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Abstract

An eikonal ballooning mode formalism is developed to describe
curvature-driven modes of hot electron plasmas in bumpy tori. The
formalism treats frequencies comparable to the ion cyclotron frequency,
as well as arbitrary finite Larmor radius and field polarization,
although the detailed analysis is restricted to E, = 0 . Moderate hot
electron finite Larmor radius effects are found to lower the background
beta core limit, whereas strong finite Larmor radius effects produce
stabilization. The critical finite Larmor radius parameter with weak

curvature is

2 2
k[ppR/Ay
1+ P;/P]

where k; 1is the perpendicular wavenumber, Py the hot electron Larmor

radius, R the magnetic field radius of curvature at the hot _electron .

layer, A4 the magnetic field scale length in the diamagnetic well, and
Pﬁ | are the parallel and perpendicular pressure gradients. The
b

interchange instability arises if

--ZBCR

[a(1 + By /R7)] °

1 > FR > 1 -

whereas all modes are stable if FR > 1 , where B. 1s the core plasma

beta and A 1is the core plasma pressure gradient length.
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I. INTRODUCTION

One of the most important problems concerning hot electron plasmas,
such as in the Elmo Bumpy Torus (EBT), is to determine the parameter
regimes for stable plasma operation with respect to curvature—-driven
modes, such as interchange modes, ballooning modes, and the
compressional Alfvén Wave.l"7 In EBT, the plasma contains a very hot
electron population which digs a magnetic well in each of the mirror
cells. This hot electron population 1is characterized by having a
magnetic drift frequency, Wah s that is larger than the
frequency, w , of the typical MHD pefturbations and, in present EBT
experiments, is comparable to the ion—-cyclotron frequency, Wai o
Therefore, the conventional fluid and kinetic energy principlesg, which
assume that ® 1is much larger than the magnetic drift frequency of the

plasma species, are not appropriate for the stability analysis. There

is now considerable effort to develop an alternate analysis. One method

is a kinetic-energy principlegzlo, which .. employs-- . the. -kinetic

guiding-center model for hot electroms, with the ordering w < wgy, -
However, this kinetic-energy principle gives predictions that are too
pessimistic due to the neglect of finite Larmor radius (FLR) effects of
ions and hot electrons, as well as the neglect of finite hot electron
density. The effect of finite hot electron density has been studied in
modal analysis studies of z--pinchll and slab models.!? The effect of
the FLR was neglected in previous work. This paper, as well as recent
work by Tsang and Catto7 and E1 Nadi4, studies the important effect of
FLR. In addition, we will incorporate more realistic geometrical

effects along the magnetic field lines.

e e e ..
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In past stability studies it has been a frequent practice to
neglect FLR effects and to take the ideal MHD assumption that the
parallel perturbed electric field, E;, vanishes. This assumption is
valid for MHD-like modes. As has been shown in kinetic studies of

13 and recently in tandem mirrorsl4,

ballooning modes in tokamaks
the E; = 0 assumption is not wvalid for a large class of
trapped—-particle modes. Since the curvature-driven modes involve
perturbations with £frequencies ranging from the ion diamagnetic drift
frequency to above the ion-cyclotron £frequency, it 1is important to
develop equations that are valid over a wide range of frequencies.» In
this paper we present the relevant eikonal-~ballooning mode equations
that include finite Larmor radius, finite E, land high-frequency

effects (m ~w » appropriate to the relevant modes of EBT . This

ci)
naturally leads to a complicated set of equations that will require

extensive analysis and numerical work. To simplify analysis we will

study -in .detail -only . the rcaserof~E“ = (0 and finite but small Larmor — -

radius. The study of other relevant cases will be left to future
investigations.

A simplifying assumption wused in this work is to assume that a

given plasma species satisfies either the inequality w - w4 > wy Oor

w =-wg <wy , where wy is the transit (bounce) frequency of a passing
(trapped) particle in a single mirror cell. Usually the hot electrons
will satisfy the second inequality, while the background plasma can be
in either of the two regions.

The structure of the paper is as follows. In Sec. II, the
coordinate system and MHD equilibria for a bumpy cylinder model will be

15,16

described. In Sec. III, a gyro—kinetic equation valid for
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arbitrary frequency, with anisotropic equilibrium pressure and ambipolar
electrostatic potential, is presented. In Sec. IV, the solutions of the
gyro-kinetic equation are obtained and are used to construct the current
and charge densities mneeded for Maxwell’s equations. The eigenmode
equations in various frequency regimes are fhereby obtained. In Sec. V,
a local stability analysis including the finite Larmor radius effects
will be presented for the interchange modes and the compressional Alfvén

ci) frequency limits. In

waves in the low (o << wci) and high (o >
Sec. VI, a line—averaged analysis in the high hot electron bounce
frequency 1limit for interchange and compressional waves on each field
line is given.

Tﬁe principal physical result of this paper is that hot electron
FLR effects stablize all curvature-driven modes when, roughly,

kfp% 2 KAy , where k; is the perpendicular eikonal wavenumber, Py 1is

the hot electron Larmor radius, k 1is the field line curvature, and

Ay --is- the magnetic scale-length. - The line-averaged—analysis——confirms——— -

the local analysis and shows how to include the appropriate weightings

along a field line.

II. COORDINATES AND EQUILIBRIUM
We will analyse EBT in its large—aspect ratio limit for which a
bumpy cylinder model applies (see Fig. 1). The magnetic field can be

expressed as

B = Vy x V8 (1)
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where ¢ labels the magnetic flux surfaces and 6 is the ignorable
poloidal angle. The quantity s is the distance along a field line.
In this coordinate system, BeV = Ba/as|¢’e .

The equilibrium of the system is specified by the particle guiding-
center distribution functions for each species, F(E,u,wg) . The
variables are the constants of motions: energy E = v2/2 + ed(P,s)/m ,

magnetic moment p = vf/ZB » and the magnetic flux position of the

guiding center, wg . The equilibrium satisfies the following two

conditions:

(1) quasi-neutrality:

p = Zeij = 0 (2)
where j 1is summed over all species and p is the charge density, \

> [ E/B By
Ny =iy 2nf dEf - L ,FjE,E,,u,,,lp,),,,,,;,
o o Jo Vsl

with
_ e.0 \ 1/2
V"j = 0'}/2 E - ]JB - ——J—
oy

and

veB
g = == .
[ve B]
(2) force balance:
P ]32 8 Klrz .
Ul + anB) = gf[p* + 4n(2, - ) (3)

i
R T I 1 U S
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where Kk = [b-z)h is the curvature, b = §/|§| , and Py and P, are,

respectively, the parallel and perpendicular pressures given by

e.d

k|
P 2 E -uB - —
Il E
Jso

Py 'VnJl B

In addition, it follows from force balance along the field 1line that,

for each species,

By 1

55 - (B -R)g

@,
o

. (4)

QJ,

For a general equilibrium solution, the potential & and the

distribution functions Fj are constrained to satisfy Eqs. (2) and (3).

It has been shown that Eqs. (2) and (3) lead to a partial differential

equation for ¢ which, when there is zero parallel current, is of the

17

form~* - - o e SR - e e s e

c o) ~ _
ZZ‘P + VyeVin (?i') = ~hn T 5 (5)

where r = |zel‘1 , 0 =1+ 4ﬂ(Pl - P")/B2 . Usually, Eq. (5) requires a

numerical solution for a complete specification of ¢ , although
analytic techniques are viable in a long~thin approximation. The exact
form of the equilibrium will not be essential to our stability analysis,
but the equilibrium constraints given in Eqs. (2), (3), and (4) will be

extensively used.

U VO .
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ITI. BASIC EQUATIONS

We consider waves which can be described by the eikonal
representation, i.e., a perturbed quantity £(y,0,s) is expressed as
£(s)expliS(y,0)] with ki = Y9(35/3y) +70(05/86) = kT + ke¥6 .  We
then consider waves with klpz/L << 1 (L is the macroscopic scale length
and p is the particle Larmor radius). The perturbed vector potential

is chosen as

A4 = AL +Y xab,
and the perturbed electric field is given by

~

E o= V¢ +2 A .
o+ — A

Then the perturbed distribution function fj for a given species will

satisfy the equation (we delete the subscript denoting species):

e My, TN)_ awir
mJE mB 3y c oY 9y
al e ar ([, Vi) kv | N
* 2| %.gz - = [<¢ - E-)Jz - —— 3 | (em(iny)] (&)

where Jz = Jz(z) is the Bessel function of order & , 2z = klvl/wc s

Ji = sz/dz s Ly = (Ele'b)/mc -, w,= eB/mc , and ¢ is thg

particle gyro—-phase angle between vy and k; . The function 8y

satisfies the equationls’16

T
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~ j vy A ) k V_L |
= %F(mz —mE)[(cp -1 ")J,L - lc %J@Zl (7)

where

ceT
We = (x,—e'ﬁ) kiebx g
c
wg = gkicbx7¥0
Lw )
~ T 3 c 9.
= -z 2+ % 2 |inF
% <m>(‘” 5E = B au>n
T = Ly epx VinF (8)
W = op SLtRx Uin .

The parameter T is a scaling factor introduced arbitrarily to serve as
a rough measure of the temperature of a given species.

The gyro-kinetic equation is coupled with Maxwell’s equations to
form the basic integro-differential equations for the system. After
applying the standard approximations of quasi-neutrality and the neglect

of displacement current, the forms of the three equations we use are:
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(1) Quasi-neutrality Condition:

T - Eofo

where qp 1s an operator of the form,

glo

5F .§ ;
2 .

1
4 = L+ ExpV —,
L9

18 needed to account for the difference

The term qq 1s a correction
between guiding-center position and real particle position, and
the V operator in qq operates only on equilibrium parameters. The
modification of qy from wunity is important for describing waves with
. To obtain Eq. (9) we have used ZJ% = 1 and ZJzJE =0 .

w 2 We

(2) Perpendicular Current Equation:

In terms of our variables, this equation can be written as

v o kv
b, _ br E |43 e 8F 1L E” .
ke = = L efd Vkiﬁ(--i&?ﬁ e — T - Qg 8¢ J9 - (10)
J

(o4

where several Bessel function summations were used, including

-2
1Igc = 1/2 .
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(3) Parallel Current Equation:

—
4nr . dar K 3 2. :
Ve (bbeyxB) = —V-(§b) = B“Y.(g LJ_ e/d VY Zﬁ dggdglf - (11

c c

Instead of evaluating the right—hand side of Eq. (11) directly, .it is
convenient to construct the parallel current by taking the exp(-iLz)
moment of Eq. (7), the equation of motion for By - Then, after we wuse
the quasi-neutrality condition, Eq. (9), and the fact that the

equilibrium distribution function is even in its vy dependence we find

2.2
ke \ .
B d "l 51 - E 143v | I
4r ds R»Z s F

2 2w v
. & b _ c oF 2 _ L 2\ |
EY Z (a9 - - 53‘(‘“2 E;Bl%%) | (12)

2
e“F

Td) + Zeqz(fwc + wd]ngR‘
L

where dy/ds = imA"/c and k%g1= By isv the perturbed. magnetic field
parallel to the equilibrium field.

On a given field 1line, the equilibrium is periodic within each
mirror cell. Hence, it follows from Floquet’s theorem that all
perturbed quantities will vary as £(s) = g(s)exp(ik"s) , where g(s) is
periodic in each cell (the superscript carot will refer to functions
that are periodic over a single cell), and k" = 2rn/ML , where 1L is
length of the field line in one mirror cell, M is the number of cells,
and n is an integer such that -M/2 £ ‘ni < M/2 . The quantization

condition on k; insures single-valuedness of the solution.
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We now proceed to solve the kinetic equation for gy » with the

solution being valid in either of the following two limits:

, ~ 3
Max(m,wd,wC] 22> Wy VI 55 ?

- )
Max(w,wd] K UJ" V" E ’
where w, 1is the transit (or bounce) frequency of a particle in a given

cell,

For & # 0 we readily obtain

N 1 k“ V" - iV"a/aS eF | ;2 - OJE
= -+ R
&2 w =g =W, /T \w-wy -2,

: kv iv
Floa (I [T B
» - |. -— 2T, - 13
.[¢ ( w w 834'2 (13)
For g3 we find two possible results:
(1) High frequency: Max(w,wd] >>
= ) NInled = J+J ] 14
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(2) TLow frequency: wy >> MaX(w,wdskuVu)

eFO ((:)0 - w;l,‘) ~

N

- "L ~
80 = 80 ~ m Jox
. eFO ; W <§ [ ¢ - x + (wd/w) ] + lelBl/kl€> (15)
T 0 * w - <wd> - k" <V"> )

Here we have assumed that the argument of J, does mnot wvary with
position, an assumption strictly wvalid only in the long-~thin
approximation where k%/B depends only on ¥+ The condition wy >> kyvy

is satisfied if n <K M . Furthermore, we have defined

é dSOL /V"

a> = T (16)

where for a passing particle the orbit average integral is over a single
transit through the cell, and for a trapped particle the orbit integral
is over a full bounce period. Note that {vy> = 0 for trapped particles.
We can use the < > symbol in both the high and low frequency regimes
if we define <a> = o when Max [w,wd) >> wy , but continue to use <a> to
denote the definition in Eq. (16) when Max (w,wd,k"v") KLuwy . With
this understanding, Eq. (15) reduces to Eq. (14) in the high-frequency
limit.

If we now substitute Egqs. (13) and (15) into Egs. (9), (10), and
(12), and wuse the Bessel function identities stated previously, we

obtain
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(a) Quasi-neutrality Condition:

2w
Z fd3 -E: ———¢+(wo—w*)(2)%

(0g - ok <¢Jo = x[1 = (wg/w)] 3§ + 313wy B/ >
w - <(Dd> k" <V">

3F v By Z g0 - wy)
Bou [(1 - 35)¢ ~ Jody kch + 2

0% 0 (U) - U.)d - ,chj

-4-

F(;O -mg) 3F -

X (qu; - 333 2 = 0 (17)

(b) Perpendicular Current Equation:

v
2 bre d/;3 - .
- - - - k-L c ——

J €o1(viBr/kie) + [6 - x + (0g/w)x] ToI0>

7 (0o - )’ 6 = wgy - Ky <vg>
JoJ1 1 3F (2 V1Bl
+ - +J ‘
X — o J1 e | 0l1e

T (w - wgy_ mBop-|

I ——— s e T
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(c) Parallel Current Equation:

2.2
\ .| kfc“
3(3_ + ik"> L
s ZB
E ; )'i v w \
= 4n / e2 d3v (¢J8 + Jody _A;Bl + _E'XJ%) }
l klc w H
J .
2 2
0 * w = <wgd> = Ky <v; > !

I.F (;0 - wz)

where the superscript carets have been suppressed on all perturbed
quantities, since all perturbed quantities are now to be taken as

‘periodic functions in a single mirror cell. We have defined

. Z.qz [(F/T)(a,o« wi) - (v -md)(aF/au)/m}J% - (209

“"“’d'“"”c

To Jlowest—order in Larmor radius, g+ 1+ 4ﬂ(Pl - P")/B2 when

wCi > w,wd .

TT T
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These are the eigenmode equations for our system which apply when,

for each species, the following frequency orderings hold:

(a) Max(m ,(Qd, (J.)CJ > (D"
and

(b) either Max(m,wd) >> wy or Max(w,wd,k"v") Kay .

(Recall that the meaning of the symbol, < > , depends on which of the
approximations (b) applies to a given species). These equations are
integro-differential equations that include the kinetic effects due to
finite Larmor radius, magnetic drift resonance, trapped particles, and
arbitrary frequency. The general solution of these equations requires
extensive numerical work., Hence, for the detailed analysis in the
remainder of this paper, we will invoke the approximation E" =0 (i.e.
¢ =x) and use Egs. (18) and (19) as the governing equations.
Furthermore, we will neglect the equilibrium electric field in the
subsequent analysis and also assume kfvf/wg <K 1 , although relevant

small gyroradius correction terms will be kept.

V. LOCAL STABILITY ANALYSIS

A common procedure in past work has been to treat ¢ and By as
constant and then formally solve Eqgs. (18) and (19) in the limit
w <K wy ;wq for all species. Although quite crude, this procedure has
the benefit of isolating the types of flute modes that can arise in an

EBT plasma. For the hot electrons we will use the symbol "h" , and for

——— e e e S e e e e e e
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the background electrons and ions we will use the

symbols "e' and "i'" .

A. Low Frequency Analysis {w << Weis Wge,i K0 <ugps k <K r9B/9y)
We will first assume w <K w,; so that we can neglect the higher
harmonic terms in Eqs. (18) and (19) except for n = *1 contributions

from the ion polarization term in Eq. (18). For electrons and ions, we

use the approximation

8]8
N A

w—wd

whereas for the hot electrons we use

where Wqp 1s the magnetic drift frequency. The Bessel functions are
approximated as Jy(z) = 1 - z2/4 and Jy = (=z/2)(1 - z2/8) « Then the
velocity integrals of each species can be expréssed as simple moments of
the equilibrium distribution. The local dispersion relation (with

Pd = P, + P; taken to be isotropic) is then found to be

2
DesPem * Do = O ’ (21)

where

e e e e _ e - . L L e o

et P SRS ey



2.2 * 2
ke ") k
Des = l‘(l__l)+lm__e_<BiB_+K_B>.i(
.vi : w w2 dy r /| dy

(1 + Pj/P7)  drwe (M /B)"  4nB(p_/B%)
+ —

D =
em rB‘ 42 B)
CkeB
4 (822 kP ?) w2
3 2.
B B k..LVA
d -Pc. K Pc-;
D = —_ - =
ct ay \ g2 r g2

where we have defined.

WenFin
Vg o
dp
dy

kg¥0 + Ty

(22)

TV 1T
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If we seek a high-frequency solution of Eq. (21), viz., the

magnetic compressional mode, the root is approximately given by setting

Dem = 0 « This yields the dispersion relation
w2 w -
K Wb

where

4 P .
: h d [ *ed b 2 2 2y
D, = 1+ =i =dn—[—] - — — (B“P| 1k ‘
L ( Pi) & <’BZ) g4 ¥ S
1 _ _ 471' ehB d <'th> ( 24 )
o W4 ckg (dB/dy)? W\ B/
The stability condition is then
TRAY A Pr A
[ ky V5! - b( IIh-»> b, _ .22 .
i > Dy = | —{1~-—"]-_—28.%kip (25)
— 5 1 -, 17h
(zwdb> ! Fin/ 2°F |
where
-1 dB
A = =2
b r ay

1 .
R = -2 = radius of curvature
K



A—l - rBP”
P
. _ STrPC
[ B2
2 2.2y
2~9 (P ykfefB)
k = -
1Ph 3_. *
B-B

For purposes of estimation, all species are assumed to have the
same pressure scale length on the outer side of the hot electron ring.
We note that instability can arise only if Dy 1is positive. Hence, the
hot electron f£finite Larmor radius effects will always stabilize the

magnetic compressional mode if

D, < 0 , (26)
or roughly if . N
B . d
272 28 I
— + k5HE > _—_(1+_>z . (27)
1Ph .
Bin BinR Pl

We now investigate the interchange modes and assume w << Kk 'wy,0.q

Then, using Eqs. (21) and (22) leads to the relation

wlw - mi] +A = 0 , (28)

with

11"
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4nk§v§g

2
er.L

[(er3?)” + (wa/ Bogy)| [ 21 + P + twew (2 o) /83 (29)

{(PC/BZ)) + (UJB‘ /(deB) + [(P_Lhka_p}lezJ,/BZF] - K(l + Pih/PJ}.)/lm}l |

where P] = Py + Py .

Equations (28) and (29) contain the various stability limits for
the interchange modg. If 4nw/5éb >> PE/P% s Di » the equation reduces
to the standard MHD interchange mode (with FLR corrections). The
opposite condition, 4ﬂw/5ab << Dy , is the basic decoupling condition
for the hot species, which was previously found to be satisfied at

sufficiently low Bc if11

2
4rk62ViB’2 d
5 I (By + P",h,),, i T &)
K'k._LB

We shall now assume that Eq. (30) is well satisfied and neglect the
w/ﬁéb in Eq. (29). We then note that Eq. (28) will always be stable if

A <0 . Assuming (PE/BZJ < 0, we can obtain A < 0 when

2 2.2\
4 r{ Py kp+B
Pt P, + (Buipse”) < 0. (31)
-1 Ih K33 ]

Without the electron FLR term, Eq. (31) leads to the Lee-Van Dam2 and
Nelson> B. limit; i.e., when we satisfy Eq. (25), we obtain stability

with a diamagnetic well if
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. (32)

faking the hot electron Larmor radius into account can change the
sign of the two terms in Eq. (31). As kfpz increases, D; first changes
sign, so that moderate electron finite Larmor radius effects actually
lower the B, limit. For somewhat larger k2 2 s the bracketed term in
Eq. (31) then changes sign as finite Larmor radius stabilization of the

interchange mode is achieved. Hence, there is a possible window of

instability for the interchange mode that is given by

(33)

If the right-hand inequality is not satisfied, then the interchange

instability is stabilized by the condition

P\~ P:
Le Kk f Il he 4n 2 2 2

but as this is the condition that D; > 0 , we are susceptible to the
magnetic compressional instability wunless Eq. (25) dis stabilized (a
condition that is not too restrictive). When electron FLR effects are

sufficiently iarge so that




—23

by (25 .2 2) K Ih
T {B%Pk > - =1+ 5
24 ( 1 _Lph') B < Plh) ’ (35)

then the interchange and the magnetic compressional mode are both
stabilized and there is no B, 1limit (for a given k;). For modes with
kA > 1 , we appear to have found a reasonable stabilization condition
with no core beta limit. However, the interchange modes can also be

long wavelength, klA <1, as in the layer mode of the z-pinch

model.l1 Then it is necessary to perform a more exact calculation that

does not invoke the eikonal approximation.

We also note that ion FLR effects can produce stabilization if

2.2
4kIvak
wzz > 4\(w = 0) = _9A s

er%

. o w20 12.2Y o2
|P] + Py + rB*{B“P, kfpi | /xB ]
N ,_ [ 1t Pin ( 1hK] h.) . (36)

1= [t o+ e em - 4"51(i32P1hkf9121;)’ /345]/%(.%/32?),

This is a moderately strong stabilization effect except for those values
of k; that have a B, threshold where Eq. (34) is just violated; then
Eq. (36) cannot be satisfied since its right-hand side is arbitrarily
large. Hence, for those k; values that cannot satisfy Eq. (35), the
ion FLR term cannot modify the B. threshold. Furthermore, for layer
modes which tend to have constant électfic field perturbations, the
stabilization formula of Eq. (36) is not applicable, and further

investigation is needed.
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B. High-Frequency Analysis (wce > w wci)

We now investigate the stability of the hot electron ring to high
frequency modes, which are of interest when WoysK Vp 2 Woy o For
simplicity, we will take the pressure of the ions and background
electrons to be as much smaller than the hot electron pressure and
neglect their contribution in Dgg « If we now include contributions
from the q+1 terms in the small Larmor radius limit, we find that the

quantities in the dispersion relation of Eq. (21) alter to

2 - 25-2
K _ k2”2
Pes = l2 237 Bk{ 2 77 ] += (37
vill - (w /wci]] vi(l - w /mci)wc1 W qpw
2 Bk, 3 g (»./8%)"
5. W 1 _ s[ ® ] o g el
em 2.2 2.2 4 2 2, .2 .
kJ_VA (1 - W /wci) k..L VA(]. - W /wci)wci A B
P -
1 Wgp BB -

. 2 Bk . B
Dy = - — w > -2 W ] +kf’ . (39)
VA@ci(l -w /wci) ki v ci)

Combining these terms we find a cubic equation for w ,

w3+ Bw2+w+D = 0 (40)

where we have used the assumption By << 1 and



-25-

2
_ v
A= g+ kg vy
: rwciA
2 2 kBVA;&b kﬁvi
B = -kfvi + DR + DR
cib r2w2. a2
ci®hb
— 2=
C = "leA‘”db DR
24
\Y
- -
r Ab

- . e - 22
where DR = —«Ay( 1 + Pjy/P{) + rAyB8L/2 - kiof -

Equation (40) is nearly identical to the one obtained in Reference
(11) when 1 >> By >> «A (A'l = ~PyrB/Py with all pressure gradients
taken to be equal to each other), Bo <X By » and if ome replaces the

quantity q din Ref. 11 by the new quantity

2 2
¢ = i ag|1 - B P (41)
- O ’ - - - -
kf c {1+ Pin/P1)A
where k=kg/r , 10 = wap<ip/(wesd) R =,

B, = -BLrBRA/[2(1 + P7y/P1y)] -
In Ref. (11), it was established that if p/qo(kaZ] <1 (where
p = nh/ni) » we can neglect the D term of Eq. (40). Then, in regionms

where q° 1s not close to wunity, this leads to the two stability

criteria

e em e e e T e+ e e+ e e s et et e o o oo,

[
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1
= |1 - — = 42
p < p; = <1 ‘1/2> (42a)
q
2 .
BIq
P > py = 5 . (42b)
(1-4q7)

The first condition, Eq. (42a), is that there be enough background
density to stablize the high frequency hot electron mode. This mode

will always be stable if q° < 1/4 , or

2.2 2
2kTp1RB k
FR = 1Ph"™P L s 1 1 1

ol - . (43)
(1 + Py/p7)A 4qq k(1 - B.)

The second condition, Eq. (42b), is the criterion that there not be too
much background plasma to excite the magnetic compressional mode. It is
completely stable when FR > 1 , as was also found for the low frequency

case.
If ¢ = 1 , then without the finite Larmor radius term, there can
occur instability for all p , which exists in a bandwidth determined by

Il-qil < wm V2 (44)

-

However, with the finite Larmor radius term this instability band can be

prevented if

FR > 1 - ' (45)
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V. HOT ELECTRON BOUNCE AVERAGE ANALYSIS
We now solve Eqs. (18) and (19) in the limit of weak curvature and

small but finite B , assuming

EEss 1, B <K 1, By 1, and 0 << wyg

where R 1is the radius of curvature, A is the ring annulus thickness,
and B, 1is the beta of the background plasma. We shall assume that the
hot electrons are trapped and restricted relatively close to the mid-
plane of each mirror cell. In the region of the hot electrons, ¢ 1is
nearly constant, a consequence that follows from Eq. (19) if one is to
balance the first term with the remaining ones. In the hot electron

region we have

1

w = <u*)dh> —

N 2)/rBY - u®~lae, /apy - :
e f<~~_'dPJ-h" > | o &l + v /o8y - uTIaR 4y - enfeigM )
Mckgu '\ \ Bdy u@‘ldPlh/dxp“.>

Then neglecting¢ﬁ(mdc/w) terms, taking an isotropic background pressure,
and setting By = 4nckeB(Pc/Bz)‘¢/w + él (note that %1 vanishes wherever

P, = 0), we find that Eq. (18) can be written as

RARSastadentng 1ot Ry § ekt Sl Tat e b o SRR B SR

[ S——
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~ - <Bp 3F _ dB/d IF ~
h

Z‘ Plh/B; 30 dPp/dy

_ wZ _ 81rPc .
) 2 1l
kJ.VA B
+ 143 3F ) < k(ou + T /B /r> 41ru<P /B> ew/kemh :
uka . ewu[BF/BE]<§1> N ‘uz 9F ( kfuB N ~4ndP./d} + xoB/r >~
( k n » B Y dp 1
2(1)3_ ‘ ¢ 6<P_]_h/B‘> H Z(DCZ: _Lh/dl[)

LIS (2, /8° >3F BF(PC")':

o | T(EWEy B BT

Tend <Plh/B§ (aw <Bd¢> ) (46)

where the left-hand side of the equation is zeroth order and the right-
hand side is first order. 1In Eq. (46) we have assumed that for the
background plasma, w >> Wy . However, it can be shown that the final
results of the following calculation are independent of the bounce
frequency ordering of the background plasma.

The solution of the zeroth—order part of Eq; (46) is

= _ o %Fin
1 5 —m— =3
B dy

The coefficient C(¢) 1is determined by the solubility condition that is



_29_
obtained by multiplying Eq. (46) by P{y/B and integrating by ds/B . 1In
this way the left-hand side of Eq. (46) is annihilated and only the
right-hand side contributes to the integral. We  then  find

the C(y) can be expressed in terms of ¢ as

ey | [ |- (Pih)z w? , ®in 4 <'P0~>+ wey, Bi("&‘“)
J31\3) g2 W @\ R §\E

P1y g
Tdy dy

k, dp e B N
_ ds 6 d lh h® 4 [ "h
= 4"¢/ B l: 0 dlp( ) Tdy ¥ Zc hrc dy ( 7)} (47)

where kfp% is defined after Eq. (22).

K

__k_ 4 =4

(BLrkfeRB”)

To proceed further, we substitute By = lmcksB(Pc/Bz) olw + CP{1,/B

into Eq. (19). To the appropriate order of our expansion, we find

g e s e
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B2,
2N\ kgu /. Wy o~ \ oFy
4 bmo dEdy 9 .- d <3, )
e, 8F (P{p/B - (P]p/B))
ral oY 41r<P‘ /B'> ) (48)
lh

where we note that the last term vanishes when spatially averaged over
the hot electrons.

With the assumption that ¢ is nearly constant in the region
containing hot electrons, an approximate solution of Eq. (48) can be
obtained. Integrating Eq. (48) along a field 1line through the hot
electron region and using Eq. (47) for C , we can find the change of
kfcd¢/ds across a hot electron region. The effective differential

equation satisfied by ¢ 1is then
Zd + 6(w)d(s - sy)o = 0 (49)

where s, 1is the center of a hot electron region (i.e., the mid-plane
of the nth mirror sector) and G(w) is given by
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<M(w )><N(w )>
<D(w)> (50)

G(w)

where now <a> = [dsa/B and

dP1n 4 e g [Ny
(i) ® Lq; dq;( >+41rkecd1p( )J ’

Mw) =
dp 2 [ap,, \
- d ) - lh d 2,252) - o (&b
dp P\ e.wB N.
= e ! ‘o Lo +
P @ d“’( ) Arkge dw( ) ZmtB dy (Bin + Pyp)
2
bodh & (B pifofn?) - o ( dPlh) .
'
B4dy ap K2v2 B dy

Alternatively, if ¢ does not vary appreciably in the hot electron

regioh, the differential equatibn satisfied by "¢ can be written as

g.sq) + Q(UJ)¢ = 0 , (51)
where
Q) = SLPRL) (52)

If the first two terms in the expression for D(w) is dominant,
then Eq. (51) reduces to the standard MHD ballooning mode equation, with

important FLR corrections.

e

[ . e oyt e
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To analyze Eq. (51), we order the equation so that its zeroth,

first, and second order forms are:

a Ko dbo .
ds B ds
g Ko o) , ko dog . 4 (kf"‘bo)
ds B ds VTR Es 1 g5 B
k2 2 2 Ml ) SN( 212
a4 ko doo " kic dé, " d (,kloq)l) Mlw)>N(w)pg  kiokjdg
ds B ds TR G TN G\ T T T B> B
kfw(w - wy) 8nk§KPE¢O
Bvy rB

With the constraint that ¢ be periodic over each cell, we find

the solution

oy
b0 = Lizg = ik

. L/2
11 - BL _kfof dsB

2
_L/z k.LO

where L is tRhe length of a field 1line in each mirror cell. By
demanding that d¢,/ds be periodic over a cell, we find the solubility

condition, which leads to the dispersion relation

-1 .
L/2
: // gs | Kw(o - wf)  8riger;

??[: 5 + = C+ G(w) .
L/2 VA

(54)

— e e e e e
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The . case of k, =0 constitutes the field line averaged
generalization of Sec. V. The generalization of Eq. (23) for the
magnetic compressional mode with field line averaging is obtained by

setting the denominator in Eq. (50) equal to zero. We then obtain

_._._~'-2 = =
0¥kjvy)  +wwgpl +D; = 0 (55)
with
2 Jas[(epym) Y (mdg)]
(k_LVA) = N2
[ds(P],/B)%/B
;dgl ey [ds(,/B)
“mkgc [as(p7,/B)2/B
dp P ar
fds| « 4 _ lh d { e} _"Llh d 2 2p2
D / - .
1

2
ds (1 dP_Lh-)
"B \B dy

The stability condition is

which is the line-weighted generalization of Eq. (25). Because the line
average heavily weights the parameters where P\, 1is large, reasonably
accurate stability criterion are obtained by using Eqs. (23) and (25)

with parameters evaluated at the midplane of a mirror.
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Now, to  examine interchange stability, we assume w <<

klvA[Ab/R)l/z « The line-averaged generalization of Eq. (28) becomes

w2 - ww? + X(w) = 0 , (56)

*
where we have assumed that w; is independent of position along a field

line and
<w> <kl/VA> <kf/VA>
where
- dP
= 2 K c
A 8mkg ST

Pin g (B e d (M) ¢ q 2. -2
Tdy ap\'g2 ) rkg dyp \ 'B_ fyrB dp Lh  “ih
d .
EJ)-(Plhk )]{' .

The structure of Eq. (56) is identical to that of Eq. (28), except

~T 7 7 for ~the "appearancé of appropriate line averages. When FLR terms are

ignored, the decoupling condition for the interchange mode is

/2 2
4'[ L/2 dseh( Nh/B] :|
> . (57)
g [asic; /87

A significant feature of this condition is that the decoupling condition

- i s et e e o grie e s
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is improved over that of Eq. (30) because the core demnsity now includes
contributions from the entire field line with a B™> weighting.

If Eq. (57) is well satisfied, we can set w =0 in X(m) of
Eq« (56) in the further analysis of Eqs (55). Without FLR effects the

Lee—~Van Dam condition then becomes

. dp P
fds |F%Lh 4 [-Fec} ds K d
/T [—dw— w(;)J > [lmrB G PLh + By h)}' (58)

which is not significantly different from Eq. (32).
When we consider the FLR terms we find, as in the previous local
analysis. that the threshold for instability is reduced. A possible

window of instability exists for the interchange mode when

ds k d ds 2 2.2\
_'/Tmap‘(l’lh Py > /'Bg (prkfos )
dp [P\
ds K d 1lh d [“eqw)
>/?[£mr3 EqT(Pih+ o) dy  dy (;E)]

When the left-hand inequality is reversed, the interchange is
stabilized.

Finally, when we consider the line-averaged modification of
Eq. (36), iig., the condition for stabilization with ion and electron

FLR effects, we find

w 2 > WA (w=0)> . (60)

1



-36~
Likewise, this yields a relatively optimistic stabilization criterion
except in the region where the right-hand inequality of Eq. (59) is just

satisfied, when A(w=0) becomes very large.

VI. SUMMARY
We have developed an eikonal ballooning mode theory to describe the
curvature-driven modes of a hot.electron plasma. The unique feature of

our method is to dinclude the extra terms that arise for modes where

w > w.i + These terms are particularly important for high £frequency

modes that arise in EBT-S, the EBT device that is presently operating.
The modes.have been analyzed both roughly in a local approximation and
in the high hot electron bounce frequency limit of a single mirror cell,
where weightings along a field line can be properly accounted for. We
find that there is a fundamental finite Larmor radius parameter FR [see
Eq. (43) for its definition]. At low frequencies (w << w.i), the
interchange mode is unstable if 1<FRKLK 1 - éc with
éc = BCR/[ZA(I + Pﬁ/Pi)], whereas complete stability is achieved for the
low frequency interchange, as well as all other modes, if FR > 1 . For
unstable modes, we observe that if FR = 0 , instability arises when the
Lee-Van Damz, Nelson® 1limit of Eq. (32) is exceeded. However, with
non~zero FR, this 1limit is lowered. Hence, moderate FLR effects
introduce a band of instability which may cause enhanced diffusion.
Short wavelength instability can be avoided by having FR > 1 for
all wavenumbers. Studies in the z~-pinch model indicate that for WKB-

like modes the radial wavenumber k, 1is approximately given by

Min(krA) ~ 2 . Hence, for
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(61)

> Ic
N BN
A%
= B>
o]
=28
/i ~
—
+
\l =\
\_/
-

one may expect to stabilize all WKB-like short>wavelength modes. This
appears a likely situation with present-day EBT-S experiments. However,
in experiments with larger scale lengths, such as in the proposed EBT-P
experiments and in conceptual reactor devices, Eq. (61) cannot be
satisfied with hot electrons except at extremely high energies.
However, one should keep in mind that hot ion rings, whose low frequency
stability is substantially the same as that of hot electron rings, can
be designed to satisfy Eq. (61).

If Eq. (61) is satisfied, the core beta limit, B, < 1 , is still
likely to be a fundamental core beta limit. This is because there still
exist displacement-like modes in the ring region. A zero FLR theory11
for thié‘@pde shows that the core beta is limited by éc = 1 and may even
be less. - FLR effects on such a mode are not expected to alter the core

beta limit appreciably, although the proper theory still mneeds to be

developed to confirm this speculation.
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