving term and the kinetic interactions are simultaneously included,
and the transition between the MHD mode and the residual kinetic mode
are found near the critical condition of the MHD instability. The
toroidal effect on the collisionless tearing mode is found to be
stabilizing. The stability of the wm=2 tearing mode in the high-f
region is still expected in the toroidal geoﬁetry. The eigenmodes are
obtained by use of the fixed boundary conditions. As a result of this
condition, m=2 kink mode becomes stabilized. In the case of a free
boundary condition, the growth rate and the critical B-value for "m=2"
tearing mode may increase. The marginal stability condition is still
determined by Eq. (26), and the stability at high-f plasma holds.

The high temperature phenomena appear as finite-gyroradius-effect
and wave-particle interaction. These two effects on the wunstable MHD
mode is competing to eaéh other. The coupling of the wave to the
plasma thermal energy via Landau resonance is brought up of the same
order correction of pi/a as the finite-gyroradius stabilization.
Therefore, the two effects must be kept simultaneously. This fact
implies the wuse of non-Maxwellian distribution function for improving
the stability. For instance if one takes into account high energy
ions, omne can expect to enhance gyroradius stabilization much without
increasing the coupling of the wave to the thermal energy of the

plasma. The destabilization by the current can also be reduced. The
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stability of the m=2 tearing mode in a high-8 regime is because of
the enhanced coupling to the drift branch and of the reduction of the
electron drift u/vi. If we consider an equilibrium where the
longitudinal current .is sustained by fast electrons, not by thermal
electrons, then the excitation by the drift is reduced. This 1is
because the radial region where the resonance takes place, lk"Vbl 2 Wy
(vb being the fast electron velocity), is much localized to othe
rational surface and the contribution to [ <3wﬁu>rdr is reduced.
Therefore, by introducing new freedoms in equilibrium as a form of fast
particles, we can divide the finite gyroradius effect and coupling to
the plasma thermal energy and have possibility to reduce the
instability growth rate. However, the non-Maxwellian distribution also
affects the stability of other modes such as short wave length mode,
one must perform a comprehensive analysis to find an optimum
distribution function or even to know the advantage of new freedoms.

In formulating Eq. (6), we expand the perturbation distribution
function with respect to wD/w (wD being the curvature and VB drift
frequency). This expansion is valid for the small e, and even the
MHD limit recovers the MHD analyses with reduced-set ordering.
However, the Landau resonance 1is kept which is dominant resonance
mechanism except for the flute mode. The compressional component of
the magnetic field component %C is neglected in Eq. (6) for the
simplicity. This 1is consistent with the assumption that the magnetic
well induced by the diamagnetic current is also neglected so long as
one 1is concerned with the MHD driving force. The energy principle
gives the SW associated with the ballooning mode as

f - g . Vpg . _%{{% x V(B2+2p)} x ﬁ] (% is the test displacement vector
B ‘
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in the energy principle), which shows that the VB caused by the
plasma diamagnetic current cancels either for stabilizing or for

destabilizing source. The ﬁg component on the other hand affects the

resonant contribution. The term [¢ + Eg—-wmlz in the integrand in
ne
the right-hand side of Eqs. (8) and (26) is replaced by
iviTtpsm
o, + §f2'¢m + :c - Bclz.28 The correction by B, is 0(8) and is

small in the parameters treated in this article. The kinetic effects
on the global modes are the very issues which require the analysis.

For the study of the regime B_ ~ R/a, however, the much more accurate

p
equilibrium (i.e., not expanded with respect to a/R) and the inclusion
of the compressional component may be necessary. Further calculation
with more accurate equilibrium must be performed to get a correct
transition criterion between ES and MHD-like ballooning mode.

The stability diagram, summarized in Figure 2, shows that n=1 mode
is almost always unstable in the current-carrying toroidal plasmas in
the parameter range which is typical to tokamaks. However, the results
show the existence of window for a good confinement. The Figure 10(b)
illustrates the mode structure of kinetic ballooning mode. The
electric perturbation is strongly peaked near r=ro. When this mode
becomes dominant instability and the perturbation grows up, the
pressure profile around ¢q=2 vrational surface may become flat. Since
the growth rate of this mode is proportional to wy at r=r,, this
flattening may easily prohibit the further growth of this mode before
the central core plasma is seriously affected by this mode.z‘"7 The
window for a good global stability is surrounded by the boundaries,
q(0) > 1 (for "m=1" mode stability), B > Bo (for '"m=2" tearing

mode stability) and BP < ch (for MHD ballooning mode stability). We
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see the importance of the plasma control to keep q(0) greater than
unity or to increase B-value before the g-value decreases by additional
energy/momentum sources such as NBI or RF. To find the optimum path of
the development of the plasma parameters, e.g. in the B-q space, we
have to also investigate the high-n ballooning modes.

The stability criterion for the m=2 tearing mode, which is
sensitive to the current density of electrons, differs from some
previous works (say Ref.[14]). It should be emphasized thét the
"constant-y" approximation as well as the cut-off of the integral

X

c
f odx (o Dbeing the kinetic conductivity) at X, is not correct.

Even though the conductivity ¢ becomes small if =x deviates much

29

from the rational surface, it remains to be finite wvalue and the

X
contribution to [ odx at large value of |x-x can easily exceed the
X
c
one from the vicinity of the rational surface.

e

The stability of the '"m=2" tearing mode suggests that the
occurrence of the major disruption becomes infrequent if the B-value
becomes high enough. The optimistic view for the futrue high-f tokamak
is expected. The critical-f value may be changed by the introduction
of the trapped particles. The collision of transit electrons may not
be mneglected far from the center of the plasma column. Also important
is the effect of the background fluctuations on the electron parallel

conductivity. These problems remain to be for future analyses.
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Figure Captions

Figure 1 -
Geometry and co—ordinates. x on R—axis denotes magnetic axis,
which 1is shifted from center of magnetic surface of minor radius r by

A

Figure 2 -

Stability and mode transition diagram on q3-g(0) plane. Solid
line shows the boundary for the unstable mode and dashed line denotes
the transition from MHD to kinetic mode. m=1 internal/tearing mode
exists for q(0) <1< q(a) and m=2 tearing mode is stabilized if
B(0) > 0.02. Other parameters are: R/a = 3, s = 2.25,

q(a)/q(0) = 2.52, pi/a = 1/200, <B>~ 0.48(0), T, = Ty, M; = 1836M,. n

i» Mi

is always chosen to be unity.

Figure 3 -

Growth rate of the "m=1" mode (so0lid linie) as a function of BP.
q(0) = 0.9, p;/a = 1/200 and s=3., Other parameters are standard. The
dashed line shows the MHD limit (p;/a>0, Ey>0) showing yyup>0 as Bp+0.

The kinetic theory gives y>0 even if Bp+0.

Figure 4 -~
pi dependence of y for 8; = .001, .003 and .005. Y/w, increases
linearly as given by Eq. (17-2). q(0) = 0.9 and other parameters are

standard.
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Figure 5 -

Growth rate of the "m=1" mode (solid 1line) as a function of
inverse aspect ratio. q(0) = 0.9, pi/a = 1/200, s=3 and Bp = 0.5.
Dashed line shows the MHD limit. Kinetic mode is wunstable in the

a/R »0 limit turning to be the tearing mode.

Figure 6 -

Growth rate vs. q(0) for g;(0) = 0.005, p;/a = 1/200, R/a = 3 and
s=3. The dashed line is the MHD 1limit of the toroidal mode
(pi/a+0, §"+O) ~ 1internal kink mode, while the dotted line is the
cylindrical limit (a/R+0) - m=1 tearing mode. The transition between

the kinetic tearing mode and the MHD mode is clearly shown.

Figure 7 -

Eigenmode structure for "m=1" mode for MHD unstable case (a) and
MHD stable case (b). Solid line for real part and dashed line for
imaginary part. Parameters are: pi/a = 1/100, R/a = 3, Bi(O) = ,005,
s = 2.25, q(0) = 0.9 and w/wy = (~1.07, 2.40) for (a) and pi/a = 1/200,
Bi(O) = .001, s=3, q(0) = 0.4 and w/wg = (-0.1, 21.5) for (b). Other

parameters are standard.

Figure 8 -

Growth rate for the n=1 ballooning mode normalized to WA Dotted
line shows Y/w,. Dashed line denotes the Y/wA'in the MHD limit showing
the critical B-value for instability. Below the critical condition,
the instability turns to be kinetic one. pi/a - 1/200, q(0) = 1.7 and

other parameters are standard.
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Figure 9 -
Eigenvalue for the ballooning mode for the MHD unstable case

(q(0) = 1.7, solid line) and the growth rate for the MHD stable case

(q(0)

1.2, dashed 1line) vs.p;/a. B; = 1/200, R/a = 3 and other
parameters are standard. Since B; 1is kept constant the critical
condition for MHD dinstability, Bp > BPC’ reduces to q(0) > 1.5. For
B

<B y+0 for p;/a*0.

P pe?

Figure 10 -

Eigenmode structure for the ballooning mode. (a) for the MHD
unstable case (Bi(O) = ,005) and (b) for the MHD étable case
(Bi(O) = ,001). Solid line for real part and dashed line for imaginary
part. pi/a = 1/200, q(0) = 1.7, R/a = 3, s = 2,25, and other
parameters are standard. For the kinetic instability (b), the
perturbation ﬁe is strongly localized near the q=2 rational surface,
The amplitude |§rl reduces and the mode finally becomes electrostatic

mode for B; < Me/Mi'

Figure 11 -

Eigenmode structure of the 'm=2" tearing mode for B; = 0.001,
p;/a = 1/200, q(0) = 0.9, s=3, R/a =4 and other parameters are
standard. Solid . lines for real part and dashed lines for imaginary
part. The wave form of §r2 shows the character of the m=2 tearing
mode, and the parallel electric field exists in the region
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Figure 12 -
The growth rate of the m=2 tearing mode (solid line) as a function
of B8;. 4q(0) = 0.9, q(a) = 2.7, s=3, p;/a = 1/1000, R/a = 4 and other
parameters are standard. The dashed line is y/|ws| for the cylindrical

limit. Toroidal effect fﬁrther stabilizes the mode.

Figure 13 -
Stability criterion for the "m=2" tearing mode. q(0) = 0.9,
q(a) = 2.7, s=3, R/a =4 and other parameters are standard. The

critical B value for stability is proportional to pi/a.

Figure 14 -

Stability criterion for the "m=2" tearing mode (solid line). pila
= 1/200, s=3, q(a)/q(0) = 3, R/a = 4 and other parameters are standard.
The dinstability region 1is localized to the low-8 region for the

toroidal plasma. Dashed line is for the cylindrical limit.

Figure 15 -

The eigenmode structure for the "m=2" tearing mode for stable case
(B8; = .00). Other barameters are the same as Figure 11. The
corrugation of the wave form shows the strong coupling to the drift
branch, and the amplitudes of the m=1,3 comonents are enhanced. Solid

line for real part and dashed line for imaginary part.
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