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Abstract

A formalism for analyzing systems of integral equations, based on
the Wentzel-Kramers—Brillouin (WKB) approximation, is applied to the
Vlasov-Maxwell integral equations in an arbitrary 8 , spatially inhomo-
genous plasma model, It is shown that when treating frequencies
comparable with and larger than the cyclotron frequency, relevant new
terms must be accounted for to treat waves that depend upon local
spatial gradients. For a specific model, the response for very short
wavelength and high ' frequency is shown to reduce to the straight-line

orbit approximation when the WKB rules are correctly followed.




I. INTRODUCTION

The Wentzel-Kramers—Brillion (WKB) method is a basic Vtechnique
which can be used to study waves governed by linear operators (which in
general are integral equations) in a spatially inhomogeneous plasma. It
is extensively used to obtain a local dispersion relation that can
describe the modes of a plasma. There is a subtle point with this
method for modes whose frequencies depend upon the local scale length.
One then must determine which part of an expression, that depends wupon
local spatial gradients, contributes to the local dispersion relation
and which part is higher—order in the WKB expansion and should be

1'3, there has been extensive analysis

ignored to lowest_order. Recently
using the WKB method in low frequency problems Qng.,
frequencies w less than the ion-cyclotron frequency, wci) and, in this
case, the subtlety in the method does not manifest itself. However, for
higher frequencies (comparable and greater than the ion-cyclotron
frequency) one has to be quite careful in the calculation to obtain a
correct description of modes whose frequency depends upon the local
scale length.

To obtain the correct local dispersion relation, we will start with
the formalism of Berk and Booka, which was recently extended to vector
systems by Berk and Pfirsch.5 These formalisms indicate a very
specific method of evaluation for the local dispersion with the only
approximation being that kLP >> 1 , where k 1is the local wavenumber in

the direction of the spatial inhomogeneity and L the macroscopic

p
scale length. Unfortunately, in general for modes in a magnetic field,
one 1is then forced to consider forms that are not usually analytically

integrable. However, if two additional weak assumptions are imposed,




-3

Min 5(k_La, —w—-> < 1 ) (1)
W .
ClL

1
KL,

where a 1s the Larmor radius and k| the wavenumber perpendicular to
the magnetic field,'then structural forms can be obtained in terms of
integrals commonly used.

In this work we will specifically treat a slab equilibrium in a
sheared magnetic field. We will indicate the proper local dispersion

relation, which includes the rather subtle spatially—dependent term. A

simple example will be given of an electrostatic dispersion relation

where we specifically show how additional terms enter in a crucial way.
For completeness, we will also include a special case where the
Berk-Book rules can be directly applied to obtain a local dispersion
relation and the result will be compared to that obtained when the
approximations in Eq. (1) are used. For a somewhat more extensive

article on this subject, the reader is referred to Ref. 6.

II. QUADRATIC FORM
Following the Berk~Pfirsch method, we note that a general system of
integral equations with one-dimensional spatial inhomogeneity may be

expressed as
Y e . x+x -y -
de§<x—x,——2—,w>-§_(x) = 0 . (2)

This form emphasizes the structure that is natural for developing the

WKB formalism when the difference variable varies more rapidly than the
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5,7 have shown that in order to

sum variable. Previous investigations
exhibit the intrinsic symmetries of the kernel G , it is convenient to
work with quadratic functionals obtained from Eq. (2) by multiplying by
the adjoint vector Q+(x) and integrating over x [g+(x) is the

solution of Eq. (2) when x and x” are interchanged]. The resulting

quadratic form is

_/dxdx’£+(x)' §<x—x’,§+2—x,w>'§.(x') = 0 . (3)

Changing variables and using the Fourier representation of g(x) , the

quadratic form becomes

/ / /dx exp[-i(k - k*)x]z (k) A (E—EL’,X#“) cg(x) =0 ,

_ (4)
L(k) = / dxg (x) exp(~ikx) (5)

and -
ACk,x,0) = / dzg(.z,x,w);éxp(—ikz) . (6)

In the WKB formalism the determinant of A(k,x,0) reduces to the local
dispersion relation, which determines k(x) . In the next section it is
shown that direct construction of the quadratic form results in a

structure

/ /dk /dxexp—lk-k)]+('k)’0(kk,x»“’)°c( ) = 0 . (D)
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Equation (7) may be transformed into Eq. (4) as follows: We define

k, = (k + k‘)/Z and k_=%k - k" . Then, by expanding ¢ about °

k,k* = k, , Eq. (7) becomes

dk. dk_ ks
f +/ fdx exp(-ik_x)g (—k)o[o(k+,k+,x w) + 2 (3—312 Blac‘)

) .
kZ 2 2
. = f3% 9 9 )
* gkl x0) + (;jkz 25w T p)
x o(k,k” ,x,0) + ] g(k’) = 0 . (8)
~ =k =k,

Using the identity k_exp(~ik_x) = i(d3/9x)exp(-ik_x) , and integrating by

parts in x , Eq. (8) becomes

dk. .
+ + il 9 9 4\ 9
/ / dxexp( ~ik_x)g ¥ (k) - [g(k+,k+,x,w) + aw(ak, - sz)&z

0o . (9

xo(kk LK) +} .« z(k)
k=k” =k,

Comparing Eqs. (4) and (9) allows us to deduce that

: i 3 d- 9 . 4 .
{_}:(k,x,(ﬂ) = [%(k,k,x,w] + ?(ak' - ﬁ‘; B—)Z%(k,k ,X,(D) + ...J’

Equation (10), truncated after the second term, will be used to
obtain the principal result of this paper. Applying the operation
indicated in Eq. (10) leads to a relatively simple result when it is
observed that the conductivity kernel g(k,k,x,w) has a structure of the

form
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o(k,k,x,0) = o (k,k,x,0) (11)

n=~

where n is a summation over harmonics of the cyclotron frequency. As

a result of applying Eq. (10), we find

=
—
VR
3]
€
P
il

:E:: o | (kxDb) 3
» 140l E:;:l.%: gn[g,g,x,w), (12)
7 = | @ |)F

where b is the wunit vector along the equilibrium magnetic field,
k=kyz+ky+ks, and kf =1+ (kxpexr)?. This result is
demonstrated explicitly in the relatively complicated expréssion to be
given in Eq. (16) for the electromagnetic plasma response function in a
sheared magnetic field at arbitrary f£frequency. Recently, this
correction has been incorporated in electromagnetic ballooning mode
calculations.?

We note that Eq. (12) for A is not exact. The exact form
requires summing over all terms in the expression given in Eq. (8).
However, we will show in a special example that the keeping of only the
first correction term is adequate if a/Lp K1 and
mky Min(l,ka)/(wckap) <1l . We also point out that our method for
constructing A does not appear to introduce any spurious dissipative

terms that are sometimes encountered due to inconsistent ordering in the

WKB small parameter, € k—z[dk(x)/dx] = l/kLp .
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III. ELECTROMAGNETIC FORM IN SHEARED MAGNETIC FIELD
The plasma is modeled by wusing a slab geometry in which all

inhomogeneities are in the =x—-direction. The wunperturbed state is

described by the macroscopic quantities nés)(x) , T(S)(x) (s = species),
and a self-consistent sheared magnetic field B(x) which is assumed to
vary slowly over a Larmor radius. The equilibrium magnetic field is of
the form

B = By(x)i + Bz(x)é ’

~

with the magnetic shear parameter L, defined by L;l = df(x)/dx where

8(x) = bxx-db/dx with b = B/|B| . We also denote

no= bz
~ -k B, (x) + k. B_(x)
K, = kxpx = —2 y z
-~~~ I1B(x) |
k = b = kZBZ(X) N kyBy(X) .
I ~ IB(x) |

To describe the perturbed field, we use the basis
E(r) = {-V1o(x) - Uxlalx)b] + By ()b} exp(ikyy + ik,z) (13)

where V acts on the exponentials as well as the arguments of the
amplitudes. This basis is wuseful for describing the coupling of
magnetic  compressional perturbations. We will denote Q(r) as the
triad [¢(X)£%KX),E"(X)} , and one can show® that the adjoint triad is

nt = [ (x) JKx),E (0)]
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The kernel for the Vlasov-Maxwell equations in this basis is
derived in Ref. 8 (Eqs. A.8-A.10). Written in the form of Eq. (7), we

find that the kermel is given by

ok, kK ,x,0) = gy(k,k" ,x,0) + gp(k,k’,x,w] (14)

where (ZV( k,k’,x,w) is the local response function (mostly vacuum terms)
whose form is artificially bulky in this k representation and its

detailed form need not concern us yet., The mnon—-local plasma

~

contribution gp(k,k’ ,X,U)) is given by

o ) = %Z/ B DRvE R ORI LRSI
S n

where
dF,; 9F oF
S s S
Pofs T Ungg * Ry gp Kz gp
y Z
wy = mw, + kzvz + kyvy
+
X
— 1 dxq(E’Py’Pz’X)
q = =,
T IvX[E,Py,PZ,i)l
X
<
T = f dx
T - V.
I
+ -
VX(E,Py,PZ,x ) =0

(1,0

1 -1k + 3 (1)
-T—fd'r | —ikxbew(t) | exp[ikeSr(r) - inacr]
v(t)eh



ko= kx+kyy+kz
dg(r) = y(t) -~ §T

X,v = particle x-position and velocity at T = 0 .,

Now wusing Eq. (10), we find that the contribution of this term to

the local dispersion function is,

o D2 e )

(16)

]

Ay (K, x,0)

where we have neglected first—order terms in QP which would wvanish

when the determinant of A is constricted, we neglected second-order
terms in the macroscopic scale length, and, finally, we note that
instead of all phase-space quantities being a function of the constants
of motion E , Py » P, , they should be taken as a function of
E, Py = (PYBy + P,B )/B s Ay = (Asz - AZBy)/B (note that A, is a
vector potential component at the guiding center position).

If we approximate the particle orbits as circular spirals, we note

that <q,(k)> can be written as
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—i(nwcs + kn<Vn>)Jn(z)
) SJn(z)
n®) = [-mog ——— * k< >35(2) | exp[iz sin(6-8) = in(6-0)]
i V) In(2) i
(17)
where
v = @B/ %cos ¢% + [wB)L/2 sin ¢ + <v>]n
ki = k| cos 6% + k| sin Ga
> = _n_dB
Wag dx
ki(UB)l/z
z = .
Weag

Finally, we note that local term Ay(k,x,w) is found to have the

components

2
2 w
_o2l.2 Lo ps
Ayir = kL \K 7*‘2—2
Ayig = -Aygp = O
A = -\ = —ik k?
V13 V31 1 ki

w
22 2 - “ps
Myap = kK[| K[ + K "—2+Z 5
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Aysz = Ayzp = ky ——

2

2 w:
~ 2 w \ ps

C

The local dispersion relation is then determined by

Det(Aij) = Det|Ajyy +A55,| = 0. (19)

IV. COLD PLASMA LIMIT

We now discuss the cold limit of a plasma in a magnetic field.
Starting from £fluid equations, the WKB method is straight-forward.
However, the Vlasov equation only reproduces the fluid result when the
corrections we have derived are taken into account.

We  consider a neutral plasma slab, homogeneous in the vy-z
directions, a spatial variation in the x—direction, with a homogeneous
magnetic field in the ;—direction. We consider electrostatic
perturbations with k, = 0 . A straight-forward application of the cold
fluid equations, assuming n, = n; , with w/wCe K1, but w/wci finite,

yields the differential equation

2 2 2 2
B <____1_>__)8_¢ I S N S )
9 2 219x 2 -2 ox 2 2
® Wei Weg — W . (wci - W )wci

where the subscript i refers to ions.
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The local dispersion relation then yields

2.2 2 ‘
kw2, W aWw .
'_ZLLZ+ ky ai . plz =0. (21)
- «
Wei — W (wci - w )wci

(22)

This mode arises from the balance of the ion inertia term and the
electron electric field drift, which is no longer cancelled by ions as
®w >> w,; o This mode is of importance in the stability analysis of

EBT. Y

Now we can examine the result of this problem from the Vlasov'

expression 1if we set k" and w/kec to zero and equate All component of"

Eq. (19) to zero (the appropriate operation if Ay =4 = 0). If one then
attempts to calculate the resulting expression in the cold blasma limit,
but neglects the correction term, n (ky/kf](a/QX) for n = £1 , one finds

a local dispersion relation of the form,

o . (23)

Without the correction term, the equations do not have the physical fact
that only electrons, and not ions, have a cExb/B_drift across the field

lines at frequencies larger than the ion-cyclotron frequency. Hence, in
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Eq. (20), the ion and electron drifts still cancel. However, by
introducing the correction terms, one can show that Eq. (21) is

reproduced directly from the Vliasov expression in the cold plasma limit.

V. EXACT WKB FORM FOR A SPECIAL CASE

The derivation of Eq. (16) relies on an expansion in powers of
nkn/kaP = nekn/kl where LP is the density variation scale length. To
obtain a tractable form, we have assumed that ne is small, and have
retained only first—order corrections. For certain types of high
frequency (m >> wcs)’ short wavelength (klai >> 1) modes, ne€ may be of
order unity so that the neglect of higher order corrections is not
justified. The general treatment for this case is difficult, but for
certain special cases the appropriate integrals can be performed.

In this section we study the Berk-Book form for the electrostatic
problem for the special cases of a rigid-flow equilibrium without
employing the expansion technique. The more complicated electromagnetié
case is discussed in Ref. 6. For the derivation, we use the unperturbed

distribution function

O v mk il b mlh el KR - D
™ VTS VTB P 8 g

where we assume X = x + Vy/cucS and neglect temperature, magnetic field

inhomogeneity, and external drifts.
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To derive the electrostatic response, the perturbed charge density

must be calculated. Hence, we first obtain the perturbed distribution
function by integrating the linearized Vlasov equation along the
unperturbed orbits. Using the identities ¢ (x) = fdx’G(x - x’)¢(x’) and
§(x - x*) = [(dk/2n)exp[ik(x -~ x*)] , the result for

%is) = f§s)exp(iwt - ikgy - ik,z) may be written as

209s _(g) { dk x +x") |
~ = - F S R | » - | . - » -
fgs) T j[ZN | dx"¢(x") exp|ik(x - x7) 2Lp
v o o , v, + v (¢t~
Yiii -(“m T )* 1w - ‘”s)/dt exp|- Lo T Tl n(e,ey b, (25)
cs'p . ' ZwCSLp
where

2
r(s) - g 3/2v53 exp(- :%—-> R
s v&
s
2
kaTs p
W, = = — ,
8 zmsmcst
I(t,t") = exp ifke[r(t") - z] - w(t” - ©)} ,

. and

The t° integration may be readily performed to obtain



w]5m

- (m - Quw, = k,v,

f% 0 = W - .
:,'L) } T (e)I (p )Jp(iz; )Jq(i;)

my,n,P,q

< explif (@ = w6 - 0) + o+ el | (26)

= _ _ -1
where p = klvl/wcs s § = Vl/zwcst , and & = tan (k /k) .
The perturbed charge density p qufdvf(s) may be calculated from
Eq. (26)., Performing the azimuthal ¢ integratlon the perturbed charge

density (suppressing the caret) is

2 f
- Z “0ds ':;dx'cb(x’) y E-li expﬂ ik(x - x°) - _(_)_c__-l_-__x_'_)_
é TS oy 1 2w " ZLP -

. 2 ‘ |
E ‘b e_’. [ -
x K exp ( 82 ) - (0 - ws)/dgF(S) E Tn I iptg (PII (18D T (12)

N,pP»q

-1

x [0 = (m+ pw, - k,v,]™" exp[i(p + q)8] } (27)

where € = (lep)_l , b T /m wcs , and du = 2rv;dv;dv, . Changing

]

indices in the triple sum by letting n+ p > n,p > -p , using the

identity J_P(ic) = Jp(—ic) , the sum rule

Z Jp(x’ )Jn+p(x) exp(ipf) = exp[-ln(l + 62)] J_,(4) ,
P
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with

A = (XZ + %% - 2y cose)l/2 R
-1 0y | (x* + %)L
)\ = t \ £ f— B e ——— (-
an { an(z) [(x - X,)]} >

and performing the v; integration in Eq. (27) yields

2
= - ) anS ; - - | dk LN — - (X + X‘) \
p = ES T /dx o (x )/—2? exp".[lk(x x") ———ZLP ]

: aly 2 ,.
x E Zoln exn[—bs(l - %;)J exp(2nIm) 5, (28)
m .

1/2
where I, = In(bs{[l - (€2/4)]2 + gzcosze} / ) » &,

Ln = (v - Weag ~ kzvz)—1

and Im\ denotes the imaginary part of A . This result may be further
simplified by assuming that € << 1 and neglecting corrections of

2 2'may be of order unity).: For

order ¢ in Eq. (28) (note that b
small € , it may be shown that Imh = -(¢/2)sinf, and we obtain the

final result



-17-

2
po= - Z ngqs /dx’¢(x’) /% expf[ ik(x - x*) - -———-——-(XZ-;‘X )}

s 8 P
” (bSEZ) . dv, | vg

x |exp \—— —(w—ws):/;-f/—z-\;s-exp(——;%—s—)

XjEE: Ly exp(—ng sine)In(bs) exp(—bs) L. (29)
n

To obtain the more approximate result of the previous sections, we

set exp(-npe sin®) = 1 - ne sind . Clearly, it is only wvalid if

ne <1, or if the terms beyond n are no longer important in the sum.
This consideration leads to the establishing of the second inequality of
Eq. (1),

In the high frequency (@ >> wcs) » short wavelength (klas >> 1)
limit, a large number of terms din the summation over n must be
retained in the ion response. Hence, ne may be of order unity and the
correction term exp(-ne sinf) is not expandable. In this 1limit
("unmagnetized species”), the perturbed charge density mdy be obtained
by first using the asymptotic representation
In(Bs) exp(—bs) = (ZHbS)_l/ZeXp[-(nz/st)] and then employing the

asymptotic identity4

Lim £(6N)  _ P‘/.££22§Z-+ T cot(mrx) £(§x) (30)

0 Ly x - n 1 8x -y ?
n

to evaluate the summation. Equation (30) follows from Cauchy’s Residue
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Theorem applied t6 the  funetion [cot(ﬂz)f(ﬁx)/(z - X)] . Performing

these manipulations, the charge density becomes

nOe2 g dk (x + x7)
pPg = - T dg"¢ (x7) | EF'GXP,lk(X_ x) - -—_Ei;_—_]

| [be? dv, [ i
exp \——if - (0 - ws) ~173 exp |~ ——

m VT

o [ dy exp[-y2 --(2bs)1/2€ sin 6 y| g 1/2
| nl/2 w = kv, - klvTSy k) vp

-(w - kzvz)2 _ (w - kzvz)

) K v
kpvp L T

exp |

(2v,)1/2% sin 6’

The term cot[ﬂ(w - kzvz]/wcs] > =i, if either Tmw >> w g or
AMo - kzvz) >> w.g 5 where AMo - kzvz) is the resonance width due to the

spread in v, . Employing this limit, the v

2 integration is readily

z

performed. Finally, wusing the identity n_l/zfdz exp[—zz) =1 and

setting y = (Yl . ki)/klvT s Z = %’X x k/kjvp , the desired result for
s s

the perturbed density response is



2
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(bsez) ./7 dv exp [—(vf/v%s] -V /wCSLP]
exp| -5 ) - (0 - 0) [ =75 -
T

(32)

This result is the response of a completely unmagnetized species for a

distribution of the form,

nn(x) - 2 v ,
s) . 0 A AS A
£ 323 P ( ) .
. 2
s L ' s
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