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Abstract

The stability of layer modes is analyzed - for z-pinch and bumpy
cylinder models. These modes are long wavelength across the layer and
flute-like along the field 1line. The stability condition can be
expressed in terms of the ratio of hot to core plasma density. It is
shown that to achieve conditions close to the Nelson, Lee~Van Dam core
beta limit, one needs a considerably smaller hot to core plasma density

than is required to achieve stability at zero core beta.



I. Introduction

Stability of a hot plasma annulus immersed in a core plasma
density depends wupon various criteria that have been discussed by
several Worlfcer:s.l"8 An important class of modes are long wavelength
modes across the annulus, known as layer modes. A discussion of these
modes have been given for a z-pinch model in Ref. (6). In this work
we, (1), extend the analysis of layer modes for the z~pinch model and
find a significant modification of the previous analysis, and (2), we
apply the analysis to a more realistic bumpy cylinder model using
equations derived by Antonsen and Lee.9 The results indicate how small
the ratio of hot to core plasma density needs to be to achieve
stability. We also show that in order to achieve stability near the
Nelson, Lee-~Van Dam core beta limit, the hot to core density ratio

needs to be considerably below that ratio needed at zero core beta.

In Section II, we derive our criteria, and in Section III, we

discuss the results.
IT. Derivation of Layer Mode Dispersion Relation

We take a model where in equilibrium a hot plasma layer surrounds
a core plasma component, The plasma is taken as constant density from
the axis to the surface containing the peak of the hot plasma pressure.
The core plasma density and pressure then decreases to zero in the
outer part of the hot plasma annulus within a scale length comparable

to the scale length of hot plasma pressure gradient.
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The basic equation from the z-pinch model, with the assumptions,
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where p is the mass density, r the radial coordinate (the curvature, K,
in the z-pinch model is -1/r), P the particle pressure, the subscripts
h and ¢ refer to hot and core species,
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with w,i the ion cyclotron frequency and p the density ratio of hot

component to core component.
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We can solve this equation analytically for a hot electron layer
within a thickness A if we assume |k|A < 1. The analysis divides into
two parts, B, << 1 and B, ~ l. For simplicity we take w,, as a
constant, and 'B’c as a non—zero constant in the outer half of the layer

and zero in the inner half of the layer.

a. B, K1

In this case we have to go to second order in a layer expansion.

For a thin layer we order,

E=Eo+351+€252

§c~e, sc/3h~e, KA ~ g2

Hence the following equations are satisfied:
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Then we take €3 = 1, integrate r in Eq. (2) between R-A and RHA, with
p(RH) = 0, P(RHA) = 0, p(R-A) = p(R) = pg, Pp(R-A) = 0, Py(R) = Py,

and thereby obtain the following result,

&1 (r) =7yt

oo (3)
dr w(w=w,y)

dEo(R-A) _ [ RHA dgq (Pyy+Ppy)

(R-)p () e = _/ ar 12— R (4)
dr R-A dr pw(w=w,y)
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We define the impedence functioﬁ as K = g(ﬁiA) dEiE:A) and

note that K = |kj. In general we assume it is a positive number
independent of w. Then by substituting equation (3) into equation (4),

we obtain

2
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We define:
Rog R+A
A’ = 9 (p 4002 x A, & = [kIA7

2 R- rp
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2

Note that YéHD is roughly the growth of a hot electron disk in standard

MHD theory.

With the new variables we then find the dispersion relation

K _ 6+gcggv ¢ Be(2-0.y) =0 (6)

Y 2 2 -
22@-a,,) 22(2 =0

In analyzing this equation, we can first neglect the last term
(0<<1) and we find that the dispersion relation for the unstable mode
is

1/2
Q@) + [% (a%cszgvj] =0, (7)

= + = = =



with the stability condition

1/2

al, > 4z (4 02)] (8a)
or

Qoy > Max [2(—-6)1/4, 4(%-§0J1/2] (8b)
This result is new for Ec < (K/k)i{251/2 , while the opposite limit has

been discussed in Ref. 1.

From Eq. (8b) we see that for extremely lowlgc, the decoupling
condition can be satisfied for Q,, > 2(§§)1/4. However, instability

can arise for relatively low B_, viz.

92 . |
- ev K _ 6 (9)
Ec > Ecr T 16 k| ng

a result valid as long as Ecr < 1.

In the unstable region the frequency, 2, is given by

: 2. 1/2
f 1/2 Q
0 = L+ af[X 6B 02)] 2. — 1 (10a)
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In this limit we let &€ = 1 + €€, kA ~ ¢, and integrate Eq. (D)
across the layer. This yields (recall gc = constant if R < r < RHA; Ec

~ 0 otherwise),
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Combining terms and normalizing variables yields
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To analyze this equation we assume ——
|k| cv

1, and we will

ascertain that the instability threshold arises for Fc near unity.

With the assumption that the quantities a, Q/QCV,

we have,

3 _ X (k| _
23 - a%_ (1],) F o Qg = 0

The stability condition is then,

o<1 __% . 9l/3 (lkl _l;J = %

For gc = 1 the growth rate is maximum at the value,

/3 Ikiy1/3

0 =1 - (2, )

When Ec >> 1 the growth rate asymptotes to the value

- i( k )1/2 .

IK]

14§c are all small,

(13)

(14)

We note that the standard MHD theory of our system would yield a growth

rate,
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Previously, it was observed that if Ec >> 1, short wavelength modes had
the same growth rate as that predicted by standard MHD theory. Here we
see that for the layer modes of a hot component plasma larger growth

rates are obtained.

ce. Equations with Axial Variation

Antonsen and Lee9

have derived the generalization of equation (1)
to an equilibrium with axial variation. With the same assumptions as
went into Eq. (1), plus the assumption B, << 1, the governing equation

was found to be,

[ + ¥ Jn?
0¥ r®>u)" - nfu? /BHU+ T <r'<_B (P #2y)> U = 0 (15)
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with ny the hot density component and e its electric charge.

Equation (15) is exactly the same form as Eq. (1) (with P./Pp,

0. We can use the previous analysis if we redefine the parameters so

that,
<K (P 4Py )> U 2 (P, 4P, )>2
_ ‘B Pt Pin)? b % <rp> [ o 5 PP
MHD © =im| ’ = -
<xp>g < (Bt ) <r?p>
ch_-cv’ 9=_w ’ 6=|111|-1\Ab—lp—
Y HD YMHD 0

where the subscript zero refers to the flux position Yo where Py, is a

maximum. The boundary condition is,

U (b o-Ap) Wy e
e = ~ |m
U (0 o-ap) 0 0
se s , . K" s M
Now, if in the previous analysis, we replace TET.and Be bvaET and

gc, all parameters are identical and we can wuse the results of the

previous section.



-13~

IIT., Summary

From the results of this work we conclude that if the curvature
drift frequency can be greater than twice the growth rate predicted
from conventional MHD theory, the system will be stable 1f the core
pressure gradient is small enough. Achieving this criteria is defined
as the decoupling condition. If the decoupling condition is strongly
satisfied, then the system can support a core pressure gradient
satisfying the Nelson, Lee-Van Dam limit (ﬁc < 1). However, if the
decoupling condition is' only moderately satisfied the tolerable core
pressure gradient can be considerably less than the Nelson, Lee-Van Dam

limit.

If B+ 0, the basic decoupling for |kJA < 1, in the z-pinch model

is,

1/2

KA
p/q < (p/Q)¢y = -(-——Z)-;—— : (16)
(B ptPyy)
where p = n,/ny, qp = ———~— and XK ~ k.,
c’“h ehnthCiAB
. Ay .
For the bumpy cylinder model, for m a—-( 1, Eq. (16) still
0

applies if we define the weighted average quantities,
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and w.;0 refers to a typical cyclotron frequency. Stability can be
maintained if the core beta parameter, EC (Ec in the line averaged

case), satisfies

. . . 1 / 3 KA .
; - p - P
gc < Min [1 1.9(EE§ZJ R (qo Top EE?] (17)

We note that the constraint on p/q needed to achieve decoupling up to
gc ~ 1 is,

1/2
pla 2 - 7 /0, (18)

Hence, the achievement of stable containment up to the Nelson, Lee-Van
Dam limit leads to a considerably more stringent decoupling condition

than that forB’c =0,
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