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ABSTRACT

A method of statistically characterizing an area-preserving,
doubly periodic mapping is presented. This method allows
one to calculate the characteristic functions, the diffusion

coefficient, the correlation functions, and the joint

probabilities of the mapping.




The standard mapping (Ref. 1, Sec. 5) has been studied
extensively as a model 6f stochastic behavior. Early work
included calculations of the perturbed invariants for small
values of the nonlinearity parameter and the study of the
transition to stochasticityz. More recently, there has been
considerable interest in the study of the statiétical description
of the stochastic regime with the calculation of the diffusion
coefficient3’4.' Here we present a method for staiistically

characterizing the standard mapping,

P+l = Py + € sin(xn)

n+1l Xn + pn+]_, (1)

X

and other doubly periodic mappings (Ref. 1, Sec. 5.1). The
essence of our method is the calculation of the characteristic
functions of the mapping. These characteristic functions allow
us to determine various statistical quahtities, such as the
diffusion coefficient, the correlation functioné, and the
joint probablility distributioné.

The characteristic functioﬁs are defined with integer

argument as follows:
xo(mo) = <<exp(1m0xn)>

Xy (mg,my) = f<exp(1m0xn + 1mlxn+l)>

Xﬁ(mo,ml,mz) = -<exp(1moxn + llen+l+lm2Xﬁ+2)> (2)




The angular brackets in these definitions are left unspecified
for thé moment, except that they are time-translation invariant.
An example of a time-translation invariant average is the
average of the initial conditions over an invariant region R

of phase spaceS, i.e. a region which is mapped onto itself:

. -1
< exp(lmoxn +oimgx g0 1m2Xn+2)> =  ./Pdede

®

% j{dpodxo exp[imoxn(xo,p0)+1mlxn+l(xo,p0)+im2xn+2(xo,po)]

R
(3)
The crucial point of this analysis is that the mapping
equations (1) in the form
Xp+k = 2%pig-1 Fpik-2 T €-SIn (xp o, g) ' (4)

allow one to express Y in terms of Xn for n 2 1. By using

n+1
the Bessel function identity exp(i€sin(x)) = Jz(s)eXp(izx),
we find
Xk(mO'ml""’mk) E'<exp(imoxn+imlxn+l+im2xn+2+...fimkxn+k)>
E'<exp[1m0xn+...+1mk_3xn+k_3+l(mk_z—mk)xn+k_2

+im, € sin(x

+i(m _+2m )% 4 1

k-1 ntk-1)1 >

f= z-J@(mkE)Xk—l(mO""’mk—3’mk—2'mk’mk—l+2mk+£)‘
% (5)




Moreover, X1 itself may be calculated by Eg. (3):

X1 (mo,ml) = /dpodxo ' /dpodxo exp[i(m0+ml)x'0—im0p0]. (6)
R ‘ R.

The interpretation of this method so that we must first‘
select a class of orbits and, .thereby, an invariant region R.
Performing the integrals in Eg. (6) we obtain the characteristic
functions averaged over that class of.orbits. All subsequent
quantities derived from the characteristics functions are
therefore averages over that class of ofbits.

Let us take the region R in Eg. (6) to be all of phase

space. Egs. (5) and (6) immediately yield

Xy momy) = by Lo L0, (7a)

X, (@n,m,,m) =68  J__ (m s) 2
2707172 My /My ml ZmO_ 2 : (7b)
and X3(m0,ml,m2,m3) = J (mO&)J (7¢)

- % o - (m,€)
mq m2—2m0 mg m2—2m3 3

Knowledge of the characteristic functions allows us to

calculate the averaged diffusion donstant,

. - T T
- /Lim 1 2N\ _ / Lim 1 § : .
D:<3T+m jf-(pf—pi? :> _w<:T+m S E;:' . bp, Apj _:}. (8)




To reduce the double sum in the last eguation, we rewrite it

in the form,

_ Lim 1 °
D = mio 5f~§ ,

T T
i=1 j

-i

=1-1

<'Api Ap
i

> (9)

i+3y” e

Next we assume that the terms in the sum fall off rapidly Wit@ 3,

so that as T»», we can sum over all j.

. T ‘:“:oo'
_ Lim 1 E,_ E . < |
D = Troo 2T Ld e <Api Api+j > - (10)

i=1 j=—co

Then we use theutime translation invariance of the average to

sum over i:

w,
- 1\ . '
D = '2‘2 < Apy Apiyg (11)
j==e
Finally, we use the Fourier expansion, Apj = esin(xj) =

(-i/2)[exp(ixj)—exp(ixj)], to obtain the following formula

for the diffusion coefficient,

w..

2

o
It
=

J=1

Inserting the special solution of Egs.

c?Re X0 (0)= X, (2042 ) [x5(1,0,.

"Iol_l)— X] (llol"'loll)]‘ .

(12)

(7), we find



€2{1-2J2(8)+2J§(e)-2Ji(€)+2:£:Jn(s)J_n(s)J~2(n+2)L(gf%?e]

g
i
NI

n=-—co

co .

_zzglJi(E)J_z(n+l)[(n+2)e]

fi=-oo

o0

2 ). [Xj(l,0,0,...,O,fl) - xj(l,o,o,.;.,o,l)] (13)

j=5

We note thatvthe first four terms of this series are exactly
those found by Rechester and White3. (We also note that Karney
et al.6 found those same terms by computing the force correla-
tion functions.)

A knowledge of the characteristic functions allows one

also to calculate the correlation functions,

c =< f#F(x) fr(x, >, (14)

m n +m?

where fr(x) ¥s: the number between zero and 27 which equals x

modulo 2w. ' The function fr(x) can be written as a Fourier series,

(15)

where ro=ﬂ'and T = i/k for k # 0. By straightforward algebraic

manipulation we find




e Xy (,0,0,...,0,-8) =y (k,0,0,...,0,2)
+ 2 E E (16)
- Lk
k=1 =1
For the solution of Eg..(7) we obtain
_ 4 _2
CO = 5 T (17a)
- 2
Cl =T (17b)
C, = (17¢)
) 2+k
3 | 2k
(174)

It should be noted that we have made an error in our appli-
cation of this method ﬁo-the calculation of the diffusion
coefficient by neglecting the acceleratof modes (Ref..1l, Sec.5.5;
Ref. 6). Accelerator modes exist throughout a region of finite
measure in phase space. They have the property that P, continu-
ously increases or decreases roughly as n. Such modes contribute
an infinite diffusion when folded into the average (8) and will
cause the series (13) not:to converge.

To correct for the presence of accelerator modes, we should




choosevthe region R of Egs. (3) and (6) to be the stochastic
region of phase space. Our value for xl(0,0) remains unchanged
by this choice, but now Xl(m;n) for m or n not equal to zero
no longer vanishes. Instead it is of the order of T/EZJSinee
the relative measure of the accelerator regions is of that
order (Ref. 1, Sec. 5.5). This will cause corrections to
Eg. (13) of order equal to that of the last sum.

To illustrate the generality of this method, we consider
its application to the mapping,

Usyp = Uy + U -V cos vy

541 vj + U + Vv sin Ujyp v

v

which has been discussed by Karney7. If we define the character-

istic functions to be

(mO,...,m ,no,...,nN) < exp(im u.+imluj+l+. JHimo v

XM, N 0% A B

+1novj+1nlvj+l +1nNVj+N):>

we immediately find the recursion relations,

| ' 1nyH
XM,M =‘Z'J5L (nM\))e XM,M—l (mo,ml,. oo My oMy +2 PRy ey
= _ A

Nz o r Py )




and

_ _ i(m, u—-2m/2) ‘ .
XM,M—l = :E:Ji(va)e M .ﬁ%ﬂﬁM-ﬂnbi""mM—l+mM’n0,""m _l+£).
2

L

|

Finally, we would like to note that this technique allows
one to calculate the fractionally reduced joint probability
distribution P(§6’50’§£’§h) which has been discussed by Grebogi

8

et al. For éxample

P(xg:PgrXrPy) = <8[xp=fr(xy)18[py=fr(py)] 8lx—fr(x )]

11 i i T s T s = . =
(fﬁ) exp(.lmoxO im 3 -ingp, 1nkpk)

MMy DR

X Xk,k(mO,OIO,.._-,mk,nO,O,O,...nk).

Obviously this method can be used to find the characteristic
functions of any doubly periddic mapping. Furthermore, in the
stochastic regime, where the higher order characteristics are
small, one can use this method to obtain an approximate expression
for the diffusion coefficient, the correlation functions, and

the joint probabilities.
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