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Abstract

The process by which self-organization occurs for solitons described by the Korteweg-de
Vries (KdV) equation with a viscous dissipation term is reinvestigated theoretically, with
the use of numerical simulations in a periodic system. It is shown that, during nonlinear
interactions, two basic processes for the self-organization of solitons are energy transfer and
selective dissipation among the eigenmodes of the dissipative operator. It is also clarified
that an important process during nonlinear self-organization is an interchange between the
dominant operators, which has hitherto been overlooked in conventional self-organization
theories and which leads to a final self-similar coherent structure determined uniquely by

the dissipative operator.
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Theories have been described for self-organization in three-dimensional magnetohydrody-
namic (MHD) plasmas,’? two-dimensional MHD plasmas,®* two-dimensional incompressible
viscous fluids,®¢ and solitons described by the Korteweg-de Vries (KdV) equation.”® As Ref. 8
has pointed out, these theories on self-organization all involve a logic that has in common
the following four conceptual elements: (a) the system is described by dissipative nonlinear
partial differential equations; (b) in the absence of dissipation, the system has three or more
quadratic or higher-order conserved quantities; (c) when dissipation is introduced, one con-
served quantity, A(q), decays faster than the others, B(g), where A and B are functionals
of the field variables q(t,x), this feature being known as ”selective dissipation” between the
invariants A(q) and B(q); and (d) the self-organized state is determined by minimizing A
under the constraint that B is held constant.

Dynamical systems of interest having n variables ¢;(t,x), with ¢ = 1,2, ...n, can generally

be described by the following equations of motion

dg;
ot

where LY[q] and LP[q] denote the nondissipative and dissipative dynamic operators, re-

= L{[q] + L{[q], 1

spectively, which may be either linear or nonlinear.®!® In the conventional theories of self-
organization, the nondissipative operators LY [q] are assumed to be dominant throughout
the entire self-organization process, with the dissipative operators L?[q] assumed to be mi-
nor and thus capable of being handled perturbatively. Due to this implicit assumption, the
self-organized states derived by the conventional theories have no dependence on the dissi-
pative operators LP[q] or on the dissipation parameters contained therein.® In this respect,
the conventional self-organization theories are perturbative treatments. We note, however,
that from the conceptual element (d), they lead to self-organized states that usually satisfy
equilibrium equations of the form L [q]=0.1"® By comparing this equilibrium equation with

Eq. (1), we find that the nondissipative operators L} [q] have little effect, compared with the

2



dissipative operators LP[q], at the phase when the self-organized states arise, since the time
evolution of the dynamical system is determined dominantly by LP[q]. Hence there occurs
an interchange between the dominant operators in the later phase of the self-organization
process, with the spatial profiles of the final self-organized state being determined by the
dissipative operators LP[q]. This analysis!!''? would suggest that, with respect to the inter-
change of dominant operators, there is a discrepancy with the logic of conventional theories
and their four conceptual elements. | The profile of the self-organized state will be one from
among the set of equilibrium states that satisfy L¥[g] = 0. When the value of LY [g] is large,
then the profile of g is significantly changing in time. When the system comes close to the
equilibrium state, i.e. when the value of L¥[q] is very small, then the dominant operator
changes from L¥[g] to LP[q]. The final self-organized profile, which is one from among the
set of equilibria satisfying L¥[g] = 0, will be determined uniquely by the operators L[q],
which are relatively dominant during the later phase of the self-organization process.

On the other hand, if we start from a definition for the self-organized state as that state
for which the rate of change for the autocorrelations of instantaneous values is minimum, then
the self-organized state so derived does depend explicitly on the dissipative operator of the
dynamical system.®1%13 Some simulations'®!'* have reported data that show the dependence
of the self-organized state on the profile of the dissipation parameters. Those results also
suggest that the dominant operator changes during the nonlinear self-organization process
from the nondissipative nonlinear operators L¥[q] to the dissipative operators L |[q].

Here we present a reinvestigation of the process by which self-organization occurs for
solitons described by the KdV equation with a viscous dissipation term. Numerical simu-
lations in a periodic system are employed. We will show that two basic processes for the
self-organization of the solitons are energy transfer and selective dissipation among the eigen-
modes of the dissipative operators L?|[q] during the nonlinear interactions. It will be also

clarified that an important process during nonlinear sclf-organization is that of interchange
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between the dominant operators, which has hitherto not been recognized in conventional self-
organization theories and which leads to the final self-similar coherent structure determined
by the dissipative operator alone.

We investigate the self-organization process for solitons described by the following KdV

equation with a viscous dissipation term:

0qg  0q ,0% 0%
ot V9os 10 g ~ o (2)

Here ¢ is a constant, 7 is the coefficient of viscosity, and the nondissipative and dissipative
operators LY [q] and LP|q] of Eq. (1) correspond, respectively, to the —gdq/8x — §26%q/Ox®
term and the 79%¢q/d2? term in Eq. (2). In the absence of dissipation (7 = 0), it is known that
the energy corresponding to the autocorrelation Wi; = [ q(¢,z) - q(t,z)dz is conserved and
each soliton behaves like a particle during nonlinear interactions, where b is the periodicity
length. Since the rate of energy dissipation OW;;/dt due to the viscous term in Eq. (2) is
—2 [y n(8q/8z)*dx, the self-organized state ¢*, which we will define here as that state for

0

which the rate of change is minimum for the autocorrelation of instantaneous values,'® can

be derived from the condition §F = 0, where F' is a functional defined by F = —0W,; /ot
—aWi = [2[2n(8q/0x)? — ag?]d z, with a a Lagrange multiplier. Integrating by parts, we

obtain
b 82(}
OF = -2/0 bq lQT}@ + aq] dz =0, (3)

where the periodicity constraint has been applied. We then obtain the Euler-Lagrange
equation for an arbitrary variation éq, as follows:
62 q*
0x?

Here the parameter ) is defined by A\? = a/2n, and ¢* denotes the self-organized state

+ X%¢* = 0. (4)

corresponding to minimal rate of change of the autocorrelation. Using Eq. (4), we obtain

the following equations:

aWi: o *
at - CI‘W‘-‘:, (5)




q" = qre” /P (6)
gr = Asin(Aix + @), (7)

Here Wi = [y ¢*(t, ) - ¢*(t,z)dz; ¢f is the solution of Eq. (4) for the self-organized state
¢* under the periodicity condition; and the Lagrange multiplier is a = 2nA%, with ); the
smallest positive eigenvalue that yields minimized rate of change for the autocorrelation of
instantaneous values.!® We expect theoretically from Eq. (6) that the time-decay constant

of the profile ¢* in the self-organized state is a/2.

For the numerical simulations presented here, we used a new type of numerical scheme
for hyperbolic equations, named the 1D 2nd KOND-H scheme, which has high numerical
accuracy and stability through the use of the Kernel Optimum Nearly-Analytical Discretiza-
tion (KOND) Algorithm.*'? Double precision was employed for these calculations. Using
the same process as shown in Fig. 10 of Ref. 12, we first obtained a numerical solution having
four solitons per periodicity length for the KdV equation without the dissipative term, i.e.
7 =0 in Eq. (2). Using this multi-soliton solution as the initial profile, we investigated the
self-organization process of the solitons in the presence of dissipation. A typical case with a
periodicity length of b = 50, 6 = 0.42, and viscosity n = 0.04 was examined. In this case,
since the smallest eigenvalue is A; = 27 /50, the theoretical decay constant «/2 in Eq. (6) is
0.632 x 103, which was compared with the simulation results.

Figures 1(a)—(f) show the typical time evolution of the self-organization process for soli-
tons with viscous dissipation, where the vertical scale is varied to accommodate the mag-
nitude of the numerical amplitudes at each time. Figure 1(a) is the initial profile at ¢=0
of four solitons per periodicity length, where the four solitons are labeled as gm1, Ggmz2, Gms,
and ¢4 in order from the largest to the smallest. When we check the numerical values for
the nonlinear term ¢gdq/8x and the viscous term 1d?q/dx? in Eq. (2) for this initial profile,
the data show that ¢dq/0z ~ 0.14 x 107! >> 18%q/0x® ~ 0.12 x 1072 at the point z = 24.5
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where the viscous term is largest. In Fig. 1(b) at ¢ = 40, interaction between the first soliton
gm1 and the fourth one ¢4 is taking place, with the smaller soliton ¢4 becoming absorbed
into the larger one ¢,,;. In other words, the energy of the smaller soliton is transferred into
the larger one during the interaction of two solitons when viscous dissipation is present. In
Fig. 1(c) at t = 220, the third soliton g3 is interacting with the first one ¢,,1, and energy
transfer from the smaller soliton to the larger one is again occurring. At the same time, since
the viscous dissipation tends to suppress the amplitudes of solitons and hence to broaden
their widths, Fig. 1(c) also shows the second soliton ¢,,; beginning to interact with the first
one ¢mi. In Fig. 1(d) at ¢ = 900, after the two smaller solitons, g3 and ¢4, have been
absorbed into the largest one g1, interaction and absorption of the second soliton gme into
the first one, g1, continues to occur. The numerical data for Fig. 1(d) can be used to find
that ¢8q/0x ~ 0.22 x 107* < 1d?%q/0x? ~ 0.26 x 107* at the point x = 22.5 where the
viscous term has its largest value. This result indicates that an interchange of the domi-
nant operator between the nonlinear term ¢dq/dz and the dissipative term 1d%q/0x? will
occur in this dynamical system at around the time ¢ = 900 corresponding to Fig. 1(d). In
Fig. 1(e) at t = 1500, all three smaller solitons, ¢4, ¢m3, and ¢n2, have been absorbed
into the first one, ¢n1, meaning that the energy of smaller solitons has been transferred
into that of the largest one during interactions involving viscous dissipation. Concurrently,
the viscous dissipation suppresses the amplitude of the first soliton ¢,,; and results in a
broadening of the width of g1 during the time evolution of this dynamical system. In
Fig. 1(f) at t = 4000, we find that the lowest eigensolution of Eq. (7) has become the final
self-organized state in this nonlinear dissipative system. The numerical data for Fig. 1(f)
show that ¢8q/0z ~ 0.29 x 107° < nd?q/dz* ~ 0.59 x 10~® at x = 22.5. This result clearly
indicates that an interchange between the dominant operators has occurred in going to the
final self-similar coherent solution of Eq. (7), which is determined uniquely by the dissipative

operator nd%q/dz2.



Figure 2 shows the time dependence of the peak amplitudes gmi, (on a natural log scale) of
the three solitons gm:, with i = 1,2, 3, where the peak amplitude g, is defined approximately
as the numerical difference between the peak value of g,,; and the minimum value of g.
The first and second arrows on the curve for gmip, in Fig. 2 indicate, respectively, the two
interaction phases of ¢4 and ¢,,3 with ¢,;. From Fig. 2 it can be seen that around the
time corresponding to the second arrow, from ¢t ~ 200 to ¢t ~ 350, during the interaction
between gms and gm; the decay of gma, is accelerated and it vanishes, while that of gmip is
decelerated. In other words, the energy of the smaller soliton is transferred into the larger
one, ¢m1, during a dissipative nonlinear interaction.

Figure 3 shows the time dependence of the peak amplitude ¢m1, (on a natural log scale) of
the first soliton, g,,1, presented on a longer time scale than that of Fig. 2. After a rapid decay
lasting until around ¢ ~ 1200, the decay rate of gn1, is seen to become almost constant. At
t = 4000, corresponding to that in Fig. 1(f), the decay constant has a value of 0.634 x 1073,
which agrees very well with the theoretical decay constant of a/2 = nA? = 0.632 x 1072,

When we decompose the profile of g at each time by using the orthogonal eigenfunctions
ar = sin \px, with )\, = 27wk /b, that belong to the dissipative operator nd%q/dz* and arise
from the associated eigenvalue problem!® §2F = 0, we find that the dissipative nonlinear in-
teraction of the solitons and the resultant broadening of the soliton width due to the viscous
dissipation yield energy transfer toward both the higher and the lower spectral eigenvalues
A for the components az. At the same time, it can be seen that the dissipative operator
nO%q/0x* causes the higher spectral components to dissipate more rapidly, with decay con-
stants of ax/2 (= nA2), while the lowest eigenmode of Eq. (7) persists to the end, as shown
in Fig. 1(f).

In conclusion, the theoretical analysis and numerical simulation presented here for the
self-organization of solitons described by the KdV equation with a viscous dissipation term

indicate that during dissipative nonlinear interactions, two basic processes for the self-
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organization of solitons are energy transfer and selective dissipation among the eigenmodes
of the dissipative operator 79%q/0x?. Also, the numerical simulations presented in Figs. 1
and 3 show that an important process during nonlinear self-organization is an interchange
between the dominant operators. This interchange had hitherto been overlooked in conven-
tional self-organization theories. It leads to a final self-similar coherent structure that is

determined uniquely by the dissipative operator.
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FIGURE CAPTIONS

FIG. 1. Typical time evolution of soliton wave forms during self-organization: (a) initial
profile at ¢ = 0, with the four solitons denoted as ¢mi, ¢ma, ¢m3, and ¢n4 in order
of size; (b) at t = 40; (c) at t = 220; (d) at t = 900; (e) at t = 1500; and (f) at
t = 4000.

FIG. 2. Time dependence of the peak amplitudes gmi, (natural log scale) of the three solitons
Gmi, with 1 = 1,2,3, where g¢n:p, is defined approximately as the difference between
the peak value of ¢,; and the minimum value of q. The two arrows mark the two

interaction phases of g4 and gms, respectively, with gnm;.

FIG. 3. Time dependence of the peak amplitude gm1p (natural log scale) of the first soliton

Gm1 over a longer time scale than that used in Fig. 2.
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