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Abstract

The steep ion temperature gradients produced in the large tokamaks are analyzed in terms
of the anomalous transport of ion energy and momentum. The transport equations take into
account that for low viscosities and high effective Rayleigh numbers both neutral fluids and
plasma show the spontaneous generation of sheared mass flows. The self-generated flows
are driven by the ion temperature gradient through the turbulence and are one method
for creating the transport barrier. In addition, the external control parameter from the
direct injection of perpendicular ion (angular) momentum gives a second method for creating
a transport barrier. The threshold conditions are derived for the bifurcations from the
three confinement regimes of L-mode, H-mode, and a super-suppressed transport (SST)

confinement regime.

International Symposium in Honor of Bruno Coppi
January 19-20, 1995, Massachusetts Institute of Technology

1



I. INTRODUCTION

In the large tokamaks (R 2 2m, B £ 2T, I > 1 MA) strong auxiliary heating is applied
with multiple neutral beam lines and radio frequency heating that provide controllable energy
and (angular) momentum deposition profiles. In the highest power experiments'? the local
power deposition is of order one megawatt per cubic meter which drives up ion temperature
gradients on the order of 40kV/m. In addition strongly sheared ion mass flows are observed
both in the toroidal and poloidal directions.!?

The standard model for the analysis of the ion power balance in these regimes is the ion
thermal conductivity X; arising from the ion temperature gradient itself. While turbulent
thermal conductivity formulas necessarily have some uncertainties in them due to the nature
of turbulence, there are well-agreed-upon general features of the X; formula that has evolved
over the past ten years from a combination of theory and computer simulations.

Important features of the ion thermal conductivity formula confirmed by simulations
arise from the linear and quasilinear theories. The first comprehensive analysis of the ion
temperature gradient driven instability and quasilinear estimate of its transport is given by
Coppi-Rosenbluth-Sagdeev.® This work analyzes the wave functions and the eigenvalues in
the sheared slab magnetic field geometry and shows the remarkable feature that the growth
rate increases with increasing magnetic shear S = L,,/L, for low values of S. As the magnetic
shear increases, however, the mode width Az decreases according to Az = ps(Ls/Ln)'/? s0
that both the mixing length estimate yAz? and the quasilinear theory for X; show a weak
decreasing thermal conductivity with increasing magnetic shear strength. Horton et al?
carried out 3D FLR-fluid simulations to investigate the dependence of X; on the magnetic
shear parameter and 7; = 0,4nT;/0,¢nn = L,/Lr; parameter and compared their result

with scaling estimate of Coppi et al.® The exact form of the magnetic shear dependence has



been a strongly debated issue and for the shear slab problem both the global X;(S) and the
local scaling forms XoS™® are given in Hamaguchi and Horton for order unity® and large 7;
regimes.®

A second major advance was made in extending the analysis of V7 driven modes into
toroidal geometry by Coppi and Pegoraro” using both fluid and kinetic descriptions of the
linear fluctuations in a torus. Subsequently, Coppi, Migliuolo, and Pu (1990) re-examined
the stability analysis numerically and, in addition, calculated the quasilinear particle and
thermal fluxes.”

In the toroidal geometry the grad-B and curvature drifts produce an unfavorable charge
separation in the fluctuations on the outside of the torus and a favorable (stabilizing) sepa-
ration on the inside. The eigenmode problem becomes the classic one of finding the periodic
solutions in a sheared toroidal magnetic field. The potential for the local flute-like modes
contains the effective gravity of the form wp(0)/wx = (2L,/R)(cos§ + sOsin @) where 0 is
the poloidal angle, &, = L,/R is the strength of the toroidicity and s = rq’'/q is the re-
duced shear parameter (L, = qR/s). Here again Coppi was one of the first to recognize the
general importance of solving such toroidal eigenvalue problems.® Coppi gave the procedure
for constructing what he called the “disconnected modes” that are the strongly ballooning
modes® now seen in the global particle simulations of LeBrun et al.’ and Parker et al.® The
growth rate and thermal diffusivities for the strongly growing modes increase as (L,/R)'/?
thus giving the strong enhancement of the toroidal ion temperature gradient transport over
the corresponding slab transport. The transition from the slab to the toroidal regimes is

9-10.15 and analyzed theoretically by Kim and Horton.

now well documented in simulations
Let us turn to the analytic model of the toroidal ion thermal diffusivity. Horton-Choi-
Tang!? (hereafter HCT) use the ballooning eigenmodes parameterized by €,,7;, ¢ and s to de-

termine both the linear mode features Az, v, Af and to reduce the mode coupling equations

to a form containing the principal E x B mixing nonlinearity. With the quasinormal ap-
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proximation and the short correlation time (Markovianization) HCT derive the wave-kinetic
equation governing the spectral density (k) = {|¢x|?) and give approximate solutions for

I(k,) = [ dk, I(ks,ky) and the associated thermal conductivity XHCT (1, 5/q, €5).
II. ION THERMAL CONDUCTIVITY

HCT investigated the toroidal ion temperature gradient 7; = Ln/Lr; and the toroidic-
ity parameter €, = L,/R driven turbulence using a reduced set of mode coupling equa-
tions. The two key steps in the reduction were (1) to use the ballooning mode or “dis-
connected mode” approximation for the mean value of (kZ) thus reducing the nonlinear
spectral problem to an integral equation for the 1D spectrum I(k,) = f dk, <](pk|2> with
e = (cs/ Ln)(kpg)\/m as the driver and (2) to retain only the nonlinearity from

the convective derivative of the pressure. The HCT formula for X; is

i ﬂ) Y2
Xzﬁ LnS (GB [2511(771 ncrlt)] (1)

where the threshold value 7y of the temperature gradient must be taken from later kinetic

theory calculations such as that from Kim and Horton'® giving

EdT" — —2_]_.:_1_1?2(14_2"_) (2)
Tdz) ~ ™7 37 3R T.

or from Romanelli.!4

Recently, extensive numerical simulations at the IFS have led to a more complete and
complex parameterization of the X; formula and the threshold function.'® A simplified form

of the full formula (that contains twenty numerical parameters) is

Tqp; (cTe ) 1 1
X; = -_—
1+ 8/2 eB LT,- LT,-,crit. (3)

@DaAEDE @
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A complicated Zog function is omitted for reasons discussed below.

The formula for Ly, ot is of much importance since it determines the marginal stability
profile as can be seen by integrating Eq. (2) or Eq. (3) across the plasma radius. The
T; dependence on the right-hand side of Eq. (2) gives a sharp increase in the core of the
marginal stability 7/ (z) profile as easily worked out in detail by integrating the first order
nonlinear equation given by Eq. (2). Fortunately, the value of Ly, crit is determined by the
marginal stability analysis of the linear dispersion relation or by repeated runs of initial value
simulations to determine L, ot a8 a function of system parameters.!®

For relatively flat n.(r) profiles (L, < R/2) and s = rq’/q ~ 1 formula (4) gives Leit =
0.08R at the ¢ = 2 surface. The T;/T, dependence of formula (4) is considerably weaker
than that in Eq. (2) leading to less sharp core T;(r) gradient. Undoubtedly, future studies
will continue to refine and modify the formulas for X; and L cris.

Tajima and his collaborators have emphasized the importance of L, iy and the relaxation
of the global ion temperature profile toward the critical profile as observed both in the large
tokamaks! and in the global numerical simulations with the Toroidal Particle Code called
TPC.? Due to the extended radial structures the profile establishes a constant p = R/Lq,.
In Fig. 1 we show the Lz;/R ~ 0.1 constant region reported in discharge 17110 in JT60-U
at time ¢4 = 5.55sec in frame (b). In frame (a) of Fig. 1 we show the corresponding density
profile which does not establish a constant L,, value. Other tokamaks!® also show this expo-
nential profile T; o< exp(—r/Lr,) with a well-defined Lr, /R in the range of 0.1 to 0.2. The
global toroidal particle simulations provide an explanation for this behavior. The simula-
tions shows that the drift modes on neighboring rational surfaces are phase-locked together

providing an overall global toroidal eigenmode. The two-time potential correlation func-

tion (r,t)p(r,t + 7) shows a well-defined eigenfrequency wy ~ wp; = —2€, wk(T;/T,) =
constant over the radial range r/a = 0.1 to 0.8. The radial correlation length Ar appears

1/2

to be of order and scale as Ar = 4(p;a)'/? as given by second order (envelope) ballooning
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mode theory. The radial structures shown in Fig. 2a are tilted in the r — 6 plane due to
the form of the ballooning wave function F(r/Ar)exp[in(q(r)d — ¢) — iwt] giving constant
phase fronts rotating at the angular velocity df/dt = w/nq(r). Note how the modes become
“disconnected” on the inside as predicted by Coppi.® In Figs. 2(b) and (c) the stabilizing
effect of a weak E, x B shear flow is shown. This stabilization will be taken into account in
Sec. II1.

Let us introduce the gradient of the ion power balance equation over the region A ~
Lr. < a. In the presence of a transport barrier the width A of the transport barrier is
defined by a region of high shear in the mass flow velocity. Let us first review the relaxation
of the temperature gradient p(¢) in the presence of the turbulence W (t) and auxiliary power
density PL(r) injection in the absence of sheared mass flows. The power density profile for
the JT60-U reference shot analyzed in this investigation is shown in Fig. 3.

In the absence of sheared flows, the dynamics of W (t) and p(t) over the region A is given

by
aw _ o
— =2~ ue) = W] W (5)
d,u X()W‘U, ’
B = et (-25E 4 o) ©)

where Yo = 26, Y™ = (k2p]) = (s/a),e = (pi/a), Xo = (ps/Ln)(cIc/eB) and pip =
—(r/T;)8,(2Pg/3n;). The time units in Eqgs. (5) and (6) are L,/c,, and the ¢* in Eq. (6)
takes into account the slow transport time scale. The flow given by W, i1 takes all initial
states to the relaxed state parameterized by the gradient of the power deposition p%. The

near-to-critical states are given by

W () = R 4y pip\'? -
,Yng Iu'c + ’YOXO — He ( )

oy 1/2
1(pg) = % (#3 + 410,(]2"‘" ) + ;Lc} : (8)




The curves W (pz) and pu(p%) define a small, critical power injection rate py such that for
Pl < Py = Xo¥Y°u2/4y™ the deviation from marginal stability is linear in the injection power
and the confinement drops sharply from its ohmic value. For p; > p} the deviation from
the critical gradient increases as p = uo(7*p/7°X0)*/? and the thermal diffusivity increases
with the geometric mean of the local microscopic transport rate given by Xoyope/7™ = X“HT
and the global pseudo diffusivity created by the heating A%p’; rate over the region A.

In the regime pjz > p% we have from X = (x0Y0PeA2/7*)/? = (XcurA?pg)Y? the ion

energy replace time 7g = a?/X; given by

1/2 1/2 a=1l s g 1/2
o 8 R Pi 2 a*Bn e TO RO TyOE —1/2
TE—(q) (a) (a) (RP;') =n* I;7 R*® o™ B*? Pg 9)

where a,, = 1/2, ar=1/2, agr=1/2, o, = —a/2, and ap = (1 — a)/2. Here « is the
macroscale dependence of the radial correlation length with 0 < a < 1. The importance of
Pz and the gradient of Py in the confinement scaling as developed here is consistent with
the confinement behavior developed by Park, Bell, Tang,et al.}” The explicit p;/a scaling
for @ > 0 in Eq. (9) is a reflection of the long correlation length in the global discription
of the fluctuations. That systems not far from criticality develop long-range correlations is
one of the important results of the field of research called self-organized criticality or ‘SOC’
theory.!®1°

This dynamical model (Egs. (5) and (6)) for the relaxation of the ion temperature profile

toward the critical profile is the “critical gradient model” of Kishimoto et al.?
ITI. ENERGY-MOMENTUM TRANSPORT

In the presence of drift wave turbulence with E x B velocity fluctuations v of order the
diamagnetic drift speeds vg = ¢4ps/ Ly t0 v = pivi/L7i(~ km/s) the ion energy-momentum
transport equations contain both collisional and turbulent fluxes. The fluctuations and

the fluxes are strongly influenced by both the magnetic shear in the toroidal field B =
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Br 4+ B, = RBrV( + V( x VX (where dX = B,Rdr,) and the shear in the mean mass flow
u=wub+u 1b x VX/|VX|. There are two surface functions associated with u and u, and
the shear uj and v/, in these two surface functions have a strong effect on the stability and
transport. The surface functions are determined by radial force balance and the condition
of incompressibility V - u = 0 for the mean mass flow.

The sheared mass flows u, and uj break the symmetry of the drift-wave eigenmodes
shifting the peak of the functions off the mode rational surfaces (kj = 0). The shifted
eigenmodes produce finite quasilinear momentum fluxes (.7,) and (ﬁx'ﬁN). The effect of v
is destabilizing and adds to the drive from 7;.>! Here we consider the effects associated with
perpendicular (poloidal) momentum transport which produces an acceleration proportional
to the turbulence level and the symmetry breaking shear-flow ;. The relationship between
u,,uj and the poloidal and toroidal shears are shown in Table L

We measure the turbulence ¥ in units of vg. rather than vg due to the relatively fixed
values of L, and T, in the transport barrier experiments. With W = (%2:21) >k ledw/Te|*.
We can summarize the quasilinear transport calculations® and the drift wave turbulence

simulations of Su et al?® by writing

Op (ﬁxﬁy) = ‘Uqu'J_ (10)
~m\ . pscle o dT;
8, (#:1:) = LeB " @ (11)
and
dW Cs
o T I (’Yo(ui — pe) = ¥s(u)* = ’YMW) w (12)

where from HCT v = (k2p?) ~ s/q. From Su et al.?® and Waelbroeck et al** we have
vs = 0.5(Ly/c,)? and we take v* = vo(p — pt) where p = R/Ly and p. is given by either
Eq. (2) or Eq. (4). In the absence of shear flow Eq. (12) gives the L-mode turbulence level of

W, = 70(p — pe) /7™ and with Eq. (11) the X;, = (ps/Ln)(cTe/eB)[(vo (1 — pc)/+™)]. This
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This is the form of X that leads to formulas (7), (8), and (9).

The collisional transport of momentum in the banana regime defined by v&; = qRv; /v;e/? <
1 produces the poloidal damping v,. = (15/€/?)/(1 + va;) = (v;/qR) HL::) where ¢'/2 =
(r/R)'/? arises from the trapped ion fraction and v;/¢ from the effective trapped scattering
rate. For the transport barrier region of JT60-U the momentum decay rate v, ~ 300/s is
low compared to the turbulent momentum transport rate of (vgW/A) where A is the width
of the steep gradient region of the mass flow, i.e. the width of the transport barrier.

The momentum transport equation containing both the collisional and turbulent trans-

port is of the form
Py
min;

(13)

Uy = —Unc(UL — Une) — Op (Ux0y) +

where the local momentum injection density from auxiliary heating is P, . In writing Eq. (13)
we have dropped u effects and the Pfirsch-Schliiter-inertial loading factor 1 + 2¢* and other
details contained in Su et al?® The turbulent viscosity from Eq. (10) is negative due to
the inverse cascade of the 2D turbulence. The negative viscosity generates large scale shear
flows that suppress the thermal flux in Eq. (11) and improve the confinement of momentum,

giving rise to the internal transport barrier formation.

The neutral beam injection (NBI) in JT60-U has multiple beam lines with both tangential
and near-perpendicular beam line directions. Thus there is control over both the energy
deposition profile Pg(r) and the momentum deposition profile P (r). The local power profile
Pg(r) is known and has a strong radial gradient. For the local transport analysis carried
out here it is important to recognize that it is the gradients of Pf/n; and P, /m;n; that
drive the gradients of 7; and uy. Thus, we must take the gradients of the local balance
equations, or equivalently introduce x = r — ry where we take the projections required

ﬁﬁz dx z(transport equations)/F(n,T) = 0 where F(n,T) are suitable weighting functions

to obtain the local dynamical equations for pu(t) = R/Lri(t) — the gradient parameter and



F(t) = A?4'3(0) /122 the shear flow parameter. The procedure is described in more detail
for the resistive-g transport-shear flow problem in Sugama and Horton.?®

From the projection for the gradient parts of the radial transport equations over the
transport barrier width A, we obtain the following dynamical equations for the transport

state variables W (t), u(t), and F(t). Repeating Eq. (12) in time units of L,/c, we have

aw

e (’Yo(ﬂ — be) — W F — ’YMW) w (14)
dp /
tfi_f = (W —v)F + F'2P. (16)

The dynamics of these three driven damped dissipative equations is rich — describing three
distinct transport states. The states are analyzed theoretically by determining the fixed
points (FP) and their stability.

The dynamics leading to the formation of the transport barrier follows from the coupling
between (14) and (16) as most easily seen by freezing pu — .. First consider P| = 0 where
the turbulence-generated flow shear creates a transport barrier in the form of an L—H.
This transition occurs as an exchange of stability of the L-mode fixed point (W = W =
vt /~+™, Fr, = 0) and the H-mode fixed point (Wg = v/vp, Fu = [v* — (v*v/7)] /7). The

exchange of stability occurs when the collisionality drops through the critical value

VM<V:C_ 7 o va(p — pe)

= %N LT (17

where Lg ~ A is the width of the shear flow layer. For P| # 0 the transition from stable
L-mode to a stable H-mode is easier. We determine the condition on P| below where we
include both Py, which degrades confinement, and P| which improves confinement.

In the absence of sheared flows (F' = 0) the system (14) and (15) is the critical gradient

model that determines the degree to which the auxiliary heating pulls the gradient above the
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threshold of instability u. and how the turbulence level grows to provide power balance. For
the (W, i) flow on the F = 0 plane there are only the attracting fixed points parameterized
by Pj. The stable, attracting L-mode confinement states are given in Eqgs. (7) and (8) as a
function of the microscopic transport parameters and the macroscopic driving power for large
power Py > Py the turbulence grows as W ~ (PyWr/Xope)? and X = (X;L2Pg/nT.)"/? is
the geometric mean of X; and L% Pg/nT,. Thus, the self-consistent transport is a function
of both the microscopic transport and the driving power along with degree of peaking. This
result is entirely consistent with L-mode “confinement” studies.”

In the general case there is clearly a competition between the increase of X; with (Pg)'/2
and the decrease of X; due to the momentum gradient P} that drives the formation of a
transport barrier. The fixed points in W are now determined by the fourth-order polynomial
which has three real roots Wi < W§° < W} where the intermediate H-mode root (Wy°) is

unstable. The polynomial for the fixed points is

0 p/ 2 2
YPE o _ne ( U ) _ L 2

and the stability conditions must be determined numerically. For weak (P})?, however, the

important transition condition from the (P = 0) H-mode with W = Wy = v, Lg /v to the

super-suppressed transport (SST) regime is found by letting
W = Wy’w

and taking Wy < Wi and Pg > (ucWgXo). The roots of Eq. (18) are then controlled by

the effective control parameter

L2 (P
peﬂ' — L_% (—L;)

When pes > 1 the confinement enters the super-suppressed transport regime. In terms of

X()LEUM

Yuq Py (19)

Pest the turbulence drops according to

W =Wy ( 2 ) (20)
2+ pest + \/4Peﬁ’ + Pl
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going to a very low level for pes >> 1. In deriving Eq. (20) we have used that w = W/Wy S 1
to reduce Eq. (18) to (w™! — 1)(1 — w) = peg.

In this (SST) regime the gradient becomes very steep with pu — p. ~ Pp/XoW and the
system is maintained at linear marginal stability v = yo(u — pe) — (Lst/, /cs)? = 0 by the
strong shear flow driven by P| and damped by the neoclassical viscosity.

Formation of a steep gradient controlled by near perpendicular momentum injection is
shown in Fig. 4 from Koide et al.! In Fig. 4(a) during the period labelled I there is the self-
consistent rise of a steep VT; along with a drop of X; shown in 4(b) in the region A = 0.1m
layer around r/a = 0.7.

The prediction contained in the new parameter peg ox (p',)?/p that the perpendicular
momentum p/, can overcome the degradation of confinement from pf; is a key conclusion from
the coupled thermal energy and momentum balance equations. The essential physical effect
is the suppression of the growth rate and the turbulence by sheared perpendicular flows.
This shear flow effect is well documented with computer simulations.?%?%2%2 The experi-
mental manifestation of local stabilization and the creation of a super-suppressed transport
zone has been achieved in PBX-M.?"% In this experiment the application of 2MW of IBWH
heating in an NBI driven plasma is sufficient to create core H-mode with a high ion temper-
ature producing a neutral flux signature and a high ion temperature gradient that would be

unstable without the shear flow layer driven by the IBWH localized heating.
IV. CONCLUSION

The analysis of the energy-momentum transport equations presented here shows that the
self-consistent nature of the interactions of the turbulence with driving and stabilizing forces
of the ion temperature gradient and the sheared ion mass flows leads to a variety of self-

organized confinement regimes. By including both the gradient of the local power deposition
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and the local momentum deposition from the auxiliary ion heating sources (NBI, IBWH)
as control parameters in the driven-dissipative transport equations we are able to derive
three confinement regimes, the three regimes are identified with the L-mode, the H-mode,
and a super-suppressed transport regime. The bifurcations are studied. The conditions on
the neoclassical viscosity, the microscopic anomalous transport parameters and the external
control parameters are derived for the bifurcation points between the regimes. The conditions
derived for the transitions appear to correlate well with the conditions used in JT60-U with
the multiple tangential and perpendicular NBI lines and to those in PBX-M with the parallel
NBI and local IBWH resonant absorption region for the formation of transport barriers.
The formation of transport barriers appears to be of fundamental importance in fusion
confinement. The understanding of these barriers is derived directly following the procedures
developed for the study of ion thermal transport from the early works of Coppi and his

collaborators.
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FIGURE CAPTIONS

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

The time evolution of the density n.(r,t) and ion temperature T;(r,t) profiles in
the discharge 17110 in JT60-U. On the right-hand side are the two key stability
parameters computed for the first and last time values. Note in (b) the relatively
constant value of Lz,/R near 0.1 indicating a global exponential ion temperature

profile as observed in the toroidal particle simulations.

Equipotential profiles obtained from the global particle code TPC shown near the
time of saturation for three cases. (a) without external mass shear flow, (b) with
a weak E, x B shear flow in the ion diamagnetic direction, and (c) the same weak

shear flow now in the electron diamagnetic direction.

Power deposition Pg(r) function for the JT60-U discharge 17110. The radial gradient

associated with Pg(r) forms an external control parameter in Egs. (6) and (15).

Formation of a transport barrier. (a) Space-time evolution of the ion temperature
T;(r, t) for discharge 17110 with the insert showing the associated shear flow measured
from Doppler shifted impurity radiation lines. (b) The time dependence of the power
balance XI® thermal diffusivity for the radial region A = 0.1 m at the transport

barrier r4/a ~ 0.7.
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Table I: SHEAR-FLOW PARAMETERS

Non-Uniform Doppler Shift from ion shear flow u(X,t)

£
k-u=klul+k||u|| =%ua+}—%u¢

d o Ug ! Ug !
zhw=m(2)+¢(%F)
For ballooning modes kj = 0 then £ =m/q
AL ﬁ)'
- m ( T ) + q (R
Thus the parallel-perpendicular shears are given by
ug\' T fus\’
wor ()45 (%)

duy
dr

I
—
i

In Transport Barriers the range is 105 to 7 x 10%/s

18



40.0

(b)

Fig. 1



o3
(1]

s
B




P (160 fid)

1.4
1.2

0.8
0.6
0.4
0.2

Beam Deposition Profile

. e e L L
- 00"*%, 17110 -
F et e t = 6.271 1
F 0° .0. :
'f_:‘ o... _;
3 ..'oo _;
- .."'“Ou.r
- I Lo e 1

0 0.2 0.4 0.6 0.8 1

r/ a

Fig. 3



JT-60 Tokamak Profiles
Internal Transport Barrier
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