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Abstract
A direct method for the implicit particle simulation of electromagnetic phenom-
- ..rena in magnetized; multi~-dimensional plasmas is developed. The method is second-order

~accurate for wAt < 1; with-w a characteristic frequency and time step At. Direct time

. integration of-the-implicit equations.with-simplified space differencing allows the consistent - = - - -

inclusion of finite particle size. Decentered time differencing of the Lorentz force permits
the efficient simulation of strongly magnetized plasmas. A Fourier-space iterative tech-
nique for solving the implicit field corrector equatioh, based on the separation of plasma
responses perpendicular and parallel to the magnetic field and longitudinal and transverse
to the wavevector, is described. Wave propagation properties in a uniform plasma are in
excellent agreement with theoretical expectations. Applications to collisionless tearing and

coalescence instabilities further demonstrate the usefulness of the algorithm.
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I. Introduction

We describe an algorithm for the efficient simulation of low frequency phenomena in a
+ -~ - ~magnetically-confined;-collisionless plasma.- Examples of possible-applications are, kinetic -
- .~ modifications of MHD waves and instabilities; collisionless-tearing modes, and radio fre- .
quency (RF) plasma heating ‘or-current-drive :at. -low frequencies. - These- ai)plications are.
distinguished by characteristic frequency (mode frequency) w much smaller than the plasma
frequency wq, or cyclotron frequency (2, for one or several species a(w < Wa, Ra)-

In contrast to single or multiple fluid plasma simulation methods® which efficiently
represent confined plasma phenomena on very long time scales by moment equations,
the algorithm described here follows individual particle orbits, and thus retains all low-
frequency kinetic effects.

The algorithm differs from conventional (explicit) particle simulation methods,?
which are appropriate for short time scale phenomena. In contrast to these methods;:for
which the maximum allowable time step At is limited to multiples of w;* or 023?, a direct
implicit treatment of the particle and field equations allows much larger time steps to be
used. The implicit treatment removes the explicit stability condition without significantly
affecting the low-frequency modes of the system.

The possibility of using im_pliéit field computdtioné for VpaLrticle simulation was
considered some time ago,® and it was concluded that a direct inversion of the implicit
particle difference equations was impractical. Mason? showed that including only the cold

fluid contribution in the time-advanced plasma response was sufficient for stability. An

alternative 1;0 this moment-implicit method is the direct implicit method.>~° The moment
method has been applied to two-dimensional electromagnetic plasma simulation'® and the
direct method has been applied to two-dimensional electrostatic plasma simulation,** and
recently, to two-dimensional electromagnetic plasméu simulation.1?

The algorithm described here extends the earlier electrostatic formulation'! to
the electromagnetic case. The improvements previously implemented are thus applica-
ble to electromagnetic simulations. The method is second-order accurate for small wAt¢,

with associated reduced damping of these low-frequency modes compared to first-order

schemes. Direct time integration of the implicit equations with simplified spatial differ-
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encing allows the consistent inclusion of finite particle size, so that long-wavelength modes
are accurately represented with relatively few particles per cell. Decentered time differenc-
- -ing of the Lorentz force!? permits the efficient.simulation of. strongly magnetized plasmas
(oAt > 1). -An iterative technique for solving the implicit field corrector equation is
described. - It13:34.separates-the-plasma response into parts parallel and perpendicular to
the magnetic field, and separates the longitudinal and transverse parts of the response.
Then an approximate inverse for each of these parts is obtained and the results selectively
combined to give a rapidly convergent method. These manipulations are done in Fourier
space.

The algorithm has been implemented in bounded as well as periodic configura-
tions. Wave propagation properties in a uniform plasma have been thoroughly tested.
Applications of the algorithm to collisionless tearing and coalescence instabilities have also
been carried out.

This paper is organized as follows. In Sec. II, our direct implicit electromagnetic
algorithm is described. The dispersion and fluctuation properties of the algorithm are
demonstrated in Sec. III. Applications to collisionless tearing and coalescence are given in
Sec. IV, while Sec. V is devoted to a summary and discussion of the algorithm and its

results.
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. II. Direct Implicit Electromagnetic Algorithm

The collisionless interaction of a non-relativistic plasma of finite sized simulation particles is

- described by -Newton’s equations of motion. Single particle forces are given by the Lorentz
y q g

. force-due-to-the electromagnetic fields.- The resulting finite sized particle equations (in

MKS units) are

)-Cj = Vj, ' ‘ (2.1a)

for a large number of simulation particles of each species @ = €,3; j = 1,2,...,No. The
over dot in.Eq. (2.1) represents differentiation with respect to the time ¢.

In Eq. (2.1), the electric acceleration is

A= (i>aH¢E, | (2:2)

m

where g4, m, are the single particle charge and mass for species o and E is the electric

field. It is assumed that ¢; = —g.. The convolution operator H*, appearing in Eq. (2.2) -

represents sampling of the field by the finite sized charge cloud of the simulation particle.
Thus,
(H¥E)(x) = / dx'h(x — x')E(x"), (2.3)

where h is an interpolation function satisfying [ dx'h(x — x') = 1 and the integrals are
over the whole domain.

~

The cyclotron frequency (vector) £, of Eq. (2.1) is given in a similar fashion as

Q, = (i)a H+B, (2.4)

bl m

where B is the magnetic induction.
Field quantities evolve according to the Maxwell equations with self-consistent

sources given by the particles. The relevant equations are Faraday’s law

6B :
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and Ampere’s law

OE
8t

. In Eq. (2.6); c is.the velocity.of light and Lo the permeability of free space, and the current

= c?(V x B — uod). (2.6)

...J-1s determined from the particle data as
“J(x) = Z gah(x — x;)v;. (2.7)
J
As a consequence of Ampere’s law and Gauss’ law, total charge is conserved

op
V- I=0 (2.8)

where the charge density p is given from the particle data
p(x) = 3 quh(x —x;). (2.9)
J

As is usual in particle simulations, the differential equations of this section are

solved by introducing a spatial mesh and discretizing all quantities with respect to:time. -

A set of time marching difference equations is developed and used to advance the particle

and field data.
A set of (time) explicit difference equations is obtained by applying the usual leap-

frog differencing to Eq. (2.1). It is convenient to introduce normalized variables. Let A be

the spatial mesh spacing, assumed uniform and the same in all dimensions, for simplicity.
Let At be the time step and denote time levels by a superscript.. Then, the leap-frog

difference equations for Eq. 2.1 may be written as

R | (2.10a)
VTR =T L AR
1 An+1/2 An—1/2 AN
+3 (14 70) 572 4 (1= 7)) < O (5D). (2.100)

In Eq. (2.10), the normalized quantities are given by

X; =X, /A, (2.11a)
V; = v;At/A, : (2.11b)
(9 (At)?

A= (m)a O~ HAE, (2.11¢)
5 _ (4

0, = (m)a AtH+B, (2.11d)

T1 TIT




and v, 1s a centering parameter. In applications where Qo S 1, 7 = 0 may be chosen

and the full cyclotron motion of species a is followed with the resulting time-centered

..equation. . For. €1y > 1, 7o > 0. gives damping of the cyclotron motion. The resulting

.. difference equations describe.the zero-gyroradius, low-frequency motion of species «.

11
... The.convolution .operators of Egs. (2.11c) and (2.11d) are approximated by an
interpolation from the mesh in the usual way,

(H+E)(RA) = ) (% — m)(H*E)(mA). (2-12)

m
In Eq. (2.12), m = (m;,m2) is a multi-integer labelling mesh points and 7 is an interpo-
lation function which is local so that the sum contains but a few terms and is thus easily

evaluated.

Next, consider the differencing of the field equations. It is convenient to adopt
a leap-frog scheme for the field quantities also. Thus, the difference approximationsof

Egs. (2.5) and (2.6) may be written as

Brt1/2 — B 1/2 _ ¢ x B, | (2.13a)

E™tl = Br 4 82V x BrHY/2 _ f H2 3012 (2.13b)

with the normalized qua.ntitieé are,

BE™ = A", (2.14a)
B2 - qrtt? | (2.14b)
2 <£§E)2, | (2.14¢)
V = AV, . (2.14d)
Jn /2 (m) = = Z + [i(m — &7) + i(m — 27HH)] 472, (2.14e)
and
fo = ]—V——]:;—N(At)z (2.14f)

In Eq. (2.14¢), the upper (lower) sign is chosen for electrons (ions). In Eq. (2.14f),

N, N, are the number of cells in the z,y directions and Ny, as noted earlier, the number
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of particles of either species. The normalized time step is given by At = weoAt, where weg

is the mean electron plasma frequency corresponding to the number density obtained from

-+ the-total electron-inventory and the total volume.

- - Because of truncation errors, conservation of charge demanded by Eq. (2.8) will not

... be exact:**-To prevent-the-accumulation of-these errors, the electric field Entl appearing

in Eq. (2.13b) is replaced by E'™t1 = En*1 4 Vi) where
V) = V. E™ _ f, H2p™H, (2.15)
with the normalized density
p*(m) =Y Fi(m — ;). (2.16)
J ,
In this way, the finite difference form of Gauss’ law is exactly satisfied; that is,
V.-ErH = £ H2xpm (2.17)

In the subsequent discussion, the carats written to indicé,te normalized quantities
are suppressed. It is understood (unless stated otherwise) that all quantities are normalized
as indicated pre_vi'ously. The explicit difference scheme consists of Eq. (2.10) for advancing
the particles, Eq. (2.13) for advancing the fields, and Egs. (2.14¢), (2.15), and (2.16)
for determining the source, J®*1/2, for the field advance. Particle pushing requires the

quantities A7, Q7 and these are given by

A" = E", | (2.184)
A7 = -T°E", (2.18b)
m;
no_ 1 n—1/2 n-+1/2
0y =< (B~/2 4+ B™1/2), | (2.18¢)
and
ar = _Teqr. (2.18d)

This explicit scheme imposes several restrictions on the time step. Electron plasma

oscillations require At < 1. Additionally, electromagnetic (light) wave propagation requires
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kmaxc < 1, where kmax is the largest allowed wavenumber. These conditions impose

very severe limitations on the study of low-frequency electromagnetic phenomena, which

..require -many--thousands -of .such-small time steps to develop. If the explicit. equations
~-are- modified: by-including time-advanced- fields in -the particle acceleration (making the

. resulting.equations.implicit). .these time step restrictions are avoided.

The electromagnetic imp]iéit method is an extension of earlier work on the electro-
static magnetized plasma.’ The electric field used to accelerate the particles is replaced
by a time-filtered electric field which contains time-advanced information. This removes
the constraint associated with the electron plasma oscillations. The Courant condition
associated with the propagation of light waves is also removed by introducing time-filtered
information into the field advance equations. In contrast to Langdon,'® time-filtering is

introduced into Ampere’s law rather than into Faraday’s law. In this Way, the magnetic

- field advance remains completed explicit, and the B-field at time n needed to advance:the

particles does not need to be estimated from an implicit prediction. This has the important
effect that there are no terms arising in the plasma response from the variation of B™ with
the time advanced electric field.

The implicit electromagnetic particle and field equations to be considered are

X7 = 42 (2.19a)
V;L+1/2 _ V;z—l/z_,_An( n)

[(1 +Vi T (LT Q) (2190)

J™H1/2(m) = = Z + [i(m —x7) + i(m — x2T] v/ (2.19¢)

p" 1 (m Z +i (m — xn"'l) (2.19ld)

B"t1/2 = B"—l/2 —V xE", , (2.19€)

E"t = E™ 4 &V x B¥T1/2 _ fnﬂz*.f"+l/2, (2.19f)

E™H = B _ vy, | (2.19¢)

V24 = V. E'"H _ f HZxp™ 1 : | (2.19h)

A =E", | (2.192)
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Ar = _e@n (2.195)

k4

m;
ﬂg — _;_ [Bn—{-l/z +Bn—1/2] , (2.1gk)
a7 = Zeqr, A -~ (2.190)
N 1 n | n—
BE" =3 [E L4 EMY . B ,(2_19m)
and .
Bz _ % [Bn+3/2 i Bn—l/Z] _ (2.19n)

These implicit equations cannot be solved directly. Either additional information
about higher moments needs to be introduced*!? or a predictor-corrector method can
be developed which directly expresses the plasma response to the time advanced electric
field. The latter “direct” method®1112 is chosen here. For this, the particles are pushed
at least twice. First, a prediction is made by pushing the particles using some guess for
the unknown, time-advanced field. The error in satisfying the implicit field equation is
computed. A field adjustment is computed in which the plasma response is estimated
from the particle equations of motion. Then a correction to the particle data is made by
again pushing the particles with the corrected electric field. While this iteration could be
repeated with further field corrections, it has not been found necessary to use more than
one corrector pass.

Application of this method gives the following algorithm. First, approximate E»+!
by E = E*~1. Then all of Egs. (2.19) except Eq. (2.19f) may be stepped forward in time.
Denote the resulting quantities by writing them with a “tilde”. There will be some error

in the remaining equation. Define the error €™ by
26" = E" — B 4 ¢*V x B — f,H?+J
2 : ~
=E"—E" !4 fz—v X (B“"l/z + B /2 v x En-l) — fH?+3.  (2.20)

A correction to E'™t! is sought so that repushing the particles with BE'*t! = E 4 26E™
(note that this definition gives E'™ = E*~! + §E™) will reduce €” to zero. Retention of
only the first order (linear) terms in §E™ leads to the linear field corrector equation.

2
I H2*5—J

C
TL: n _ n il . ’n,: V1 2.21
LOB™ = 6B™ + =V x V6E" + 2 H - 0B" = ¢, (2.21)
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where the last term on the left symbolically represents the plasma susceptibility. Equation
2.21 is solved for the adjustment §E™ and all of Egs. 2.19 (except 2.19f) are advanced to

.. the next time step.

.~ The estimate of 6J .and. solution of the resulting field corrector equation is taken

_ up-next.. First,.the.expression of the plasma susceptibility indicated in Eq. (2.21) is made

precise. Then a method for the iterative solution of the resulting variable-coefficient, linear,
elliptic, vector equation is developed. A '

The plasma susceptibility is expressed in terms of the perturbation of the par-
- ticle orbits caused by a change in the time-filtered electric field, §E™. Apparently from
Egs. (2.19a) and (2.19b), the change in the time-advanced particle data is given by

5Xj = 5Vj
— 1 nsm — 9o Me con/ . m
Ut S(1+ 7)) x 1| - 6v; = . SE™(x7),
or .
§x; = bv; = +—= T, . 6E™, - (2.22)
My .

where the upper (lower) sign, as before, is for electrons (ions). The single particle suscep-

- tibility tensors of Eq. (2.22) are given by
To=1+W2)™? [T ~ W, x 1 + WQWQ]-;‘-,_,, (2.23)

with
1 nsom
W = 2047000

Combination of Egs. (2.22) and (2.19¢) gives the susceptibility

1 . ny -\ n
6J(m) = 3 Z [i(m — x}) +i(m—%;)] T o 6E™(x}) + O(kvAt). (2.24)
j
The terms omitted from Eq. (2.24) are smaller than those written by the order of kvAt,
where k is the wave vector. Langdon?!® has included the next term in Eq. (2.24). In the

sequel, such terms are consistently neglected. Thus, the formulation given here is stable

and accurate for kvAt S 1 as previously discussed for the electrostatic case.?

12
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Proceeding as in Ref. 11 (and again neglecting terms of order kvAt) the plasma
response term in Eq. (2.23) may be approximated by simplifying the expression given in
~...-Eq. (2.24).. The resulting field corrector equation is

c2

LEE™ = §B™ + Ev‘ x V x §E™ + %HZ*‘Y 6B = €", (2.25)
where the susceptibility % is given by

X = za: < me) 7aTa (12.5)

My

and 7, is the point particle number density of species e,

(M) = % Z [i(m — x}) +4(m — %;)] . (226)

jex
As Langdon has pointed out,® taking the divergence of Eq. (2.25) reproduces exactl’ygsthe
scalar field corrector of Ref. 11.

The field corrector given by Eq. (2.25) is a variable-coefficient, elliptic equation

for 6E™. Global iterative methods have been used effectively for similar scalar equations

previously.!? The scalar field corrector for the electrostatic plasma was treated effectively .

rbry de')roxjmati;lgrt};e I;lési;ﬁa response bjf"tl'ia’rcr of a constant denSJty 7plasmra; then invéft_ihg
this approximate inverse by Fourier transforms. A similar scheme was implemented for the
vector corrector, Eq. (2.25). Convergence was found to be unreliable under rather moderate
conditions. Two problems were observed. First, the assumption of constant density omits
any information about density gradients which may be convected by §E™. If both species
are strongly magnetized (2, > §; > 1), a convective charge separation arises from the jon
polarization motion in a nonuniform plasma, even if charge neutrality holds. In the case

when only the electron species is strongly magnetized (2. > Q; < 1), this effect becomes

even more pronounced. In that case, the electric drift of the electrons produces convection

perpendicular to §E™, and the unmagnetized motion of the ions, convection parallel to §E™.
Neglect of these convective terms makes the convergence of an iteration based on a constant
density approximation quite unreliable. An attempt was made to improve the approximate

inverse by including the coupling of nearest neighboring harmonics in the direction of
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expected inhomogeneity. This leads to a cumbersome approximate inversion in which a

complex, block-tridiagonal (with 3 x 3 blocks) system must be inverted. Convergence is

- --improved .but- still: unsatisfactory for-such-a scheme.~A second difficulty -observed suggests

*..:an:improved. iterative technique. - The operator of Eq. (2.25) is very anisotropic in both

.. m.and.k.space.. This.anisotropy arises from.the variation of the plasma response in the
direction parallel and perpendicular to the magnetic field, B, and from the separation of
the transverse and longitudinal responses of the vacuum described by Maxwell’s equations.

The separation of these various responses may be used advantageously in develop-
ing an iterative method for inverting Eq. (2.25). First, note that the operator of Eq. (2.25)

may be written as the sum of two operators, £L = £1 4+ L2, where

2
Ly=1+435VxV, - (12.7)
and ‘
Ly = %Hz*‘?. (12.8)

For the geometry considered here, either 6f these operator\s may be inverted independently
with little effort by the use of Fourier transforms. For more complicated geometries, a
combination of Fourier transformation for periodic coordinates and finite differences for a
non-periodic coordinate may be used.'?

A strategy for iteration of the field corrector may now be developed. Because of
the anisotropy mentioned earlier, one of the operators £; will be strongly dominant on
part of the solution. An approximate adjustment is given by inverting each of the L£;’s
on that part of the error where £; dominates and selecting the significant portion of the
approximate solution obtained.

If the magnitude of each operator is estimated parallel and perpendicular to B and
longitudinal and transverse to k, this selection is easily accomplished. There are crossover
regions where both operators are comparable. It is easy to see that in these regions, one
half of the average of the two inverses will provide a good approximation to the éolution.

The estimates for the magnitudes of £; on the various part of the solution are now
given. It is supposed that all vectors are divided into parts parallel and perpendicular to B

and longitudinal and transverse to k. Thus, writing F for Fourier analysis (transformation

14
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from m to k space), the error €” is decomposed as

ey = Pipe™ = f—lllz—lj +J %?— €, - (2:30a)
efr-=Pyre” = F [T - %] -}'IZ—? - €, (2.300)
el =Pire™ = .7:_1% - F [T - —]]33—]3} - €, (.2-300)
and
Ty = Pipe” = F! [T’ - %] . F [‘T - 1139—123} L€ (2.30d)

The solution 6E™ is similarly decomposed.
Only the diagonal parts of £; are retained in the iteration. That is, after inverting
L; on, say, e'I’I‘L, only the ”,L portion of the solution is retained. Thus, an estimate is

required for the eight projections Ly, L7, £i11, £i17. These are estimated as

Ly ~1, (2.31a)
Ly ~1+ kzcz, (2.31b)
Liir ~1, oo (2.31c)
Ly ~1+ 5 (2:31d)
Loz N fngzﬁ, ' : (2.31¢)
Loz ~ ”Zzﬁ ; (2.315)
Loig ~ fap (2.31g)

2[14 (3 +7) )’
and

fuh?p
~ = 2.31h
S ET G ] (210

where 5, Q. are mean values for p and Q.. Using these estimates for the eight projections,

an approximate inverse to £ may be written as

L M=P (—-——EI”L )211—1 + <—£2”L )21:—1 Pz
I Ly + Loz ! Lyz + Loz 2 I

+{ITT+{L L}+{L T} ' (2.32)
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where the terms shown schematically are the same as the first with the apprdpriate sub-
scripts substituted.

...This.approximate inverse M.-is then used.to construct an iterative scheme for the

- solution of Eq. (2.25), v »

| HISE™ ~1 6B = M {e" — LI6E™} (2.33)

where [ labels the iteration level.
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ITI. Code Tests

In this section, test results obtained from a one-dimensional code based on the low-
frequency electromagnetic algorithm of Sec. II are presented. The second-order accurate
implicit scheme described there is used with area weighting interpolation of the charge
- density and currents from, and of the forces to, the particles. The wave dispersion and
fluctuation properties of a uniform, thermal, magnetized, two-temperature plasma are ex-
amined. |
The test parameters are (system length) N, = 256A, (number of particles) Ny =
10240, (particle size) a = 1.5A, where A is the grid spacing with Gaussian particle shape
represented by h = exp(—k?a?/2), (ion-to-electron mass ratio) m;/m. = 100, (electron-
to-ion temperature ratio) T./T; = 20. The constant magnetic field lies in the z-z plane
at an angle ¢ from the z-axis which is the wavevector direction. It is of strength such
‘that ./we = 1.0. The speed of light ¢ is set at ¢/weA = 1.0 and the Alfvén velocity
scales as vy /c = ;/w; = 0.1. Electrons and ions are initially loaded uniformly on the
one-dimensional spatial grid with zero perpendicular thermal velocity. The time centering
parameters are such that 4. = v; = 0.1 and both electrons and ions are treated implicitly.
Stability and accuracy dicfate that kvAt < 1 with v the maximum of the trapping
velocity and the average fluid velocity, each closely related to the thermal velocity vy, and
vy cos pAt/A < 1. This suggests tWo ways to achieve large time steps; either decrease the
thermal velocity, i.e., decrease v, or increase the grid spacing A with respect to the unit
grid spacing § by a stretch factor A/§, i.e., decrease k. The latter is adopted here.
The parallel electron and ion distribution functions are taken to be Maxwellian.
The thermal velocity of the electrons is chosen such that vy, /w.A = 5 x 1072, so that
the electron Debye length is Ap./A = 5 x 1072, The time-step can then be chosen as
weAt = 10, 102, 10® with grid spacing A = §, 10§, 1006. This repi’esents a factor of 102
to 10? increase over that allowed for an explicit code in which w, has to be resolved. The
calculation comprises 8,192 time steps so that many ion-acoustic and Alfvén wave periods
are resolved. Since the plasma is nearly uniform, the iterative solution of the implicit
field equation requires only two iterations to converge to a relative error of 1075 of the

equivalent mean density. No iteration of the particle pushing beyond the first correction
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has ever been necessary.

The collective behavior of the plasma at frequencies w < w, is displayed in Figs. 1-
.4 for.wave propagation parallel, oblique and perpendicular to the magnetic field.
... .. For.purely parallel.propagation (¢ ='0), the:electrostatic.and electromagnetic
. low frequency -modes-predicted by-a-theoretical analysis are the ion-acoustic waves, the
Whistler waves and the shear Alfvén waves. For one set of parameters, the simulation
plasma can only carry waves within a range of wavelengths delimited by the system length
and spatial grid size or particle size. Since we use two independent values of A or two sets of
values of k, but with the same ratio Ap/A = 0.05, all of the results from these two runs are
combined into one figure over a ré,nge of three decades of kAp. The measured frequencies
thus obtained are shown by triangles (A/6 = 10) and circles (A/é = 1) in Figs. 1a and b.
The frequency, w/w,, varies over a four decade range. No mode frequencies higher than the
ones plotted were observed in the spectrum. Comparison with theoretical predictions is
carried out as follows. The electromagnetic modes can be extracted from the cold plasma

dispersion relation

2 —_
tan“ @ T 1N/1 1 _1_+i , (3.1a)
n? ¢ n? 2 \er ¢€Rr
n? = k?c? Jw? (8.15),
h2w? h2w? |
ER.L =1- w(w:Fﬂe) — w(w:i:ﬂi)’ (3.16)
e =1— (w2 + w?)h?/w?,  (3.14d)

where h? is the particle shape factor. The ion-coustic dispersion relation for w < Q; is

obtained from1?!

=1+ : 1+ Z
E — ———
szZDe \/ik”'vTe \/5](7”?){['3

h? w w
|1 z : 3.2
+ k223, ( * \/ik”'UTi (\/ék”'UTi)) (3:2)
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with k = kcos¢. An approx_ima,té solution to Eq. (3.2) gives w/we =
(me/ms)2ky Ape [(1+ 8T3/T.)/(1+ k223, h~2)]M/?

. The dispersion relations w/w, ver-

-.~sus. kAp obtained .from numerical .solutions of..‘these..équationsWith ¢ = 0.are shown as -

... solid curves in Figs: la and b. Excellent agreement is clear with the low frequency branches,

" the-first. curve from the bottom.being the ion-acoustic one, the second the shear Alfvén or

Alfvén ion cyclotron one and the third the whistler branch.

The time averaged electrostatic energy per wave number <E}°‘-J o/ 87r> normalized
to the thermal energy per degree of freedom kpT./2 (with kg Boltzmann’s constant), or
fluctuation spectrum, is shown in Fig. 2 for the same two runs with ¢ = 0. For T, > T;

and w K we, e, the fluctuation spectrum of a two temperature Maxwellian plasma can

be written as'?!

(F%,/8m) kX2, k2
kpTe/2 14 k222, _h2
The fluctuation spectrum predicted by Eq. (3.3) is plotted as the upper curve in.Fig. 2.

(3.3)

The fluctuation spectrum measured in the simulations indicated by triangles (A/é-= 10)
and circles (A/§ = 1) follows closely the prediction of Eq. (3.3). The lower curve is the
spectrum one would obtain with Boltzman electrons, i.e., in the absence of electron Landau
damping.*?

As the angle ¢ between the wavenumber (or z-axis) and the magnetic field is in-
. creased from 0° to 90°, the Whistler wave merges with the compressional Alfvén wave. The
shear Alfvén wave frequency goes to zero in the limit of purely perpendicular propagation.
For 0 < ¢ < 90°, the three branches coexist. Results for propagation with ¢ = 45° are
displayed in Fig. 3. The simulation frequencies, measured in the three components of the
electric field E, (Fig. 3a); E, (Fig. 3b) and E, (Fig. 3c) are plotted as circles. Only one
value for the grid spacing, A, A/§ = 1, is used so that the wavevector varies over two
decades and the frequency over four. There is excellent agreement between simulation and
the theoretical dispersion relations of Egs. (3.1) and (3.2) represented by curves in Fig. 3,
the first from the bottom being the ion-acoustic branch, the second the Alfvén or Alfvén
Ion Cyclotron branch and the third the whistler cum magnetosonic branch.

For purely perpendicular propagation, only the compressional Alfvén or magne-

tosonic wave is predicted as a low frequency mode. The dispersion relation for perpen-
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dicular propagation (¢ = 90°) is presented in Fig. 4. Three values of the stretch factor,
A/§ =1, 10 and 100, are used in the simulations and the results from these three runs
.-again combined into one diagram. The wavevector varies over four decades, the frequencies
- represented by. plusses (A/é =.100), triangles (A/6 = 10) and circles (A/é = 1). Agree-
merllt, with .the lower curve obtained from cold plasma theory including finite particle size

effects (Eq. 3.1) for the compressional Alfvén wave is excellent.

The following observations are suggested by the results shown in Figs. 1-4. As
the time step At is raised (as is possible here when A is increased or v is lowered), the
observable frequency range, Wmin < @ < Wiayx, shifts toward smaller w in accordance with
WmaxAt < 1 and wWmin = Wmax/N¢, with Ny the total number of time steps in a run. This
is the natural frequency filtering intrinsic to the algorithm of Sec. II. Raising the time

step At also has the consequence that the resolvable wave vector range by < kb < kmax

shifts toward smaller k. The maximum wavevector is set by kmaxvAt < 1 and foriwaves -

such that w = kv, (as is the case here with v, the phase velocity of the wave), also by
krmaxVprn At < 1 since wWmax (= AmaxVpr) At < 1. The minimum resolvable wavenumber
kmin is set either by the limit of the spatial resolution kmiy, = ZW/NmA or by the limit of
the temporal resolution Amin = Wmin /vph for waves such that w = kv, whichever is larger.
Therefore increasing At within the constraints of stability and accuracy provides a natural
zoom towards both the longer tirﬁe scales and the larger space scales. We note that raising
At by lowering vy has the consequence that the wavevector k of the scope of the simulation
becomes small with respect to kp. (= XI',:) = w, /vy since kp. — oo as vy — 0. Raising
At by increasing A makes k = 2wrm/N,A small with respect to kp. simply because A is
larger. In our implicit code, both making vy smaller or A larger, therefore focusing on
ranges of smaller frequencies or longer wavelengths, are possible without causing numerical
instability. Little flexibility exists to do so in explicit codes.

The one-dimensional test results of this section clearly demonstrate the accuracy of
the implicit method of Sec. II for studying low frequency phenomena in a thermal plasma.
The dispersion relations and fluctuation spectra measured in the simulations agree very well
with theoretical expectations. The r\esults of this section also show the implicit algorithm

makes it possible to increase the simulated spatial scale with respect to the Debye length
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or collisionless skin depth and therefore possible to focus on phenomena of any range of

frequency and wavelength.
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IV. Applications

Applications of an electromagnetic code, based on the direct implicit algorithm of Sec. II, to

= - two-instabilities ‘of a- magnetized two-and-one-half-dimensional plasma are now presented.

- The first is a-simulation of the collisionless ‘tearing ‘instability for a plasma carrying a

- current-along-the ‘magnetic field.-It is set: up-so-as to be directly: comparable.to a previous -

explicit simulation of the same instability by Katanuma and Kamimura.!” The second is

a simulation of the closely related coalescence instability of two such current filaments.

IV.1 Collisionless Tearing Instability

» The collisionless tearing simulation is carried out in a configuration with (system
size) N, x N, = 64 x 32 with A, /6 = 2, (number of electrons or ions) Ny = 18,432,
(mass ratio) m;/m. = 16, (electron cyclotron frequency) Q. = 1.5w., (speed of light)
c/(Te/ me)l/ 2 = 10 and (particle size\) a = 1.5. The uniform external magnetic field B,
is normal to the plane of the simﬁlation. A shear magnetic field B, (z) is produced by a

sheet current along B,. The perturbed vector potential A, obeys the following equation!”

(25 -48) 4= g o {61}~ or ()
() e ()] 2o

. . o™
where <<UIT>> = / do—oHU fo(v), with the initial current profile being

w —kyy)

}Az, @

J.(z) = —=Jo exp [:—(EnZ)(;c - Lz/2)2/ag} , (4.2)

with ap = 5.1A the initial width of the current channel and Jy, = eno(Te/me)l/ 2, The
electrons and ions are initially loaded with their guiding center velocities v = 0 in such
a way that the initial density of the particles with uniform parallel temperature balances
the shear magnetic field pressure Bz(m) /8m. The system is bounded in z by conducting
walls and periodic in y. |

The explicit simulations of Katanuma and Kamimural” used a full dynamics

magneto-inductive particle model and the time step At = 0.1w;!. The time step used
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n the present implicit si'mulation is At = 10w.! or a two order of magnitude increase
over the explicit code. To optimize code performance in achieving such a large time step,
..a decentering. parameter value of 7, = «; =.0.1 is used. in. the implicit simulations. This
means that both electrons and ions are treated implicitly.

+ - --The collisionless -tearing. simulation results are summarized in Figs. 5,6 and 7.
The plasma is initially perturbed by a mode with the longest wavelength in y, k, =
2w /Ny A,, which is the only unstable mode according to the linear analysis:® Figures 5
and 6 show various snapshots of magnetic flux and magnetic field B, doubled periodically
in the y-direction for presentation. As can be seen from Figs. 5 and 6, the formation and
growth of a magnetic island near the middle of the simulation domain evolves in a manner
very much similar to what has been observed in the éxplicit simulation of Katanuma
and Kamimura.!” As in their work, the tearing instability goes through the linear growth
stage,!® the nonlinear growth or Rutherford stage 19%° and the nonlinear saturation:stage,
the time evolution of the magnetic island width W normalized to its maximum value of
2.1ag is shown in Fig. 7. In the nonlinear growth stage,v the measured island width is
. approximately proportional to time, which is characteristic of the Rutherford phase.19-2°
The physical mechanism of saturation is provided by the flattening of the current.

Analysis of the results is compliéated by the fact that, in contrast to the usual
theoretical assumption of a given constant A’, the simulations solve an initial value problem
where the initial electron current and its initial profile are evolved. The linear growth rate

of the tearing instability is expressed as 13

v = kyveA'/27r1/2(we/c)2Ls, (4.3)

where L, is the shear strength and

A= %fiz (La/24)) — %Az (Lo/2 = N)| /A, (Lo /2). (4.4)
Here )\ stands for the singular layer width determined by the electron Doppler shift con-
dition along the magnetic field lines kj (z = Ly /2 4+ \) X ve = -yp and A therefore depends
on A'. Tt is not easy to assign a value to A' here since the profile of the perturbed current

channel (“singular layer”) is less abrupt in the simulations than is assumed in theory and
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is also strongly time dependent. Nevertheless, Eq. (4.3) with L, ~ 170A, A" ~ a5, and
k, ~ 0.1 yields v ~ 3 x 1073w,, while the measured growth rate is v ~ 1073w,. The
.. simulation .value is however in close agreement with a shooting code solution of Eq. (4.1)
which yields vz ~ 1.3 x 107 3w,. 7 A » 7
-, ~.==The.Rutherford -nonlinear growth-stage -quickly follows the linear growth stage.
According to Drake aﬁd Lee,? the island width W in this stage grows as

1 ¢ \? , _ N
W—1—6—G;(w—e> Allt, (4:5)

where G ~ 0.41 and v is the collision frequency. If we take A’ ~ ag ! which is clearly
a crude estimate of A', and in we use the effective collision frequency due to finite size
particles,? v ~ 1.4 x 10 3w,, we get W/ap ~ 0.82 x 107 3w,t for the parameters of the
simulation. This theorétical estimate is only in qualitative agreement with the simulation

results of Fig. 7 because of the ambiguity in the definition of A'.

IV.2. Coalescence Instability .

The second application is to the coalescence instability driven by the attractive
force between current filaments. Pritchett and Wu?! investigated the coalescence instability
with an MHD code. This instability evolves on an essentially MHD time scale in the linear
stage. |

Our implicit particle simulations are carried out with the following parameters
(system size) N, x N, = 32 x 64, (number of electrons or ions) Ny = 18,432, (mass
ratio) m;/m. = 16, (Debye length) Ap. = 1A, (electron cyclotron frequency) Q. = 1.5w,,
(temperature ratio) T, /T; = 1, (speed of light) ¢/w.A = 10, (time step) At = 5w;!. The
system is bounded in z and periodic in y. Also, the decentering parameters are chosen

such that 7. = 0.1 and «; = 0 so that the electrons are implicit but the ions are treated
explicitly (Q;At < 1).

The initial magnetic field configuration is chosen as®?
B _B e sin ky (4.6a)
v 0ycoshkm—|—scosky’ )
inh k&
B, = Byy——— " (4.6b)

cosh kz 4+ e cos ky
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1 82 1/2
B, = | B? — B? 4.6
Boy (cosh kz + & cos ky)? + Oz] (4.6¢)

~and.n(z) = const.. Here typically Boy/Bo, = 0.0435. The current peakedness parameter
e.is varied from 0.05 to 0.85. The Alfvén transit time across half a magnetic island is
approximately 75, ~ 30w 2. | » ‘ ‘ -

Results of the simulations are displayed in Figs. 8 and 9. Figure 8a shows the time
evolution of the amplitude of the magnetic field B, with ¢ = 0.3 for two wavenumbers
ky =2mx1/Ny, and ky = 2w x2/N,. The fundamental mode is unstable as expected.?* The
measured growth rate in this case is yz, ~ 6.2x 107 3w,. The (approximately) corresponding
case of Pritchett and Wu?? is the one with their z,, = 5 (from the aspect ratio) and small
S. In their calculation, however, the toroidal field given by Eq. (4.6c) does not contain
By,. Their growth rate is yvmp ~ 0.1457, !, With our estimate of 7, ~ 30w *, this givés
YD ~ 4.8 X 1073w, in order of magnitude agreement with our simulation.

Figure 8b shows the linear growth rate versus e (the current peakedness parameter) -
measured in our simulations. Also shown is the Pritchett and Wu?! growth rate for z,, = 5
evaluated with our 7,. Both agree in the qualitative dependence on e. Quantitative
agreement can only be fair because of the different By,’s and plasma betas.

Figure 9 displays the measured linear growth rate of the coalescence mode (ky, = -
27 x 1/N,) as a function of By,. It shows the interesting tendency of the linear growth
rate to decrease with increasing By, the z component of the toroidal field.

These results demonstrate good qualitative agreement and reasonable quantitative
agreement between MHD theory and our implicit simulations of the coalescence instability.

The two applications presented in this section demonstrate the efficacy of the
direct implicit electromagnetic algorithm described in Sec. II when applied to low frequency

electromagnetic phenomena in strongly magnetized, inhomogeneous and bounded plasmas.
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V. Discussion

We have presented a direct implicit electromagnetic algorithm for the particle simulation

- of low frequency phenomena instrongly magnetized plasmas. It is an involved extension -

of our direct implicit electrostatic algorithm.!! It shares with it some of the keys to its
- success, such as simplified ‘differencing to properly account for finite particle size effects in
the implicit field solve and straightforward time decentering of the Lorentz force to allow
time steps such that Q. At > 1.

Our algorithm is close in spirit to the direct implicit electromagnetic algorithm of
Langdon'® and Hewett and Langdon.'? The latter, however, appears to be applicable to
weakly magnetized plasmas only since gyromotion is retained in the Lorentz force pushing
the particles. We note that the implicit electromagnetic moment method!® is also limited
in this way. Some other important differences exist between our algorithm and that of
Langdon'® and Hewett and Langdon.? We introduce time filtering into Ampere?éf.»law
rather than Faraday’s law so that the magnetic field advance remains completely explicit.
Also, we correct the electric field instead of the current to insure charge conservation.
" Finally, because of the strong coupling of the electric field components imposed by the
implicit field solve, they advocate a simultaneous splitting solution of the field equations
uéing métrﬂixﬂtré;:hrﬁqiiés. We elect to build an dppfoxirﬁate”in'\'refse of the operatérs relating
the desired fields to their sources in the implicit field solver, separating the plasma response
into parts parallel and perpendicular to the magnetic field and into parts longitudinal
and transverse to the wavevector. The field components are then obtained by a rapidly
convergent iterative technique in Fourier space.

Our extensive code tests show that our direct implicit algorithm reproduces ac-
curately the low frequency electrostatic and electromagnetic dispersion and fluctuation
properties of a uniform plasma with time steps as large as w.At = 10%. The algorithm
is naturally able to follow time scales much longer than the electron plasma or cyclotron
period and space scales much larger than the Debye length or collisionless skin depth.

Our applications to the collisionless tearing instability and the coalescence insta-
bility demonstrate the efficacy of the algorithm in the following ways. The collisionless

tearing instability has been evolved to saturation at a fraction of the cost of an explicit
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magneto-inductive code run with equivalent parameters. The coalescence instability runs
show that the algorithm is able to tackle MHD time scales but with kinetic low frequency

effects properly accounted for.
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Figure Captions

Fig. 1. One dimensional code tests for propagation parallel to the magnetic field. Disper-

..sion relation, w/we vs..kAp, for a) the electrostatic branch and b) the electromagnetic one.

-Measured . simulation frequencies are indicated by triangles for a stretch factor A/é = 10

and circles for A/§ ='1. The theoretical dispersion relations are drawn in as curves, the
first from the bottom being the ion-acoustic branch, the second the shear Alfvén one and
the third the whistler branch. The abscissas and ordinates are labeled in powers of 10.

Fig. 2. One dimensional code tests for parallel propagation. Electrostatic ﬂuctua—
tion spectrum, (E%, /87) /(k5T./2) vs. kAp. Simulation values are indicated by triangles
and circles. The upper curve depicts the theoretical spectrum in the presence of electron
Landau damping, the lower curve without.

Fig. 3. One dimensional code tests for propagation oblique to the magnetic field
with angle ¢ = 45°. Dispersion relation, w/w. vs. kAp, measured in the three components
of the electric field a) E,, b) E, and c) E,. The simulation frequencies are plotted as
circles and theoretical predictions as curves, the first from the bottom representing the
ion acoustic branch, the second the shear Alfvén branch and the third, the whistler cum

magnetosonic branch.

Fig. 4. One dimensional code tests for propagation perpendicular to the magnetic
field. Dispersion relation w/w, vs.kAp. Simulation frequencies are represented by plusses
(stretch factor A/é = 100), triangles (A/§ = 10), circles (A/§ = 1), while the lower curve
is the theoretical dispersion relation for the magnetosonic mode.

Fig. 5. Two dimensional éimulation of the collisionless tearing instability. Snap-
shots of magnetic flux contours at various times in the simulation.

Fig. 6. Two dimensional simulation of the collisionless tearing instability. Snap-
shots of contours of the z component of the magnetic field B, at various times in the
simulation. |

Fig. 7. Two dimensional simulations of the collisionless tearing instability. Mea-
sured island width, W, as a function of time in the nonlinear growth and saturation phase.

Fig. 8. Two dimensional simulations of the coalescence instability. a) Time

evolution of the amplitude of the magnetic field B, with e = 0.3 for two wave numbers
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ky = 2m x 1/N, and ky = 27 x 2/N,. b) Measured linear growth rate v/w, versus current
peakedness ¢ for the coalescence mode k, = 2w x 1/N,.

- Fig. . 9. Two dimensional simulations of the coalescence instability. Measured
linear growth rate of the coalescence modé ky = 2m x 1/N, as a function of toroidal

magnetic field strength By,.
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