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Abstract

We investigate the eigenmode structure of drift waves in a straight
stellarator wusing the ballooning mode formalism. The electrons are
assumed to be adiabatic and the ions constitute a cold, magnetized
fluid. The "effective potential"” has an overall parabolic envelope but
is modulated strongly by helical ripples along B . We have found two
classes of solutions: those that are strongly localized in local helical
wells, and those that are weakly localized and have broad spatial
extent. The weakly localized modes decay spatially due to the existence
of Mathieu resonances between the periods of the eigenfunction and the

"effective potential,”

In this Letter, we investigate the structure of drift eigenmodes in
a straight stellarator. For a low-beta stellarator, such as Wendelstein

VII-A, the equilibrium magnetic field B 1is, in first approximation,

1

the vacuum solution® which, in cylindrical geometry (r,8,z) with one

ignorable helical coordinate, 1is given by B. = szE(zp) sin fu , By =

2b/p Iz(ﬁp) cos fu , B, = By - szz(lp) cos u . The solutions depend

Z
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only on the dimensionless coordinates p = ar and u = 6 - az , where the
pitch a = n/8R ; n is the number of toroidal, & the poloidal, field
periods of the external helical coils, and 2rR , the periodicity length
of the cylinder. By is a straight, uniform, axial magnetic field
modulated by a helical field proportional to the parameter b . For
4 = 2 stellarators, the existence of nested magnetic surfaces requires

1

b/BO < 1 . The rotational transform for these fields is known and

occurs at second order in b/BO . For Wendelstein VII-A 2, in which the
fields have weak shear, 1 = 0.6 . This corresponds to b/BO ~ 0,58
(2 =2, n=135)

It will be convenient to represent the magnetic field B in the

Clebsch form B = V¥ x VB , where ¥ is the helical flux function, given -

by

2 ‘ :
ByR
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¥ = — - —1 1
a7k (p B, 7 cos zu) R (1)

and B is an angle-like, multiple-valued function of position in a

torus. Then

BxVY
VB = T+ VYA, (2)
V¥

where A = ZW-ZB/]ZY|2 » is proportional to the scalar component of VB .
In order to determine an equation for A , we take the curl of Eq. (2),

and then its dot product with BxVY¥ . We get
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where b = B/B and & = VY/|V¥| . By integrating Eq.A(3) along the field
line with the initial condition A = 0 at s = 0'3 (s is the length along
a field line), we may compute VB(s) .

In Fig. 1, we show a plot of Izslz/lzslg=o along a field line
situated approximately half-way between the axis and the separatrix for
b/BO = 0.58 . The sharp contrast with the analogus cylindrical tokamak
should be noted. Whereas, in a tokamak, IZBIZ is parabolic, in a
straight stellarator, the overall parabolic envelope 1is modulated
strongly by rapid helical ripples along B . This important distinction
will lead to qualitatively different eigenmode structures in the
stellarator problem.

In order to study drift-like eigenmodes in the geometry described
above, we adopt a simple model 1in which the electron .response is
adiabatic, and the ions constitute a cold, magnetized fluid. The
electrostatic eigenmode equation is derived from the quasi-neutrality

condition. The derivation is standard, and we state the result

[
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Here, cg = Te/mi s Pg = cs/Qi , and the other symbols have the usual
meanings. The diamagnetic drift is Vg = - (Te/eB)n—l[dn/dW)%xZW , and
the magnetic drift v4 = 2T./eB b x K o« The first term in Eq. (4) comes

from the parallel motion of ions, the second from the polarization
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drifts, the third from the diamagnetic and curvature drifts, and the
last from the electron response.

Use of the ballooning mode formalism facilitates analysis of the
eigenmode Eq. (4). Let us  consider  perturbations e$/T, =
$(s) exp(img) , with high wavenumber perpendicular to B and varying
slowly along B . Equation (4) reduces approximately to the one-~

dimensional form

2 -
cs 1272 (va + vq)emVB . .
_zd = - ,:mzlzslzpz - _- d + l]d) = & (5)

In order to obtain an appropriate dimensionless form of Eq. (5), we
scale s to kal = 2t /% , which is approximately the connection
length, the frequency ®w to the characteristic acoustic frequency
kocs , and define a mode number parameter y = mw ¢ [VB Ig=0 (analogus to
kipg at s = 0 in the tokamak literature).

The boundary condition as |s| + » is assumed to be of the WKB form,
. and we chose the branch which corresponds to waves with out—-going
energy. Since, by construction, the "effective potential" is symmetric
about s = 0 , the solutions must obey at s = 0 either d$/ds = 0 (even
modes) or $ = 0 (0dd modes). In what follows, we have dealt exclusively
with even modes which are well-known to be the least damped solutions.

Equation (5) has been solved numerically by shooting, using a
sixth—order Numerov scheme. Details have been given elsewhere.4 It
should be emphasized here that thé frequency spectrum is highly

degenerate, and is often difficult to resolve numerically. For the

cases cited below, b/By = 0.58 , the average radius of the flux surface
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rg = (ZW/BOa]l/Z = 0.1 and the density scale-length parameter
L,/R = -(l/n dn/dr]_l/R = 0.05 , which is approximately the same as the
aspect ratio of Wendelstein VII-A.
We have found, consistent with the physical modei, eigenmodes which
are almost marginally stable, with a very small negative imaginary
component in the eigenfrequency w (2 w, + iy , vy < 0) . We classify

them loosely under the two following categories:

(1) Strongly Localized Modes: In Fig. 2, we show a strongly

localized solution for which y = 0.8 . The eigenfunction  decays
rapidly, and is almost entirely contained in the first couple of helical
wells. There is some amount of '"tunnelling" of the eigenfunction
between the first real turning point and the next, but "tunnelling" is
negligible thereafter.

(2) Weakly Localized Modes: In Fig. 3, we show a weakly localized

solution for which x = 0.3 . The helical wells are too shallow to
contain the eigenfunction, and there 1is considerable "tunnelling"
between neighboring turning points. The spatial decay of the eigen-
function is actually due to a novel resonance between the period of the
wave and that of the helical ripple. When the resonance condition is
met, there is constructive interference between the wavelets reflected
by the local barriers provided by the ripples, and the eigenfunction
exhibits a sharp decay over the resonance region.

The nature of the resonance described above may be made somewhat
more precise by modelling the resonance region approximately, using a
Mathieu-like  equation d2$/ds2 + (a + q cos Zs)$= 0, where a and

5

q are slowly varying functions of s . As is well-known”, there are

well~-defined regions in (a,q) space, where the solution to Mathieu’s
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equation is either purely oscillatory ("stable") or decaying
("unstable™), and that the latter class of solution comes about
when a satisfies certain resonance conditions. We have found that
these conditions are indeed approximately satisfied by the effective
potential when the eigenfunction enters the resonance region, and the
spatial decay of the eigenfunction may then be estimated from the
Mathieu exponents for "unstable" solutions. In Figs. 3(a) and 3(b) we
have indicated the first resonance region. Subsequent resonance regions
follow, and provide an effective mechanism for the spatial decay of the
eigenfunction.

It is to be noted that in both the categories described above, the
ion Landau resonance point may £fall beyond the region in which the
eigenfunction is localized, thus validating the fluid ion treatment. In
particular, for the weakly localized solutions, what this means is that
the ion resonance point may actually fall Seyond the first Mathieu
resonance. This raises the interesting possibility that not only the
strongly localized mode, but also the weakly localized mode may be
driven unstable by nonadiabaticity in the electron response caused, for
example, by trapping in the helical wells.

To summarize, we have found almost marginally stable, drift-like
eigenmodes in a straight stellarator. Unlike in a straight tokamak, in
which the parabolic anti-well potential leads only to eigenmodes which
are convectively damped by shear, the helical ripple and thé short
connection length in a straight stellarator allows for the existence to
bound states, either by localization in neighboring helical wells, or by
a resonance between the period of the eigenfunction and that of the

helical ripples on an overall anti-well envelope. Inclusion of toroidal
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effects may introduce, as in the toroidal tokamak problem, an additional

branch in the dispersion equation.6 The dinvestigation of that, and

nonadiabatic effects in the electron response, is left to future work.

This work is supported by United States Department of Energy
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Figure Captions

. 2 2
Fig. 1 V8] /IVB|s=O along a field line on a surface passing through

r=0.1,0=0,z=0, for b/By = 0.58 .

Fig. 2 Strongly localized solution on the same surface as in Fig. 1.

X = 008 and Ln/R = 0005 .

Fig. 3 Weakly localized solution on the same surface as in Fig. 2.

x = 0.3 and Ln/R = 0,05 .
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WAVE FUNCTION
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(a)

w/koCs=4.94-1.151 E-04

(b)




WAVE FUNCTION
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