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Abstract

In nearly all magnetic fusion devices the plasma is surrounded by a conducting
shell of some description. In most cases this is the vacuum vessel. What effect does a
conducting shell have on the stability of external kink modes? Is there any major differ-
ence between the effect of a perfectly conducting shell and a shell of finite conductivity?
What happens if the shell is incomplete? These, and other, questions are explored in
detail in this lecture using simple resistive magnetohydrodynamical (resistive MHD)
arguments. Although the lecture concentrates on one particular type of magnetic fu-
sion device, namely, the tokamak, the analysis is fairly general and could also be used
to examine the effect of conducting shells on other types of device (e.g. Reversed Field

Pinches, Stellerators, etc.).



1 Introduction

In the earliest tokamaks the plasma was surrounded by a close fitting, thick conducting shell
whose L/R time was much longer than the typical pulse length of the discharge. Image
currents in the shell held the plasma equilibrium in place without the need for feedback and
also stabilized external kink modes. The shell contained an insulating break at at least one
toroidal location in order to allow the poloidal magnetic field to diffuse into the plasma.
There are a number of disadvantages associated with a thick shell. First, a thick shell is
obviously not relevant to the final goal of fusion research, which is a steady state reactor.
Second, it is very difficult to diagnose a plasma which is encased in inch thick metal. Finally,
the insulating breaks in a thick shell gives rise to induced error fields whenever the poloidal
magnetic field is changed. Error fields can cause problems in tokamak plasmas. Modern
tokamaks have generally dispensed with thick shells and instead employ thin shells whose
L/R times are significantly less than the pulse length. These shells are not necessarily close
fitting and are often incomplete. The use of a thin shell necessitates feedback control of the
horizontal (and vertical) position of the plasma. But, what effect does a thin shell have on

the stability of external kink modes?

2 Newcomb’s Criterion

External kink modes are fast growing MHD instabilities whose growth rate, v, is moderated
by plasma inertia. Plasma viscosity and resistivity play no significant role for these modes.
The linear stability problem can be posed as a real second order differential equation for the
plasma displacement in which inertia appears as a 4* term. Physical boundary conditions
must be satisfied at the magnetic axis and also far from the plasma. The displacement func-
tion is undetermined to an arbitrary multiplicative constant (since this is a linear problem).

An appropriate choice of 42 allows both boundary conditions to be satisfied simultaneously.



If 42 < 0 then two purely oscillatory modes are obtained. These modes are part of the Alfvén
wave continuum and are damped by various kinetic effects (e.g. Landau damping) which are
not taken into account in magnetohydrodynamics. If 4% > 0 then a growing and a decaying
mode are obtained. The growing mode (which grows on the characteristic hydromagnetic
timescale of the plasma) corresponds to the external kink mode.

Newcomb’s criterion is a neat trick by which one can discover whether or not the external
kink mode is unstable in the absence of a conducting shell using just the marginally stable
equations of ideal MHD; i.e. by neglecting plasma inertia, as well as plasma viscosity and
resistivity. Newcomb’s criterion does not yield any information about the growth rates of
unstable modes. This is generally not a problem since external kink modes are such fast
growing modes that their growth rates are of only academic interest (i.e. it does not really
matter to an experimentalist whether the mode destroys the plasma in one microsecond or
five microseconds; to all intents and purposes a plasma which is unstable to an external kink
mode is useless). Newcomb’s criterion is easy to explain but is surprisingly difficult to prove
mathematically. Hence, a mathematical proof in not attempted in this lecture.

Consider a large aspect ratio, low 3, tokamak plasma which is approximated, in the
usual manner, as a periodic cylinder. Conventional cylindrical polar coordinates (r, 6, ¢)
are adopted. It is convenient to define a simulated toroidal angle ¢ = z/Ro, where Rg
is the simulated major radius of the plasma. The equilibrium magnetic field is written

B = (0, Bo(r), Bs), and the associated plasma current takes the form j = (0,0, js(r) ), where
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Equilibrium magnetic field lines satisfy the differential equation
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where the “safety factor”
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parameterizes the helical pitch of the field lines. In a conventional tokamak plasma the
safety factor is a monotonically increasing function of the flux surface radius 7. Furthermore,
g~ O(1).

Consider the stability of an external kink mode with m periods in the poloidal direction
and n periods in the poloidal direction. The perturbed magnetic field and the perturbed

plasma current can be written in terms of a flux function:

sB=VYAZ, (4)(a)
1obj =V AB = —V*) 2, (4)(b)

where
Y(r,0,¢,t) = 3(r) exp[i (md — ng)] )

for a marginally stable mode. The linearized, marginally stable, ideal MHD force balance

equation takes the form

—VUsp+8AB+jASB =0, (6)

where 6p is the perturbed plasma pressure. The curl of the above relation yields the “cylin-

drical tearing mode equation,”
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in the large aspect ratio limit.

Suppose that a marginally stable test solution ¢ (i.e. a solution to Eq. (7)) is launched
from the magnetic axis and integrated past the edge of the plasma (r = a, say) out to large r.
The launch conditions are adjusted so that the solution is well behaved close to the magnetic

axis. The physical boundary condition to be satisfied at large r is 9(r) — 0 as 7 — oo.
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Figure 1: A schematic diagram showing the relationship between unstable, oscillatory, and
marginally stable test solutions.

Newcomb’s criterion hinges on the following very simple observation. Suppose that, instead
of Eq. (7), a differential equation which takes plasma inertia into account is used to evolve
¥ out to large r. The function 9(r) curls over move than the marginally stable solution if
4% < 0 and less than the marginally stable solution if 4% > 0. This is illustrated in Fig. 1.
Suppose that the marginally stable test solution never crosses the axis (¢ = 0) asr — oo
but instead blows up to +oo. This solution clearly does not satisfy the correct boundary
condition at large r. However, according to Fig. 1, a judicious choice of v* < 0 can cause
an oscillatory test solution to curl over more than the marginally stable solution so that it
is bounded as 7 — oo. This is illustrated in Fig. 2. Suppose that the marginally stable
test solution crosses the axis at finite 7 and blows up to —oo. This solution also does not
satisfy the correct boundary condition at large r. However, according to Fig. 1, a judicious
choice of 42 > 0 can cause a growing or decaying test solution to curl over less than the
marginally stable solution so that it is bounded as r — oo. This is illustrated in Fig. 3.

Thus, Newcomb’s criterion can be expressed as follows:

If a marginally stable test solution, launched from the magnetic axis and inte-
grated to large r, changes sign before reaching r = oo then the external kink

mode is unstable. Otherwise, it is stable.
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Figure 2: A schematic diagram showing how the large r boundary condition is satisfied when
the marginally stable test solution does not cross the axis.

Figure 3: A schematic diagram showing how the large r boundary condition is satisfied when
the marginally stable test solution crosses the axis.



The test solution 9(r) is completely specified by two parameters; its amplitude ¥, = 9(a)

at the edge of the plasma, and
o di
mV¥, dr| _,

A=— )

The former parameter is arbitrary in a linear problem, so the stability of the external kink
mode is completely determined by the single parameter A. In the vacuum region outside
the plasma (i.e. 7 > a) the ideal MHD force balance equation, (7), yields Vi = 0. Tt
follows that 7(r) is a linear combination of r*™ and r~™ functions in this region. It is easily

demonstrated that

d)(r>a):%((1—)\) ) +a+n (g)_m) (10)

Another way of expressing Newcomb’s criterion is that the external kink mode is unstable if

P(r — 00) /¥, < 0. It follows from Eq. (10) that the criterion for instability is
A> L (11)

Equation (7) can be integrated to give

3.;5) m
= /[Bg(m nq) __1:] yr, (12)

where use has been made of ¥ & r™ as — 0. In the above formula, all lengths are normalized
to the minor radius, a, and ¥(r) is normalized to unity at 7 = a. In a conventional tokamak
plasma jj < 0 and By > 0. Moreover, the m/n external kink mode is only relevant when the
rational surface, defined q(r;) = m/n, lies outside the plasma. When the rational surface
moves inside the plasma the m/n external kink modes converts into a tearing mode. It
follows that m > ng in the above formula. Clearly, the first term in Eq. (12), which involves
the current gradient, is destabilizing, whereas the second term is stabilizing. An external
kink mode becomes more unstable as its rational surface approaches the edge of the plasma

(i.e. m — ng — 0) but becomes more stable as its poloidal mode number increases.
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3 Effect of an Ideal Shell

Suppose that the plasma is surrounded by a perfectly conducting shell whose inner radius
is 7, (where 7, > a). How is the stability of the external kink mode affected? The physical
boundary condition at the shell is %(r,,) = 0. Similar arguments to those employed above

yield a modified form of Newcomb’s criterion:

If a marginally stable test solution, launched from the magnetic axis and inte-
grated to large 7, changes sign before encountering an ideal shell then the external

kink mode is unstable. Otherwise, it is stable.

This rule can be summed up as the requirement that 1 (ry,)/ ¥, < 0 for instability. According
to Eq. (10), the m/n external kink mode is only unstable in the presence of an ideal shell

provided
_ 1+ (a/rw)*™
— 1= (a/re)™

This is a more onerous criterion to satisfy than Eq. (11). In particular, as the inner radius of

A> A (13)

the shell approaches the plasma radius the critical value of A above which the external kink
mode is unstable tends to infinity. Since ) is finite, according to Eq. (12), this implies that
complete stabilization of the external kink mode is achieved by placing an ideal shell right
at the edge of the plasma. For a given plasma equilibrium (with a given value of A, which
can be calculated) the external kink mode is stabilized if an ideal shell is placed sufficiently

close to the plasma. The exact criterion for stabilization is

1/2m
Tw  Te A+1
Tw oTe - (272 14
a <a ()\—1) : (14)

assuming that A > 1 (i.e. the external kink mode is unstable in the absence of a shell).



4 Effect of a Thin Resistive Shell

There is, of course, no such thing as a perfectly conducting shell. However, a thick shell
may be approximated as a perfect conductor if its L/R time is much longer than the typical
pulse length. Suppose that this is not the case. How does a thin shell whose L/R time is
much less than the pulse length affect the stability of external kink modes? The L/R time,

or “time constant,” of the shell is defined
Tw = Mo0wTwOw, (15)

where o0y, Tw, and §, are the shell conductivity, radius, and thickness, respectively. In the

“thin shell” limit, which corresponds to

0w Tw

Tw Sw’

where «y is the growth rate, the skin depth in the material which makes up the shell is much
less than its radius but much greater than its thickness. In this regime there is negligible
radial variation of the magnetic flux function ¥ (r) across the shell. In addition, Ohm’s law

and Faraday’s law integrated across the shell yield

Tw+
[r %1 = YTw Y, (17)

Tow—

where ¥,, = 9(ry) is the magnetic flux which penetrates the shell.

Consider a mode which grows on the L/R time of the shell. Such a mode is marginally
stable as far as ideal MHD is concerned, so v(r) satisfies Eq. (7) everywhere apart from
inside the shell. A solution which satisfies all of the boundary conditions can be constructed

by using the solution (10) in the region a < r < 7y, and using

vy = (=) (18)

Tw
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thin resistive shell
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Figure 4: A schematic diagram showing a typical resistive shell mode solution.

in the region r > r,. This solution is sketched in Fig. 4. It is helpful to define the “shell

stability index,”

Tewt .
Au= lr & ¢] | (19)
dr "
It is clear from Egs. (10) and (18) that
2m (A —1)
Ay = . 20
A+ Na/ral™— (= 1) o
A comparison of Egs. (17) and (19) yields
YTw = Dy (21)

According to the above formula, a non rotating mode which grows on the L/R time of the
shell is unstable whenever A,, > 0. This mode is generally termed the “resistive shell mode.”
Equation (20) implies that the resistive shell mode is only unstable when A > 1; i.e. whenever
the ideal external kink mode is unstable in the absence of a shell. The growth rate of the
resistive mode becomes infinite when A = A, (see Eq. (13) ) and the mode is stable for A > A..
A = )\, corresponds to the marginal stability criterion for the ideal mode. The resistive shell
mode is unstable for 1 < A < )\, and the ideal mode is unstable for A < A. Thus, either a
resistive or an ideal mode is unstable whenever A > 1.

Clearly, if the ideal external kink mode is unstable in the absence of a shell (i.e. if A > 1)

then either the resitive shell mode or the ideal kink mode are unstable in the presence of a
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resistive shell. In other words, a resistive shell does not improve the stability of a tokamak
plasma against external modes. In marked contrast, an ideal shell can completely stabilize
external modes if it is placed sufficiently close to the plasma.

For a given plasma equilibrium, with a given value of A (A > 1), the resistive shell mode
is unstable when the shell lies too close to the plasma; i.e. when a < r < 1. (see Eq. (14)).
On the other hand, the ideal external kink mode is unstable when the shell lies too far from
the plasma; i.e. when r > r.. In the simplest theory there is no position of the shell for which
one or the other of these modes is not unstable. Recently, it has been established that if the
plasma is rapidly rotating then a narrow window of stability opens up for shell radii just less
than .. If the shell radius lies in the stability window then neither the resistive shell mode

nor the ideal kink mode are unstable.

5 Effect of a Partial Shell

What effect does a partial shell have on the stability of external kink modes? It is helpful
to write the resistive shell mode solution in the form (see Fig. 5)

",b(’!‘) — (1 += %) \Irw {!)\plasma(r) - ﬂ“I"w 7;[;s}'lell(:‘”)- (22)

2m
Here, Ppiasma(r) is that part of the solution which is maintained by plasma currents and
1/j-fthell(r) is that part which is maintained by eddy currents induced in the shell. Both, @p]asm

and @shell are normalized to unity at the shell radius. It is easily demonstrated that

d@shell o
= _9 2
P —om 23)
whereas
d{b\plasma e o
lr yh L__o. (24)
It follows from Egs. (22)-(24) that
Twt 1 [dy T+ YTw VY 0 [re+
§jpdr = —— | — = — =——= w0 dr, 25
fr,,,_ Je 67 Ho ldr]rw_ HoTw Ot Jry_ v (25)
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thin resistive shell

Figure 5: A schematic diagram showing the plasma and shell solutions.

as demanded by Ohm’s law (674 = —0,09/0t).
According to Egs. (5) and (22) the perturbed poloidal flux in the vicinity of a complete

shell is given by

$1,8,8) = |(1+ 2= ) W Fotama(r)

L9, Juen(r)] expli (m8 - ng)). (26)

A partial shell consists of conducting metal at some angular coordinates, (¢, ¢), and vacuum
gaps at the remaining coordinates. Suppose that Eq. (26) still holds at angular coordinates
corresponding to metal sections of the shell, but at coordinates corresponding to vacuum
gaps

$(7,0,8) = [ (1 + 3 ) Yo Dotama(r)| exp (m0 — ) ). 2n)

Equation (27) is the same as Eq. (26) except that the part of the perturbed poloidal flux
which is generated by eddy currents flowing in the shell is missing (since there are no eddy
currents flowing in the vacuum gaps). The m/n harmonic of the perturbed poloidal flux is
given by

0 ds

Ymin(r) = § $9(r,0,6) expl—i (md —n@)] -5 (28)
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It follows from Egs. (26) and (27) that

W) = (1+ 7)Y Fpeama(r) = (1 = ) T W Puna(r), (29)

where f is the area fraction of vacuum gaps in the shell.

The shell stability index for the m/n mode satisfies

. dwm‘/n m/n el
A, = [ a / v ] . (30)
It follows from Egs. (23), (24), and (29), that
. (1 - f) T Tw
Bu = 1+ fy7w/2m’ (31)
This can be rearranged to give
N Ay
VTw = m: (32)
where
Tu=(1= )1 =1~ f)poourvbu, (33)
and
A, = 2m (% N 1) : (34)

Here, 7, is the time constant of a uniform shell which contains the same amount of metal
as the partial shell. It is easily demonstrated from Egs. (26) and (27) that the ratio of the
amplitude of the perturbed poloidal flux in the metal and gap sections of the shell is given
by

g _ g 4 ITw. (35)

The predicted (see Eq. (32) ) variation of vy with A, is sketched in Fig. 6. Suppose that
A, is gradually increased from a small positive value. Initially, the poloidal flux is evenly
distributed over the metal and gap sections of the shell (see Eq. (35)) and the partial shell

acts like a uniform shell containing an equal amount of metal (i.e. v7, ~ A,). However,

14



0 A A —>

c w

Figure 6: A schematic diagram showing the typical variation of the growth rate with the
shell stability index for a partial shell.

as the m/n mode becomes more unstable the poloidal flux starts to concentrate in the gap
sections of the shell and the growth rate accelerates. Eventually, at a critical shell stability
index, A., the poloidal flux is entirely concentrated in the gap sections of the shell and the
resistive growth rate becomes infinite. It is easy to demonstrate from Newcomb’s criterion
that the m/n ideal external kink mode is unstable for A, > A.. Thus, when the shell
stability index exceeds the critical value A, the mode “splurges” through the gaps in the
shell with an ideal growth rate.
Equation (31) can be rewritten

Vrw = Ay, (36)

where A, is the shell stability index for a shell located at radius

'Fw = Tw/(l - f)lﬁm' (37)

Thus, a partial shell acts just like a complete shell (with the same time constant) which
is located further away from the plasma. As the area fraction of gaps tends to unity the
effective shell radius tends to infinity (i.e. the shell has no appreciable effect on the stability
of external kink modes).

The analysis outlined in this section is somewhat heuristic, but more exact calculations

reveal that it is essentially correct provided that the poloidal and toroidal extents of any gap
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or metal sections of the shell are much larger than the poloidal wavelength of the m/n mode,
which is r,,/m. The above results also tend to become inaccurate if the shell is located very

close to the plasma.
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