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ABSTRACT

Kinetic effects on propagation and absorption of radio frequency
(rf) waves in inhomogeneous and dispersive.plasmas are studied, where
effects of finite gyroradius and wave~particle interactions are
included. The generalized linear propagator in the presence of the
inhomogeneity of magnetic £ield strength along the field 1line is
calculated for obtaining the nonlocal conductivity tensor. Instead of
a plasma dispersion function a mnew function 1is introduced. The
influence of the inhomogeneity to the rf wave—energy deposition scheme
is found to be appreciable in high temperature plasmas. Parameter
dependence of this new function is studied. We derive a kinetic wave
equation taking the corrections due to the plasma inhomogeneity and
dispersion. Nonlocal effects on the wave energy flux and on the power
deposition to each plasma species are examined. This approach 1is

applied to toroidal plasmas.
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1, Introduction

Problems of radio frequency waves 1in plasmas have attracted
attention for many years from the viewpoint of the physics dinterests
and applications to the thermonuclear fusion research. Recently, the
investigations on the heating, the current-drive and the flux-control
by use of rf waves have been intensively studied both theoretically and
experimentally. These analyses are the critical issues for the
development of the thermonuclear fusion program. In addition to these
applications, various concepts to utilize the rf wave have been
proposed, such as rf end plugging or the rf stabilization of the MHD
instabilities. Experiments have been performed to examine the
availability of these échemes. The plasmas of experimental concerns
are confined in complex geometries and hence there still exist
discrepancies between the theoretical prediction and the experimental
observations, which have revealed the necessity of the comprehensive
studies of the rf-wave accessibility, propagation and absorption in
inhomogeneous and dispersive plasmas.

1 have been done

Previous theoretical analyses on this subject
mainly by use of the magnetohydrodynamic (MHD) wave-equation studies
and the ray-tracing method. The problem is that the key issues, to
determine the wave propagation structures in the inhomogeneous
dispersive plasma and to obtain the power and momentum absorption rates
to each plasma species, have not been resolved by these analyses. From
the MHD analyses, we may have the rough estimation of the mode
structure and can estimate the power absorption by introducing an

artificial damping rate.? In high temperature plasmas, the Coulomb

collision becomes rare and the characteristic problem of the MHD
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analyses apparently appears: The singular nature of the MHD equation
gives rise to the divergence behavior of the wave form and the mode
conversion to the hot mode is excluded. By the ray~tracing method, the
correct wave form and the energy deposition rates in the plasma are not
obtained when the wave length becomes of the order of the scale length
of the inhomogeneity. In addition to it, the wusual ray-tracing
analyses have been done by use of the conductivity tensor which was
derived for homogeneous plasmas.3

On the local damping rate of the launched wave, the effect of the
nonuniformity of the magnetic field strength along the field line have
been studied.l’"8 However the effect on the global propagation form of
the wave field has not been studied.

In this article, we study the kinetic effects on the propagation
and absorption of rf waves in the inhomogeneous and dispersive plasma
immersed in an inhomogeneous magnetic field. We include the
finite-gyroradius effect and wave-particle interactions to derive the
wave propagation equation. The modification of the 1linear propagator
due to the inhomogeneity of the magnetic field strength along the
magnetic field line is also included. The case where the magnetic
field strength is inhomogeneous along the guiding center orbit of
particles is often found in magnetic confinement systems, such as the
- toroidal devices aﬁd open mirrors. Because of this effect the damping
mechanism of the wave becomes insensitive to the resonance condition
jw=-nQ | ~ |kHVT”] (@: cyclotron frequency, k": parallel wave number and
vpy ¢ the parallel thermal velocity). All particles can interact with

the wave and the dissipation remains to be finite even if k" > 0.



by

For the consistent analyses of the wave propagation and absorption
in a dispersive nonuniform plasma, we also analyze the effect of the
nonlocality on the perturbed current. The nonlocal effects of the
mobility tensor and the wave are simultaneously included in order for
the wave energy density to be conserved.

The constitution of this paper is as follows. In Section 2, we
show the general formalism of the wave propagation equation and discuss
éhe effect of the magnetic field strength inhomogeneity along the field
line of force. A dispersion function ¢, is introduced instead of the
plasma dispersion function. The nonlocal effect on the perturbed
current and the propagation equation are presented by means of the
nonlocal mobility tensor. In Section 3 we apply the general wave
equation to plasmas in toroidal magnetic confinement devices. The
dissipation rate as an effective collision is estimated for the typical
parameters of the plasma, which is shown to be an appreciable

contribution. In the final section, summary and discussion are

presented.
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2. Wave Equation in Inhomogeneous Magnetic Field
In this section, we construct the basic formalism of the rf wave
equation in a dispersive plasma immersed in an inhomogeneous magnetic
field. The model magnetic field is given by B, = By(l+s/gy + sz/lg),
where s is the coordinate along the main magnetic field, L1 and &9 are
the typical scale lengths of the field inhomogeneity and the condition
[s| < 21, %9 1is used. Assuming that the inhomogeneity is weak,
(0/21,2)2 << 1, (p being the gyroradius), the particle orbit is
approximately given by the sum of the guiding center motion along the
field line and the perpendicular gyromotion. The cyclotron frequency
varies along the field line and hence the modification appears in the
phase of the wave, which particles feel, ¢(1) = w(t-t’) - ke G-%"),
T =t -t. The parallel velocity indeed is not constant of the
motion. However, the temporal change of vy and the associated change
of k, vy, is much smaller than the modification of Q = eB/m for the waves
in the range of -the cyclotron frequency except for the magnetically
trapped particles which are close to the turning point. We approximate
v, to be constant for the simplicity. We take the x~coordinate in the
direction of the perpendicular wave  number, g = El/lkll,
ii = (ﬁ x 8§) x.§ and k is the wave vector. The position of the

particle at t’ is given as (§ = -8 x § and 8" = 0 at t = 0)

2
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where (x,y,s) is the position at T = 0, o 1is the gyrophase at t = 0
and terms of the order of (v"/Qzl’z)z are neglected. The phase ¢ (1) is

then given as

¢(t) = (kyv~w)t - klp{cos(a+¢) - cos a} (2)
where
Lo Rovi
b = Qg - T2 + 3 (3)
22 323

g = eSBO/ms and the suffix s stands for the particle species.

~

The perturbed distribution function £ is given by integrating the

Vlasov equation as

- _-leg 3fp w5 gV
fi(v) = myl{:ﬁ; fodf[g;'ﬁ—ggj—q
9f (+I ~
- ik . —~§$Z—— %’]exp(—i¢—nr)}ﬁk (4)

where the infinitesimal positive parameter n indicates the analytic
continuation to satisfy the causality. The equation (3) shows that the
gyrophase ¢ is not a linear function of T. Writing the flow T to be Nt

~

ﬁ, (N being the number density of the plasma species), the path
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integral along the wunperturbed orbit, Eq. (1), gives the mobility
tensor iI as
Bfo

COS O ———
BV_L

d ie A of [} o . ’
ik = /d% 53 sina 2] + 9§ j eimmDa g e,
=0

msu) BV_L n’ =—o0
3£,
Bv"
(5)
nf

0 Bfo . afo)
v Bvl I Bv"

v 2

X ivy Jﬁ(C) .

Vi Jdn(2)

where ¢ = klw, J, 1is the n-th order Bessel function and G, is the

linear propagator defined by

G, =1 %ET exp i{(w—k"v" + in)t - n¢} . _ (6)

We take the equilibrium distribution function as a local Maxwellian
with the temperature anisotrophy T, and Ty to be

-mvf mVHZ

3T, 7T,

fo(?,) = N(_‘l‘;) 3/2

2n (7

_—— exp[

for electrons and ions. Substituting Eq. (7) into Eq. (5), we have
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Ay = I,(0) « exp(A), A = kfn2, A" = d\ /dh, @ = Qg(l+s/a] + s2/2D),

and

2
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%) _ 1 Yy~ i Il
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/ZWT“/m ~0 (10
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o
The presence of the magnetic field dinhomogeneity changes the wusual
plasma dispersion function Z(g) = [:dt exp(—tz)/(t—g)/F- and its
derivatives to the new function @éz) given by Eq. (10). This field
inhomogeneity contributes to the broadening of the resonance condition
of the wave particle interaction from vy o= é/k" to vy - G/k"]
< A(w/k"), (@ = w-nR). The width A(w/k") is given as follows. The

propagator for G, in ng) is rewritten
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G, =1 foexp i(ot + 872 - yr3)dr (11)
where

o = (m_ k"V" + in) (12"1)
D.QV"

B = TP (12-2)
nﬂvf

Y = . (12-3)
33

The second and third terms in the bracket of Eq. (11) cause the
decorrelation and the resonance width A(w/k"). We consider the

function & defined as

In the limit of 21,2 + o, the values 8 and Y vanish and hence the

resonances of particles and waves occur for a 0. Namely

lim @(Ot 5B ’Y) *> gnz(gn) (14)
L1,

where Z is the plasma  dispersion function of the argument
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Figure 1 shows the real and imaginary parts of & as compared with

the values of £Z(§). The parameter g

nQwv :
r = ______Eﬂ__g (15)
28 l(w-—nﬂ)

J

is taken to be 0.1, £0.3, *1, #3 and *10 for the case of 1/85 = 0. As
is clearly shown in Fig. 1, the inhomogeneity of the cyclotron
frequency along the field 1ine not only broadens the resonance
condition but also causes an effective collision in the off-resonant
limit lw/k"| >> VT".4 The non-resonant dissipation can be interpreted
as follows. The propagator Gn is equivalent to that of the particles
responding to the wave with frequency modulation, which means that the
w—-spectrum has the finite width. The width of the spectrum is
estimated to be VB. When the wave has the finite spectrum, the
decorrelation between particle and the wave gives rise to the effective
collision, which contributes to the absorption/emission of the wave.
We show the typical parameter dependence of this collision term. In
the limit 1/21’2 + 0 or the resonant limit (0+0), the asymptotic form

is given as
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(iY)1/3 Y3 T(2/3)

‘ 1 [m 1 .
5 5'/__-2'—3_ (1+1) B

N
o

When the magnetic field inhomogeneity is small, G ~ -1/a holds and the
wa#e-particle interaction takes place mainly 'by usual Landau and
cyclotron resonance. This resonance vanishes when k" = 0. If the
decorrelation exists, B # 0, the damping appears even for k" = 0.
Substituting k, = O into Eq. (13) one finds

;2

© . 4 .
It = In lin 1 [ elitmnt = 2 t%) 4¢ | (17)
n>0

The equation (17) can be evaluated by use of the method of the steepest

descent for smaller values of . We approximately have

%+3/T_;-2/3) (c > 0) (18-1)

%;.c_l/3exp(— §-§—2/3)cos(-

Imd ~ <

T(%) »/}3‘ (g + ) ‘ (18-2)

Figure 2 illustrates the real and imaginary parts of & function as a
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function of ¢ for the case of || = », The result implies that when

the plasma temperature is high enough for the classical collision to be

rare, this effective collision plays an important vrole for the wave
energy deposition scheme.

This dissipation also becomes important when one considers the

concepts utilizing the ponderomotive force generated by the rf waves.

The ponderomotive force in the MHD limit is written as

2 ~ ~

N.e ) 2

S S I (19)
Mg 2 -Qg w?

One origin of the ponderomotive force is the nonuniformity of the rf
wave amplitude. The other is the inhomogeneity of the cyclotron
frequency. When anB] and ﬁl exist, the absorption of the wave occurs
even if the condition |w2 - QZI >> k%v%" ié satisfied: It should be
noted that the energy absorption by particles is always associated with
the generation of the ponderomotive force in an inhomogeneous magnetic
field. Thérefore in such a case the adiabaticity of a particle no
longer holds.

In order to obtain the dispersion equations of the
wave-propagation and the energy deposition, we next investigate the
nonlocal effects on the conductivit§ tensor. In the inhomogeneous
dispersive plasma, the local conductivity tensor cannot be used. When
we consider the stationary state, the wave energy should satisfy the
conservation law, i.e., the power deposition rate should be balanced

with the divergence of the Poynting vector. Namely the condition



Ex B+ T t=0 (20)

should be satisfied. The quantity J is the perturbed current induced
by the rf fields. The nonlocal effect on the conductivity tensor has

been calculated in Refs. [9-10]. When the inhomogeneity of the

equilibrium is weak, the conductivity tensor § is defined as,1l
* rapr & . P - & AR = ¥ O NP
J(E,t) = [ abrde” G(F-F7, -t ; , ) B(E,t7) (21)

2 2

where the two former arguments of G stand for the dispersion of the
medium and the latter two indicate the equilibrium inhomogeneity. The

Fourier representation has the relation

Skos B,0) = [ dFp,aeq, é(?l,tl; 3,0)e-ieEwey) (22)

The mobility tensor {i derived in Eq. (8) gives G as

Sk,w; F,t) = ; Gg = é Ngeglg (23)

where Ny and e, are the number density and the charge of s species.

s

The X-direction is taken in the direction of inhomogeneity. Expanding

G with respect to k. as

§(k,0;x) = 8(w;x) + G (wsx)ky, +.%.8"(w;x)k§ cee (24)

where the prime denotes 9/dk,, we have
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j(%) _ ;n-m B.am 5 2ntm B(Q,w;x)v. @) \

n=0 m=0 n1m12n+1 9x an 3kn+m
«m: <

n 520t (R yix) . 3% (F)
3x® akDim o x™

+ (-1) . (25)

Up to the second order corrections, Eq. (25) reduces to

I =] |oqg GOm0 - /o = (/513 Ey)

13 /o PRTIN e T
"'Z- [ﬁ- {‘/O'ij 5—}; (/O'ij Ej)} + /ol —X- {/0'" —-}—(l}] . (26)

where i,j stand for x,y and z. Substituting Eq. (8), (23) and (25) into

the Maxwell’s equation

> 3
< 9B
Vx E=-_°" 27-1
) ot ’ ’ ( )
~ ~ 3% ;
VUxB=und+ ; 27~2
x B=ug(J+eg33) > | (27-2)

we obtain the basic wave equations.
From Eq. (26) one can calculate the energy deposition. For s-th

species of particles, the absorped energy PS is calculated as
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L 020 BE; JE.

_ sHij _* _ 13 " 3 * " J
Ty R T 7y (08Hed gy (BaBy)l osmy g5l o 29

where the suffix H stands for the Hermitian part of G. We also have

the Poynting vector SX as

0E oE
_ 12 * y _ 77"y _ % (dEx _ 3Ez
Sx = bug w hﬂEy (Bx By) Es 3z ax)}
*
‘ 0E; 9E;
- 1Lry=4 ./ ® 1 WA R
L7 UVt osansBiBy + 5 osuy (B 50 = 5 By (29)

where the suffix A denotes the anti-Hermitian part of the tensor. The

9S
equations (28) and (29) satisfies ?ﬁ? + ) Py = 0 which is the energy
8

conservation law.
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3. Application to Toroidal Plasmas

In a low-B toroidal plasma, the magnetic field strength changes
approximately proportional to BO/(1+r cos®/R) where r and R are minor
and major radii and © is the poloidal angle. Owing to the rotational
transform of the magnetic field line, the cyclotron frequency varies as
particles move along the magnetic field line. We study the response
function in a low-B tokamak with circular cross section. We use
(x,v,2z) coordinates, x = r cos®, y = r sin® and z is taken along the
axis of the torus. For the simplicity of the analysis we keep only the
1/(1+x/R) dependence of the toroidal magnetic field and assume that the
pitch d0/dz, is constant along the magnetic field line.

The particle velocity ¥ is represented to be v+ %g where % is the
guiding center motion and %8 is the gyromotion. The VB drift of
particles appears 1in the guiding center motion. However, this drift
velocity is small compared to the thermal velocity. In addition to it,
the VB drift velocity is perpendicular to VB, so that this motion does

not give rise to the change of Q in the lowest order correction. We

then simply write

¥ = (0,r/qR,1) vy + $g s (30)

where q 1is the safety factor and the parallel velocity v, is also

treated to be constant. The phase ¢(t) is given as

¢ (1) = (kyvy-w)t - kjp{cos(y—$-0) - cos(p-0)} (31)

and
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Y/
¢ =Qqr + —R\)ﬂ {sin(0g-vt) - sind} (32)

where k= k| cosy, ky =k siny, v = v /qR, Qgg = egBg/mg and O is the
poloidal angle at T = 0. Expanding ¢ given by Eq. (32) with respect to

vT and retaining terms up to (VT)Z, we obtain

nrlvy 2 nrﬂvuz 3
— sinOyTr® = ———— cosOpyT” . (33)
2qR? 6q2R3

From Egs. (31) and (33), the mobility tensor is calculated.
Substituting £, = qRZ/r sin®, and 2% = 2q2R3/r cos@y, the mobility

tensor in the toroidal geometry, ﬁt, is given as

=010 (34)
and
- : s “X im0 7
cosp siny , -EE sin®(
jij = siny , cosy ;i-cos®o (35)
. qR
ol -r
— sin(0- _ - 1
| sin(0g-¥), X cos(0g—p) , ]

where {i is given by Eqs. (8) and (9). In deriving Eq. (34) terms of

order (r/qR)2 are neglected.
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In the toroidal geometry, the cyclotron frequency Q varies as a
function of x, and the cyclotron resonance condition nQ =w is
satisfied on a surface x = x,. where Q(x,) = Qy/(1+x./R) = w/n holds
(n > 1). Since the cyclotron resonance damping rate is proportional to
eXP{'(nQ*ﬂ)z/Zkfv%"} (21,2 + ©), the cyclotron interaction takes place
in the region satisfying (nﬂ—w)z/Zk%v% < 1. When the spatial change of
k"vT" is weak, the cyclotron damping appears in a thin layer around the

surface x., which is given by

R e (mn>1) (36)

Out of this layer, the cyclotron resonance decreases exponentially, and
actually vanishes. The decorrelation due to the magnetic field
inhomogeneity causes an additional energy exchange. For |x-x.| > S
k) vy is small and Eq. (18) holds. This damping exponentially

decreases for ¢_2/3/2 > 1l. A strong damping is expected in a region

Ixx.| <o = IS0 g (a1 (37)
an2

This interaction region is much wider +than that for the cyclotron
resonance, given by Eq. (36).

This damping mechanism works effectiveiy for the energy absorption
by ions when one applies the rf waves. In the case of the rf wave
heating of toroidal plasmas in the range of the ion cyclotron
frequency, the rf waves are easily absorbed by electrons in a wide

region of the plasma column unless lk“| is not extremely small. On the
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contrary, the linear contribution of the ion cyclotron damping given by
the conductivity tensor in a homogeneous B field is localized in the

region |x-x.| < §,+ To study the heating by the perpendicular electric

SXXEx> (The brackets

field ﬁx’ let us consider the contribution by <Exg
< > stand for the phase average). If we use the conductivity tensor
for the homogeneous magnetic field, the energy input to the s species

is evaluated by integrating (Nez/mm)IﬁxlzImZ(En)Q//E'|k|vT"[S over <X.

The order estimate is given in the A > 0 limit as

[ ax Gl F> - N fxr+6n|E 2_ 8 N g% . (39)
2

The amplitude T is evaluated at the resonance surface. The result

%!
does not explicitly depend on the thickness of the layer nor on k"5 so
long as the rf field is wuniform in the resonance region. On the
contrary, if we correctly use the conductivity tensor which includes
the magnetic field inhomogeneity, the integrand <E;°sxgﬁx> remains
finite in a much wider region of x. For instance, when Ik"lvT" is

small, the damping exists in the region [x-x,.| { A, and the integral is

estimated to be
Ne2 ~2
B2l R (n=1) (39)

N* ~
E 0 B> ~ —
/ X XXX o

where the average of IEX] is taken in the region [x=x.1 <Ay
Comparing Eq. (38) and (39), one sees that the energy input is the same
for these two calculations, provided that the amplitude of the wave is

homogeneous. When the amplitude of the rf field is not homogeneous, it
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is necessary to employ the correct conductivity tensor which includes
the effect of the magnetic field inhomogeneity. For instance, if one
utilizes the two-ion hybrid resonance (heavy majority dioms and light
minority ions), the mode conversion from the fast wave to the ion
Bernstein wave is' expected. The large amplitude wave 1s excited
associated with this mode conversion. This wave does not propagate to
the cyclotron resonance layer of the minority iomns. The cyclotron
damping by the majority ions does not take place except for the large
values of k". The damping caused by the magnetic field inhomogeneity
works as the mechanism by which ions can absorb the wave energy, and

contributes appreciably to the ion heating.

The equation (18) shows that the typical decorrelation time can be-

evaluated by

rsin@QvT -1
Te ~ (N——=—)

qu

for |[x-x,.| < A,. This effective collision frequency is to be compared

with the eyclotron frequency . One has

1 . »/rplsin@o| . 10_2 /rlsin@ol /Tz
TCQ 2 2 B

gR qR

where T; is in eV and r,R and B.are in MKSA unit. This value can be of
order 1073 to 1072 iﬁ the central column of the plasma of the present

tokamak experiments. We see that 1/t is much greater than the

c

classical collision frequency except in the periphery of the plasma

column.
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4, Summary and Discussions

In summary, we derived the kinetic rf wave equation in an
inhomogeneous and dispersive plasma. The conductivity temnsor which
governs the propagation is obtained in a nonuniform magnetic field.
Nonuniformity of the magnetic field strength along the line of force is
included, and a new function @n instead of the plasma dispersion
function 1is introduced. The function @n represents wave—particle
interactions and contains an off-resonant type dissipation.

In formulating the wave equation, we include the nonlocal effects
of the conductivity tensor. When we consider the dispersion of the
wave field, the neglect of the nonlocality of & yields the
discontinuity of the Poynting flux in a plasma, i.e., the correct
energy deposition rate and profile for each species can not be
obtained. The basic equations for toroidal plasmas are derived in
Section 3.

The dissipation caused by the magnetic field inhomogeneity can be
interpreted as an effective collision between a wave-packet and
particles, and gives an appreciable contribution to the rf-wave
propagation and absorption especially in high temperature plasmas.
This dissipation enlarges the resonant layer of waves, and the
absorption region becomes large such as fwnQ] < /555517511. The
modulation of the cyclotron frequency makes the particles resonate with
waves even when lk"le <L |w~n€2].4 This implies that the ion-Bernstein
mode of k“ = 0 can be absorbed by ion species. The absorbed power in
ICRF heating for toroidal plasma is also evaluated. The evaluation of
the total absorption Eq. (39) is same for the constant B approximation

Eq. (38), assuming that the rf field is constant; the total absorption
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does not depend explicitly on k" as is shown in Refs. [5,7,8].
However, the wave field is affected by the plasma profile, the magnetic
field inhomogeneity and the wave number k". The results on the power
absorption clearly shows the importance to know the global wave form in
the nonuniform and dispersive plasma.

The gradient of the field strength along the magnetic field line,
IVB, | # 0, is also found in a mirror or a bumpy machine. Therefore,
when we launch ICRF wave to such a plasma, an absorption and an
emission of the wave as well as the averaged force (ponderomotive
force) by the wave due to this effect are to be seen.’/ The fact implies
that one must be careful to assume the adiabaticity of particles when
the ICRF waves are used for the end plugging of the mirror machine.
Also implied is that the pitch angle scatterings are enhanced. When a
spontaneous field fluctuation or an instability of this frequency range

12 35 considered, this effective collision may be

like loss cone mode
responsible to the enhancement of the scattering.

The equation (25) is symmetrized with respect to the field and
plasma inhomogeneities.13 Substituting Eqs. (8), (9) and (23) into
Eq. (25), one sees that the representation Eq. (25) is
self—adjoint.l3’14’15 The coefficient 277 in Eq. (25) is originated
from the formulation Eq. (21). The requirement of the self-adjointness
does not uniquely determine the representation of j(?). The consistent

calculation of G is necessar 14.
y
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In order to construct firm bases of the ICRF wave study we have
done one~dimensional kinetic calculations of the wave propagation and
absorption, having clarified the mode characters and the heating
mechanisms. The results are to be reported in a separate paper.16

We here mneglected the trapped particle contribution in deriving
the conductivity tensor. When the trapped particles have coherences

with the considered waves, the effect should be examined, allowing for

future analyses.
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Figure Captions

Figure 1

Figure 2

The real part (a,c) and the imaginary part
(b,d) of & vs. £ for various values of . 1In
the limit £ + 0, & reduces to £Z(E) which 1is

shown by the dashed line.

® is shown in the off-resonant limit, k, = O.
The dashed lines are the analytic evaluation,

Eq. (18).
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