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Abstract

Tokamak plasma performance can, in theory, be greatly improved if the so called
“resistive wall mode” is stabilized. This can be achieved by spinning the plasma rapidly,
but such a scheme is not reactor relevant. A more promising approach is to apply
external feedback in order to make a resistive shell placed around the plasma act like
a perfect conductor. A scheme is outlined by which a network of feedback controlled
conductors surrounding the plasma can be made to act like a rotating shell. This fake
rotating shell combined with a stationary conventional shell (e.g. the vacuum vessel) can
completely stabilize the resistive wall mode. The gain, bandwidth, current, and power
requirements of the feedback amplifiers are extremely modest. A previously proposed
stabilization scheme (the intelligent shell} is also investigated, and is compared with
the fake rotating shell concept. The main disadvantage of the former scheme is that it

requires a high gain.
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1 Introduction

Present day tokamak performance is often limited by pressure driven external kink modes [1].
The ideal external kink mode can be completely stabilized by placing a perfectly conducting
shell sufficiently close to the plasma [2]. However, the best that a resistive shell can do is to
convert the fast growing ideal mode into the much slower growing resistive shell (or resistive
wall) mode [3]. The resistive shell mode is dangerous because tokamak discharges typically
last much longer than its e-folding time.

There are two possible approaches to stabilizing the resistive shell mode. The first is
to modify the plasma somehow; e.g. by making it rotate rapidly [4]. Unfortunately, it is
difficult to envisage a reactor possessing sufficient plasma rotation to achieve stabilization,
because of the large volume of the plasma plus the fact that neutral beam injection (the most
commonly used scheme for spinning plasmas) must be performed with high energy (i.e. low
momentum) particles in a large device. The second, more reactor relevant, approach is to
modify the shell; e.g. by making it act like a perfect conductor [5]. This paper will investigate

the second approach.

2 The Fake Shell

2.1 Introduction

Consider a large aspect ratio, low 3, tokamak plasma whose magnetic flux surfaces map out
(almost) concentric circles in the poloidal plane. Such a tokamak is well approximated as a
periodic cylinder. Standard cylindrical polar coordinates (r, 8, z) are adopted. The system
is assumed to be periodic in the z direction, with periodicity length 27 Ry, where By is the

simulated major radius of the device. It is convenient to define a simulated toroidal angle

¢ = z/Ro.



2.2 Preliminary Analysis

Consider a fake shell, surrounding the plasma, which is made up of a uniform two dimensional
network of resistors and inductors (see Fig. 1). Let A8 and A¢ be the angular spacings of
the network in the poloidal and toroidal directions, respectively.

Suppose that a current J,(f,¢) flows around the network loop centred on (¢, ¢). The
currents flowing in the network are approximated as a smoothed out distribution with radially

integrated current density 6L,(8, ¢). Now
Jw(aa QS + A¢) - Jw(ga ¢)

6Iw0(6; ¢) o R{]AQ{) ' (1)(8‘)
Bluol,0) = 201 L0D3 O] (1)0b)

where 1, is the minor radius of the network. It is assumed that r,, > a, where g is the minor

radius of the plasma. Approximating J,,(f,¢) as a continuous function gives

1 0.1, 1 8J,
8L, =~ (O’Ea—qb’ —aw) , 2)
so that
§L, &V A (JuB) = VJu AT (3)

Thus, J, (0, $) is the stream function for the effective continuous current distribution flowing
in the fake shell.

The circuit equation for the loop centred on (8, ¢) is

—76Brplaama &A — 7L¢( Jw(& ¢)) - Jw(9 + AG! QS) )
- 'YL¢( Jw(ea ¢) - Jw(ﬂ - Aﬂ, Qf’) )
- 'TLO( Jw(gv (lb) - Jw(ga ¢ + A¢) )

— ’]’Le( Jw(ﬂ,qb) - Jw(93¢' - A¢) )
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Figure 1: Schematic diagram showing e single loop of a uniform two dimensional network
of resistors and inductors surrounding the plasma. The loop is centred on the point (8,¢).
The resistances of the poloidal and toroidal legs of the loop are Ry and Ry, respectively. The
inductances of the poloidal and toroidal legs are Lg and Ly, respectively. The current which
flows around the loop is denoted J, (8, $).

- 4
+ Ry( Jul8,8) — Ju(0+ 20,9))
+ Ro(Ju(6,6) = Jul0 — £6,4))
+ Ro(Ju(6,9) ~ Jul0,6 + £9))

+ RO( Jw(ga ¢’) - Jw(aaqs - A¢) )

Here, v is the growth rate, 6By pmsma(#, @) is the (approximately uniform) radial magnetic
field at the loop due to plasma currents, and AA = r, RpA8A¢ is the area of the loop. It
is assumed that 6By piasma(f, @) varies poloidally and toroidally on angular scales which are

much longer than A# and A, respectively.



Let
B=VA®@E) = VYAE (5)

where ¥(r, 8, ¢) is the perturbed poloidal magnetic flux, and ¥,,(8,¢) = ¥(ry, §,¢) is the

flux in the shell. Consider the m/n external kink mode, for which

P(r,8,¢) = P(r) exp[i (m8 — ng)], (6)(a)
¥,(8, ¢) = U, expli (mb — ng)], (6)(b)
Ju(8, 9) = Ju exp[i (mf — ne)), (6)(c)

where ¥,, = 1]3(1‘,,,). The network currents can only be approximated as a smoothed out

current distribution provided that

mAf < 2r, (7)(a)

nA¢ <« 2x; (7)(b)

i.e. there is very little phase variation of the mode from loop to loop.

The shell stability index for the m/n mode is defined
day /-]
Ay ={r— .
%/ ®
Ampére’s law integrated across the network yields
impodw = Ay U (9)

The perturbed poloidal Alux function ¢(r) can be written in the form

3 = (14 52) Turama() ~ 52 Gudinar(r (10)

2m
outside the plasma, where ﬁplasm(r) is that part of the flux function which is maintained

by plasma currents and Ygen(r) is that part which is maintained by currents flowing in the
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fake shell. Both @plmma and 'J;shell are normalized to unity at the network radius. Note that
'J;\plwm is continuous across the network whereas @mn has a gradient discontinuity. It is

easily demonstrated that

~ p 1w
Yenen () = (r_) for r < ry, (11)(a)
Jaa(r) = (=) forrzm. (11)(b)
It follows from Eqs. (5), (6)(a}, and (10) that
.m Ay =
5B plasmn = i (1 + 5;11) . (12)
Equations (4), (6), and (12) yield
. AN = 5
i ymRoAIAS (1 b %) By ~ —(Ry + vLs)(mAO) o
—(Rp +vLo)(nA$)* Ju. (13)
Equations (9) and (13) combine to give
A = YiomP RoABAP(L + Ay /2m) (14)
* 7 (Ry + 7Lg)(mAG)? + (Ro + vLg) (nAG)*’
which can also be written
Ay
'YTw = 1 _ AW/AC, (]‘5)
where
_ uom? RoAGAP
= Ry(mAO)? + Re(nBg)?’ (16)
and
_ Hom2RoAGAD an
¢ Ly(mA8)? + Lo(nAg)?
Here,
¥ _ o _ B Ad
Ls = Lo o2m AG’ (18)
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Equation (15) can be written in the form
NFu = By, (19)

where A, is the stability index for a shell located at radius

9 1/2m
?wzrw (1+ An:) ) (20)
and
— (1+—2~’f) 21)
w — Tw A, .

Equation (19) is obtained from Eq. (15) by noting that V%3 = 0 in the vacuum region outside
the plasma, so %(r) is a linear combination of #+™ and r~™ solutions in this region. Recall
that the dispersion relation for a conventional resistive shell is vy, = Ay, [6], where A, is the
shell stability index (see Eq. (8) ), and 7, is the time constant (or L/R time) of the shell. It is
clear that the network acts like a complete resistive shell whose radius 7,, is somewhat larger
than 7, (the actual radius of the network). The ideal stability limit corresponds to A, > A,
(or A, — +00). Note that the ideal mode escapes through the holes in the network, so it is
not shielded from the region r > r,,, as would be the case for a complete shell. In fact, the
network acts very much like an incomplete shell. (Equation (15) has the same form as the

dispersion relation for an incomplete resistive shell located at radius 7, [6].)

2.3 The Fake Rotating Shell

Consider, for the sake of simplicity, the limit in which the poloidal inductance and resistance
of the network are negligible. This limit corresponds to n’r,, A¢ < m?RyAf if the inductance
and resistance per unit length are the same in the poloidal and toroidal directions. Suppose
that each loop in the network is accompanied by a high impedance sensor loop of equal area
which measures the local rate of change of the magnetic flux escaping through the network
(see Fig. 2).



The voltage generated in the sensor loop centred on (@, ¢) is V (t) exp[i (m8# —ng)], where

Ay

V(t) =~ _2 (i mRoAGAG (1 + w—) @, (t) + L¢(mA€)2fw(t)) .

dt 2m

This signal can be integrated to give

V(t) = f:l’?(t) dt

A

~ — (i mRoAOAP (1 + -2-1%) U, (1) + L¢(mA6)2fw(t)) ,

(22)

(23)

assuming that the mode amplitude is negligibly small at time ¢ = 0. Suppose that the

integrated signal is amplified by a factor 1/7 and then fed back into the network (see Fig. 2).

The modified circuit equation for the network loop centred on (8, ¢) is

(?(t) T f)(t) _ i}(t) exp( imAe)) exp|i (mfd — ne)

T T

~ Ry(mA8)? ], (t) expli (m8 — ng)),

giving
D) -1 ™8

V(t) =~ Ry(mAO2T,(t).

-

Equations (22) and (25) yield

Aw -~ - o~
i FmRoAGAS (1 + %) B ~ —(Ry + FLg)(mAO)2 T,
where
. miAg
F=9—i .
T
Equations (9) and (26) combine to give
Ay
o i Ty Dl e

Taw 1—Au/A]

(24)

(25)

(26)

(27)

(28)
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Figure 2: Schematic diagram showing a few loops of a uniform two dimensional network
of resistors and inductors, surrounding the plasma, which is subject to feedback. The low
impedance loops containing the resistors and inductors are denoted the power loops (the
resistors and inductors are not shown for the sake of clarity). The signals detected by the
high impedance sensor loops are integrated, amplified, and then fed into the power loops, as
shown.

where
me RpAGA
ro MR, (29)@)
_ Bom?RoA8AS
¢ — E¢(TRA9)2 H (29) (b)
and
wAG
vo = —L —. (30)
Equation (28) can be rewritten in the form
. A,
v -+ 2 (31)

-

where ¥ = vg Fu/Tw, Aw i8 the stability index calculated for a shell located at radius +,
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(see Eq. (20)), and 7, is given by Eq. (21). Equation (31} is the dispersion relation for a
resistive shell located at radius 7, with time constant 7, which is rotating poloidally with
velocity Up. Thus, the feedback causes the network to act like a rotating shell. Note that the
effective rotation velocity is determined by the amplification factor 1/7.

The dispersion relation for the fake rotating shell is conveniently written

AWY) = Ay, (32)
where
Afy) = ﬁ/—g (33)

The corresponding dispersion relation for a conventional shell of time constant 7, is A(y) =

A, where A(y) = 77.
2.4 Stabilization of the Resistive Shell Mode

It is possible to stabilize the resistive shell mode using just the fake rotating shell described
above, but the effective angular rotation frequency needs to be comparable to the growth
rate of the free boundary ideal external kink mode (i.e. prohibitively large) [7]. A more
promising approach is to combine the fake rotating shell with a conventional non-rotating
shell [8].

Consider a plasma surrounded by a complete non-rotating shell (shell 1) and a network

(i.e. a fake rotating shell) (shell 2). The external kink dispersion relation takes the form

(A1 — E1)(As — B2) — (Fr2)* = 0, (34)
where
A1 = YT, (35)(3‘)
__ m
Ay = 15 50/ B (35)(b})

10



This dispersion relation is, in fact, analogous to that for two coupled tearing modes [9].
Here, 11 is the time constant (or L/R time) for the conventional shell, 7 is the effective time
constant of the fake shell (i.e. the equivalent to 1, in the previous analysis), and E,. is the
critical stability index for the fake shell (i.e. the equivalent to A. in the previous analysis).
E, is the shell stability index for shell 1, calculated assuming zero magnetic flux in shell 2.
Likewise, E; is the shell stability index for shell 2, calculated assuming that there is zero
flux in shell 1. Also,
(Er2)

Eioo = E1 — 5 (36)(a)
B = B~ 2L, (36)(b)

are the shell stability indices for shells 1 and 2, respectively, calculated in the absence of the
other shell.
In the vacuum region outside the plasma (r) is just a linear combination of r+™ and

r~™ golutions. It is easily demonstrated that

2
E,= —ﬁ for r1 < 1o, (37)(a)
2m
Ez=—1T (ra/r1)?™
(rofr)*™
T (L= (ra/r1) ™) B f for ry > ry, (37)(b)
and
En= % for r; < 1, (38)(a)
Bio— O forry 2, (38)(b)
with
_ Elm
b2 = T/ B2 + (B B (39
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Equations (34) and (35) yield
Verimo(l — Byf Fae) — vy mEa + 2 Ei(1 — Eaoo/ Eae) — 1§72l — B3/ Fac))
+ [E2E100 — 1021 Ey (1 — Enoo/Eac)] = 0, (40)

where 2y = —mA6#/7 is the effective angular rotation frequency of the fake shell.

Suppose that the time constant of the conventional shell is much greater than that of
the fake shell (i.e. 3 3> 7). This is a realistic ordering since the time constant of a network
(which, by definition, is mostly thin air) is likely to be comparatively short. Suppose, further,
that the effective rotation frequency of the fake shell is of order its inverse time constant

(i.e. |Q2)m2 ~ O(1)). The two roots of Eq. (40) are

~ E]w {1 + (92T2)2(1/E2m - 1/E2c)(1/E2 - I/EQC)}

m 1+ (Q272)?(1/ B2 — 1/ B.)?
i Qom(Eiz/ Es)?
Y (%n) (1B — 1/ Ea)® (1))
112 g — 1um (1)(b)

The first root corresponds to a feebly rotating mode which penetrates the stationary shell
and may, or may not, penetrate the fake rotating shell, depending on its rotation velocity.
The second root corresponds to a mode which penetrates and co-rotates with the fake shell
but does not penetrate the stationary shell.

Suppose that the m/n free boundary external kink mode is only unstable if it can pass
freely through both the real and the fake shell. This implies that E;o, > 0 and E; < 0. It
follows from Egs. (37) that F2 < 0. Thus, the second root of Eq. (40) (i.e. the one which co-
rotates with the fake shell) is unconditionally stable. The first root (i.e. the feebly rotating
one) is stabilized given a sufficiently large rotation rate of the fake shell. This root can be

identified as the “resistive shell mode.” According to Eq. (41)(a), the resistive shell mode is
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stable provided
1

723/ (1/ Baoo — 1/ Eac)(1/ Bac — 1/ Ep)’
Note that stabilization is only possible if the fake shell is located sufficiently close to the

plasma to convert the ideal external kink mode into a resistive shell mode in the absence
of the stationary shell; i.e. if Fpoo < Ep.. The stabilization criterion for the combination
of a stationary shell and a fake rotating shell is basically that the rotation frequency of
the fake shell should be larger than its inverse time constant [8]. In general, this is a far
smaller rotation frequency (either of the plasma or the shell) than that needed to stabilize

the resistive shell mode in the presence of a single shell.

2.5 The “Chicken Wire” Shell

As a simple example, suppose that the network of inductors and resistors discussed in previ-
ous sections is, in fact, a network of uniform wires of diameter d. The poloidal and toroidal

resistances are

_ dr, A0

R9 o O'wﬂ'dg ’ (43)(3)
4R, AP

== 43}(b
Re= 2%, (43)(b)

respectively, where oy, is the conductivity of the wire. It follows from Eq. (16} that

o T HoTwd
where
md?

w & —— 45
o 4r. A8 (45)

is the thickness of the uniform shell which contains the same volume of metal as the wires.

Here, it is assumed that

niry,Ad € mERyAL. (46)
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According to Eq. (44), the time constant of the network is approximately the same as that
which would be obtained by melting down the wires and recasting them as a uniform shell
(with the same minor radius as the network).

The poloidal and toroidal inductances are (see Appendices A and B)

Lomrotofe (e (H20)), (4n)(a)
Ly~ Ropg 22 (@ Fin (’"‘ﬁe) + O(mAG)) , (47)(b)

respectively. Thus, according to Eq. (17)

27

Be ™ RGin(roAb/dn)

(48)

Note that O(nr.,/mRy) is negligible (by definition) in the large aspect ratio, low 8 tokamak
limit. Equation (48) implies that if the network is fine (i.e. A@ < 27} then it is difficult for
an external kink mode to escape between the wires (i.e. A; > 1). However, if the wires are

very thin (i.e. d < 7y) then it becomes easier for the mode to escape (i.e. A is reduced).

2.6 Summary

In Section 2.2 it is demonstrated that if a tokamak plasma is surrounded by a network of
resistors and inductors then the network acts like an incomplete resistive shell as far as its
effect on external kink modes is concerned. Section 2.3 shows that a simple feedback scheme
applied to such a network causes it to act like a fake rotating shell. It is demonstrated in
Section 2.4 that the combination of a stationary shell and a fake rotating shell is able to
completely stabilize the resistive shell mode. Some important parameters are calculated in

Section 2.5 for the specific case of a network made up of uniform cylindrical wires.
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Pigure 3: Schematic diagram showing part of the intelligent shell, which is a two dimensional
array of close fitting coils surrounding the plasma. A currvent J,(0,¢) circulates around the
loop centred on (0, ¢).

3 The Intelligent Shell

3.1 Imntroduction

It is instructive to compare the stabilization scheme for the resistive shell mode which is
outlined in Section 2 to the most promising scheme currently in the literature; namely, the

“intelligent shell” [5].

3.2 Preliminary Analysis

Consider a shell made up of a two dimensional array of close fitting coils (see Fig. 3). Let
Af and A¢ be the angular spacings of the centres of the coils in the poloidal and toroidal
directions, respectively.

Suppose that a current J,, (6, ¢) flows around the coil, or loop, centred on (¢, ¢). The
currents flowing in the array are approximated as a smoothed out distribution with radially

integrated current density &I,(8,¢). It is easily demonstrated that 81, ~ VJ, AT (see
Eq. (3)).

15



The circuit equation for the loop centred on (8, ¢) is
— % 8By plasma AA — ¥LJ,y = RJy, (49)

where AA = r,RoA8A¢ is the area of the loop, L is its inductance, and K is its resistance.

Equations (6) and (12) yield

iymReAGAS (1 + ?—;) $o = —(R++vD)Jo, (50)
which can be combined with Eq. (9) to give
A,
’YTW - 1 _ Aw/Ac’ (51)
where
2
R
and
2
A, — Ko™ Reb0AS (53)
Here,
N 2
§ o Hom RQABAgb. (54)

2m

Note that Eq. (51} has the same form as the dispersion relation for an incomplete resistive
shell of time constant 7, located at radius ry, [6]. The m/n external kink mode is ideally
unstable whenever A,, > A.. The ideal mode escapes through the centres of the loops, so it

is not shielded from the region r > ry,, as would be the case for a conventional shell.

3.3 Feedback

Suppose that each loop in the array (these are termed power loops) is accompanied by a loop
of equal area connected to a high impedance voltage sensor which measures the local rate of
change of the magnetic flux escaping through the array (see Fig. 4). Suppose, further, that

the signal detected by the sensor loop is amplified by a factor G and fed into the associated
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power loop. The voltage detected by the sensor loop centred on (6, ¢) is V exp[i (mé — ng)],

where

7~ —y (imRoAGAqb (1 + ﬁ—f:) T + Lf,,,) . (55)

The modified circuit equation for the power loop centred on (8, ¢) is

(1+G)V = RJ,, (56)
which gives the dispersion relation
. A,
Yo = T TAL AL (57)
where
Tw = (1 + G)1y. (58)

Thus, the feedback increases the effective time constant of the shell by a factor 14 G. Clearly,
if the gain G is made sufficiently large then it is possible to make the effective time constant
longer than the pulse length of the tokamak discharge. In this case, the shell acts, to all
intents and purposes, like an ideal conductor and is, therefore, able to completely stabilize
the external kink mode. Note, however, that stabilization is only possible if the array of
coils is located sufficiently close to the plasma to convert the ideal external kink mode into

a resistive shell mode; i.e. if A, < A,

3.4 Example

Suppose that the intelligent shell is made up of closely interlocking eylindrical conductors
(see Fig. 5). Let d be the radius of the outer conductor and d — ¢ the radius of the inner
conductor, where ¢/d < 1. Suppose that both conductors possess the same cross sectional
area, §A/2. Consider, for the sake of simplicity, the limit in which the poloidal inductance
and resistance of the network are negligible. This limit corresponds to r, A8 < RyAd¢ if the

inductance and resistance per unit length are the same in the poloidal and toroidal directions.
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Figure 4: Schematic diagram showing the feedback scheme for a single element of the intel-

ligent shell. The signal detected by the high impedance sensor loop is amplified and then fed
into the low impedance power loop.

outer conductor inner conductor
amplifier — - o w raY /
sensor loop AB

-

FiY
' )
- A =
L¢ ¢

Figure 5: Schematic diagram showing a single coil in a particular implementation of the
intelligent shell in which the coils consist of interlocking cylindrical conductors (e.g. co-azial
cables). Those conductors which are shown unconnected in the diegram, in fact, form parts of

the circuits of the surrounding coils. Every coil in the array is connected up in an analogous
manner.
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The resistance of a loop is given by

R~ %, (59)
where oy, is the conductivity of the conductors. It follows from Eq. (52) that
. (m§9)2 10T uTu b, (60)
where
bw = rf,zﬂ (61)

is the thickness of the uniform shell which contains the same volume of metal as the conduc-
tors. Clearly, the time constant of the array is significantly less than that which would be
obtained by melting down the conductors and recasting them as a uniform shell (with the
same minor radius as the array).

The inductance of a loop is given by

~ o C 2 & L TwA9
L= RoA¢E2S + (mAG) RoAg5S (mM +ln( 2 )) (62)

where use has been made of Appendix B. The first term on the right-hand side of the above
expression comes from magnetic fields trapped in the regions between the inner and outer

conductors. The second term comes from fields which leak outside the conductors. According

to Eq. (563),
_ 27 (mAS)? In(r,A8/d )
~ A8n(r,A8/dw) c/d + (mAFY In(r,A8/dn)

It can be seen, by comparison with Eq. (48), that the fields trapped between the inner

Ac

(63)

and outer conductors significantly increase the inductance of an array of independent coils
compared to that of a similar network. The net result is that it is easier for an ideal
mode to escape through an array of unconnected conductors than through a network of
interconnected conductors of similar dimensions (i.e. A, is smaller in the former case). Note

that if the array is fine (i.e. mA# < 1) then it is particularly easy for an ideal mode to
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escape into the region r > r,,. However, if the inner and outer conductors are extremely
closely spaced (i.e. ¢/d — 0) then the inductance of the array approaches that of a similar

network.

3.5 Summary

In Section 3.2 it is demonstrated that if a tokamak plasma is surrounded by an array of
unconnected coils then the array acts like an incomplete resistive shell as far as its effect on
external kink modes is concerned. Section 3.3 shows that a simple feedback scheme applied
to such an array causes its effective time constant to increase. According to Section 3.4,
the intrinsic time constant of an array of coils is very much smaller than that of a similar
network. Moreover, the inductance of an array is much larger than that of a similar network.
Consequently, it is much easier for an ideal mode to escape through an array of unconnected

coils than through a network of interconnected conductors.

4 Practical Considerations

4.1 Introduction

Tn any feedback scheme the four most important parameters are the gain G of the amplifiers,
the bandwidth A f of the signals to which they must respond, the current 7 which they need
to supply, and the power P which they must put out. In this section these parameters are

estimated for both the fake rotating shell and intelligent shell concepts.

4.2 The Fake Rotating Shell

The gain, G, is defined as the ratio of the voltage generated in a sensor loop to that which is

put out into the network by the associated amplifier. 1t is easily seen from Section 2.3 that

G=—. (64)
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It follows from Section 2.4 that the critical gain needed to achieve stabilization of the resistive

shell mode is

o7 E2)2 1/ Bz — 1/ E2
Ge = mAl (E]Q (]./Egm - 1/E2c ’ (65)
where
miAl = m. (66)
T

Here, 74 is the resistance per unit length of the toroidal legs of the network. Recall that =
is the time constant of the stationary shell, 7, is the effective time constant of the fake shell
produced by the network, Fax is the shell stability index for the fake shell calculated in the
absence of the stationary shell, and B, is the critical value of Fp. above which the ideal
externa) kink mode becomes unstable. It follows from Egs. (37)—(39) that

__n (1 + Ezoe/2m)(ra/r1)*™ — Eooe/2m
mAG ™ 1— E2w/ EQc

G, (67)

Here, r, is the radius of the stationary shell and r; is the radius of the network. It is assumed
that 7y > 74 in Section 2.4 so it follows from Eq. {67) that G. > 1/mA#8. It also follows
that the optimum position for the network is that it should be placed as close as possible to

the plasma. Note, however, that if

ng/2m 1/2m
e < T (m) (68)

then a mode which co-rotates with the fake shell but does not penetrate the stationary shell,
and grows on the relatively fast timescale 7, becomes unstable (see Section 2.4). The most
sensible position for the network is just outside the stationary shell. In this configuration

the critical gain is relatively small, i.e.

i3 1

Ce = AGm 1= Ea/Ea’

(69)

and the stationary shell shields the network sensor loops from any extraneous high frequency

signals generated by the plasma. Thus, the bandwidth of the signals detected by the feedback
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amplifiers is

1
Af ~—.
fr (70)
It is easily demonstrated that
_ Y 1/2m
F=ra (14 —EM) , (71)

where 7 is the critical radius of a perfectly conducting shell surrounding the plasma for which
the m/n free boundary ideal external kink mode is marginally stable. It is sometimes con-
venient to use 7, instead of Ejs, to parameterize the stability of the plasma. Equation (69)

can be written
(7)™ — (r)*™

Ce= Adm (F)2m — (7p)2m™’ (72)
where
9 1/2m
Py =1 (1 + —m) (73)
E2c

is the effective radius of the fake shell (see Eq. (20)).

The voltage put out by a particular amplifier is V' ~ b,AA/7, where b, is the local radial
magnetic field and AA is the area of a network loop. The current put out by the amplifier
is given by I ~ V/Ry. 1t follows that

ro b, mAG
I~ ==
o M

(74)

where use has been made of Eq. (29)(a) and 2215 ~ O(1). The power put out by the amplifier

is P ~ V1, yielding
T2 (b )? AA

P 7
Ho M T2

(75)

Consider a specific example. Suppose that the minor and major radii of the plasma are
a =1 m and Ry = 3 m, respectively. Suppose that the m = 2/n = 1 free boundary external
kink mode is unstable. Suppose that the stationary shell and the network are both located

1.1 minor radii from the centre of the plasma (i.e. ry = r; = 1.1a). Suppose that there are
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20 network loops in the poloidal direction and 10 in the toroidal direction; i.e. A6 = 27/20
and A¢ = 2r/10. Suppose that the stationary shell is made of 5 mm thick stainless steel of
resistivity 7.2 x 10~7 Qm [10]. Finally, suppose that the network is made of 2.5 mm diameter
copper wires of resistivity 1.7 x 107® &tm [11}.

The time constant of the stationary shell is r; = 9.6 ms. The effective time constant of
the fake shell is 7, = 1.2 ms (see Eq. (44) }. The critical shell stability index for the fake shell
is Ep. = 6.5 (see Eq. (48)). This implies that the fake shell acts like a conventional shell
whose effective radius is 7, = 1.24a {see Eq. (73) ). The critical gain needed to stabilize the

resistive shell mode is (see Eq. (72) )

(7/1.24)* — 0.62
(F/l2d) —1 ’

G, ~13 (76)

where 7 is measured in meters. The bandwidth of the signal detected by each amplifier
is Af ~ 100Hz. The current which each amplifier needs to provide is I ~ 145, A (see
Eq. (74) ), where b, is measured in gauss. Finally, the power drawn from each amplifier is
P~ 1.2(b.)*W (see Eq. (75)).

It can be seen that the gain, bandwidth, and power requirements of the fake rotating shell
concept are extremely modest. The current requirement is more onerous (for instance, each
amplifier must supply over 100 amperes in order to stabilize a modest 10 gauss perturbation)

and is likely to be the limiting factor for this scheme.

4.3 The Intelligent Shell

For the intelligent shell concept the gain needed to stabilize the resistive shell mode is
G ~ T,/Tw, where 7, is the effective time constant of the shell and 7, is the pulse length
of the discharge. The bandwidth of the signals detected by the feedback amplifiers can,
in principle, be quite large unless the intelligent shell is shielded from the plasma by a

conventional shell (i.e. the vacuum vessel). Assuming that the mode grows on the slowed
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down time constant of the shell (i.e. v Gr, ~ 1), the current which each amplifier needs to

supply is
roby 1
I~ —.
P (77)
The power drawn by each amplifier is
2
p.Tu (b,)* AA (78)

o MATy,

Consider a specific example. Suppose that all of the parameters are the same as in the
previous section, except that there is no stationary shell (or, equivalently, the time constant
of the stationary shell is much less than the effective time constant of the intelligent shell),
and the network is replaced by an array of interlocking copper conductors whose total cross
sectional area is the same as that of a 2.5mm wire. Suppose that the outer radius of the
conductors is 5mm and that the ratio of the spacing of the inner and outer conductors to
the radins of the outer conductors is 0.2 (i.e. ¢/d = 0.2). Suppose, finally, that the pulse
length of the discharge is 10 seconds.

The effective time constant of the intelligent shell is 7, = 0.11ms (see Eq. {60)). The
critical shell stability index for the array is A, = 5.6 (see Eq. (63)). This implies that
the array acts like a conventional shell whose effective radius is 1.26a. The amplifier gain
required to stabilize the resistive shell mode is G ~ 9 x 104, The bandwidth of the signal
detected by each amplifier is similar to that for the fake rotating shell provided that the
intelligent shell lies outside the vacuum vessel. The current which each amplifier needs to
supply is I ~ 225, A. Finally, the power drawn from each amplifier is P ~ 13 (b,)*W.

It can be seen that the current, bandwidth, and power requirements of the intelligent
shell are similar to those of the fake rotating shell. However, the intelligent shell concept
requires a large amplifier gain. This is likely to lead to control engineering problem (large

gain amplifiers are prone to instabilities) and is certainly the limiting factor for this scheme.

24



4.4 Summary

The gain, bandwidth, current, and power requirements of the fake rotating shell concept lie
well within the range of cheap, reliable, and readily available amplifiers. The intelligent shell

concept only works with expensive (and unreliable) high gain amplifiers.

5 Summary and Conclusions

In Section 2 it is demonstrated that a network of conductors surrounding a tokamak plasma
acts very much like an incomplete resistive shell as far as its effect on the free boundary
external kink mode is concerned. It is further shown that a simple feedback scheme applied
to such a network causes it to act like a rotating resistive shell. As is well known [8],
the combination of a stationary and a rotating shell can very easily stabilize the resistive
wall mode. In Section 3 it is demonstrated that an array of independent coils surrounding a
tokamak plasma also acts like an incomplete resistive shell. A simple feedback scheme applied
to such an array causes its effective L/R time to increase [5]. In principle, the L/R time
could be made longer than the pulse length of the plasma, but this requires extremely high
gain feedback. It is shown that a network of interconnected conductors has a significantly
longer L/R time than a similar array of unconnected coils. Furthermore, a network is better
able to contain an external kink mode than an array. In Section 4 it is demonstrated that
the fake rotating shell stabilization scheme outlined in Section 2 can be implemented with
low gain, low bandwidth, low current, low power amplifiers.

The feedback gain needed to stabilize the resistive wall mode in the fake rotating shell
concept is so low (see Section 4.2) that the required amplification of the signals detected by
the feedback circuits could, in principle, be achieved by using multi-turn sensor loops. In
other words, the sensor loops shown in Fig. 2 could consist of twenty (say) turns of wire,

instead of a single turn (as shown in the figure). This would automatically amplify the
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detected signal by a factor twenty, which would probably be sufficient for stabilization of the
resistive shell mode. The signal could then be integrated and then fed into the main network.
The primary constraint on the fake rotating shell concept is the fact that the signals detected
by the feedback circuits have to be accurately integrated over a long time period (i.e. the
pulse length of the discharge). If the integrated signals become inaccurate after some time 7',
say, then one would expect the resistive shell mode to reappear as a mode growing through
both the real and the fake shells on about the timescale 7. The need for integration could
be completely avoided by using Hall probes rather than sensor loops for signal detection in
the feedback circuits.

There is an interesting difference in the basic stabilization strategy employed by the
intelligent shell and the fake rotating shell concepts. In the former scheme, the feedback
circuits detect magnetic flux leaking through the vacuum vessel and attempt to push it back
through the vessel (i.e. radially inwards). In the latter scheme, the feedback circuits detect
flux leaking through the vacuum vessel and attempt to push it sideways (i.e. in the poloidal
direction). This has the effect of causing the mode leaking through the vessel to rotate. The
mode is then suppressed by eddy currents excited in the vacuum vessel. Thus, in the fake
rotating shell concept most of the work is done by the vacuum vessel. This is in marked
contrast to the intelligent shell concept, where all of the work is done by the feedback circuits.
Hence, the low gain required by the former concept, and the very high gain required by the
latter.

It is important to check that the feedback controlled network described in Section 2,
which is central to the fake rotating shell concept, is intrinsically stable. This is done
in Appendix C. It is demonstrated that if the fake rotating shell scheme is expected to
stabilize resistive shell modes whose maximum poloidal and toroidal mode numbers are m
and n, respectively, then the minimum number of network cells in the poloidal and toroidal

directions required to achieve this is 2m + 1 and 2n + 1, respectively. Thus, in principle,
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it is possible to stabilize the 1/1, 2/1, and 3/1 modes simultaneously by using a network
consisting of four cells in the toroidal direction and eight in the poloidal direction. That is,
a total of thirty two interlinked feedback controlled circuits.

In conclusion, the fake rotating shell concept appears quite capable of stabilizing the
resistive shell mode in a long pulse tokamak discharge at relatively low cost using existing
technology. This scheme is more reactor relevant than the alternative approach of forcing

the plasma to rotate rapidly.

Acknowledgments

One of the authors (R.F.) is indebted to General Atomics of La Jolla, CA, for the hospitality
shown during his visit in the Summer of 1995.

This research was funded by the U.S. Department of Energy under contracts DE-FGO5-
80ET-53088 and DE-AC03-89ER-51114.

27



Appendices

A Estimation of Ly

Consider the network of wires described in Section 2.5. The current flowing in poloidally di-
rected wires is approximately constant over a poloidal wavelength, 7r,, /m. Thus, a poloidally
directed wire can be approximated as a wire carrying a uniform current provided that the
perpendicular distance from the wire is much less than the poloidal wavelength. This ap-
proximation breaks down at the Nth wire distant from the wire in question, where

T s

mRyA¢

Assuming a uniform phase variation of the poloidal current from wire to wire (since the

> 1. (A.1)

poloidal wavelength is much less than the toroidal wavelength) the currents flowing in each
wire are as indicated in Fig. 6. Thus, the poloidal inductance of a given network loop can

be crudely approximated as

o [ (2R Ly 2 08
ngrwAG%_ [ln( 7 +2ln1+3ln2 —I—J’\"lnj,\}r_1 , (A.2)
which reduces to
Ho Ty RyAg
Lg ~ roA8 o (mRoAqb +1In (_d ) + O(In N)) . (A.3)

In Eq. (A.2) the contributions from wires whose perpendicular distances from the loop in
question exceed the poloidal wavelength are assumed to be negligible. A more exact calcu-
lation of the poloidal inductance using the Biot-Savart law yields essentially the same result

that given above.

B Evaluation of Ly

Consider the network of wires described in Section 2.5. In a large aspect ratio tokamak the

toroidal wavelength of the m/n mode is much greater than its poloidal wavelength, so any
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Figure 6: Schematic diagram showing the array of poloidal currents used to estimate Lg.
Here, I, 21, etc. denote the currents flowing in each wire.

phase variation of the network currents in the toroidal direction can be ignored. In fact,
the system can be treated as a set of infinite toroidal wires each carrying a uniform current
whose phase varies slowly from wire to wire in the poloidal direction (see Fig. 7).

The toroidal inductance term in Eq. (4) actually represents

V = —yRoAd ;‘—; [1(9) In (2"‘“dM) — (6 - AG)In (2’““;?6)

+I(6 + A9) m% 16— 2A8) ln%

10+ 2A0) mg _ I(6 - 300) lng 4. ] , (B.1)
where
10+ 5A8) = Jo(0 + jAB) — Ju(8 + G + 1)A8)

8 (0 + (7 + 1/2)A0)

~ —Ag 50

(B.2)
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Figure 7: Schematic diagram showing the array of toroidal currents used to evaluate Ly.

Thus,

V = —vRoA8 % 2mAG T, exp(imb) [sin(mA9/2) In (

+sin(3mAG/2)In 2 + sin(5mA0/2)In S+,

where use has been made of Eq. (6)(c). Now

v

Ly = RoA¢ %% (sina ln( 7

where

and

= —y(mA8)* T, exp(imb) Ly,

2r,Af

mAf
CI=--—§—<<1,

) ).

I= isin( (2n + 1)a)1n(1 +%).

It is easily demonstrated that

n=1

I= % — aln2r + O(a?).
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Thus,

27 \ mAd dm

Note that this calculation neglects the curvature of the network, so the result is only accurate

Ls= RoAg £2 ( LS, M (T"’—M) + O(mAG)) . (B.9)

for m > 1.

C Network Stability

It is important to verify that the feedback controlled network discussed in Section 2 is
intrinsically stable. Consider, for the sake of simplicity, the limit n’r,A¢ <« m?*RoA¢ in
which the poloidal inductance and resistance of the network are negligible. In the absence
of plasma (i.e. 6B, plasma = 0) the circuit equation (4) for the network without any feedback

yields

__hR
Y=L, (C.1)

A slight generalization of the analysis used in Appendix B, in order to deal with modes of

arbitrary poloidal wavelength, yields

Lo(a) = RoAg % [111 (m,,;m) + J(a)] , (C.2)
where
a= 7_”%3_9_, (C.3)
and
J(a) = E sin( (Z:.Z Da)y, (1 + %) . (C.4)
Note that
J(a+ kn) = J(a), (C.5)(a)
J(x — a) = J(a}, (C.5)(b)
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where k is an integer. It is easily demonstrated that J(a) is a monotonically decreasing

function of « in the range 0 < o < 7/2. For a « 1,
J(a) ~ % — In(27) + O(a). (C.6)
The minimum value of J{a) occurs when a = 7/2; in fact,
J(m/2) = - In{n /2). (C.7)

Note that Le(7/2) > 0, since r,A8 > d (i.e. the poloidal spacing between the wires always
exceeds their diameter) and In2 > In(7/2). Thus,

L{a) >0 (C.8)

for all a. This demonstrates (from Eq. (C.1)) that the network is never unstable in the
absence of feedback. The network is marginally stable to modes whose poloidal wavelength
divided by an integer equals the poloidal wavelength of the network. Such modes excite no
eddy currents in the network, by symmetry, hence their energy cannot be dissipated by joule
heating in the wires making up the network (this is the usual mechanism by which modes
are damped).

According to Section 2.3, the feedback controlled network satisfies the circuit equation

vt (1 + exp(imAf)) B _%’ (C.9)
T ¢

which reduces to the dispersion relation

sina)? .
() = _L‘ﬁz) 9 { 1r‘1ra) ; sm‘r2a. (C.10)

Note that
Y(a + kr) = v(a), (C.11)

where k is an integer. According to Eg. (C.10), the feedback controlled network is never

unstable, but is marginally stable to modes whose poloidal wavelength divided by an integer
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equals the poloidal wavelength of the network. Such modes satisfy
a = km, (C.12)

where k is an integer. Feedback gives rise to enhanced damping of modes for which o # k=.
The feedback also causes the modes to propagate; i.e. it causes the network to act like it is
rotating. However, the network appears non rotating to all modes whose poloidal wavelength

divided by an integer equals twice the poloidal wavelength of the network. Such modes satisfy
1

where k is an integer.

According to the main text, the network is only capable of stabilizing a given resistive
shell mode if it appears to possess a positive (i.e. non zero) inductance and a non zero effective
rotation velocity to a mode with that poloidal wavelength. This is guaranteed to be the case
if

T
o << *é‘ (014)

Suppose that the network is required to suppress all resistive shell modes whose poloidal
wavenumbers lie in the range 1 through m. According to Eq. (C.14), the ménimum number

of network cells in the poloidal direction needed to achieve this is
M=2m+1. (C.15)

Here, Af = 2x/M. Likewise, if the network is required to stabilize all resistive shell modes
whose toroidal mode numbers lie in the range 1 through N, then the minimum number of

network cells in the toroidal direction needed to achieve this is
N=2n+1 (C.16)

Here, A¢ = 2w /N. Tt is advantageous to have M > 2m + 1 since this reduces the L /R time
of the network and, therefore, brings down the feedback gain required for stabilization of the

resistive shell mode. Likewise, it is advantageous to have N > 2n + 1.
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