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Lie group methods for nonlinear partial differential equations are im-
plemented to study, analytically, a subset of the full solution space of a family
of plasma-fluid models. The solutions obtained by this method are known as
group invariant solutions. The basic set of equations considered comprise the
three-field fluid model due to Hazeltine (HTFM), which was obtained to de-
scribe nonlinear large aspect ratio tokamak physics. This model contains as
particular limits the physics of the Charney-Hasegawa-Mima equation (CHM)
and reduced magnetohydrodynamics (RMHD), which are two other models

known to describe some features of nonlinear behavior of tokamak plasmas.

Lie’s method requires a large number of systematic calculations to

determine the Lie point symmetries of the system of differential equations.
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These symmetries form a Lie group and describe the geometrical invariance of
the equations. The Lie symmetries have been calculated for the systems men-
tioned above by using a symbolic manipulation program. A detailed analysis
of the physical meaning of these symmetries is given. Using the Lie algebraic
properties of the generators of the symmetries, a reduction of the number of
independent variables for the full nonlinear systems of equations is calculated,
which in turn yields simplified equations that sometimes can be solved ana-
lytically. A discussion of some of the reductions and solutions generated by
this technique is presented. The results show the feasibility of using Lie meth-
ods to obtain analytical results for complicated nonlinear systems of partial

differential equations that describe physically interesting situations.
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Chapter 1

Introduction

Over the last thirty years, the scientific community in almost any
major field of study has come to accept and confront one of the crucial is-
sues inherent of real phenomena in the physical universe; namely its pervasive
nonlinear behavior. The need for a better understanding of this complicated
behavior in nature has constituted a major driving force behind new and pow-
erful methods developed explicitly to extract information characteristic of the
nonlinear regime. In particular, in many branches of the physical sciences, from
basic to applied physics, nonlinear phenomena are described by partial differ-
ential equations (PDE’s), generating naturally an increased interest in their

systematic solution.

Many impressive advances have been accomplished in dealing with
nonlinear PDE’s by recent developments in two specific areas that can be con-
sider the opposite ends of the whole spectrum of possible cases: a) The area
of completely integrable equations, which yields closed analytical solutions and
is associated with methods such as the inverse spectral transform, Hamilto-
nian structures, recursion operators, Lax pairs, etc., and b) The area of chaotic
dynamical systems, which is of a more qualitative basis, stresses the noninte-
grable nature of the system, deals with models of observed physical phenomena,

and is associated with notions such as Poincaré sections, transition to chaos,



turbulence, intermittency, etc.

However, in between these two extreme cases there are nonlinear sys-
tems that do not belong to either one, but with the use of specific mathemati-
cal methods, one can get exact particular solutions, or conservation laws, that
provide physically meaningful information. These are called partially integrable
systems. The mathematical methods used to study these systems represent a

subset of the more general methods dealing with: integrability.

Among the methods developed to study the solution space of a PDE
regardless of whether it is integrable or not, Lie group analysis constitutes one

of the most powerful analytical techniques for obtaining particular solutions of

PDE's, specially in the nonlinear case. The main idea of this method, developed .

by S. Lie in the late part of last century, consisﬁs of an integration procedure
based on the invariance of the differential equation under é, continuous group of
symmetries. This observation inspired Lie to further develop his theory of con-
tinuous groups, now known as Lie groups. However, although the application
of Lie groups to the study of differential equations has a long history, as long
as the history of Lie groups themselves, the applications to physical systems
remained mostly dormant. Early research by G. Birkhoff and later Ovsian-
nikov pertaining to physically interesting applications revealed the difficulty in
implementing this method. However, more recently, the development of sym-
bolic manipulation programs has contributed to an explosion of new activity in
the field, allowing applications of Lie group methods to growingly complicated
systems of PDE’s.

In the description for the dynamics of a plasma we find systems with




the features mentioned above. First of all, the evolution of a real (lab or
space) plasma is necessarily nonlinear, which has been long recognized in the
plasma community, and sometimes investigation has been reduced to numerical
simulations because of the complicated nature of the problem. Second, an
approximated description can be derived such that it contains some of the most
important effects of nonlinear plasma evolution. Such models have proved to be
predictive and quantitatively accurate in some instances, demonstrating that
they describe a good amount of physics. These are the so-called plasma-fluid
models, and are given generally as sets of nonlinear PDE’s. Also their simple
fluid limit generally concides with interesting hydrodynamical models. But
aside from some early efforts by Rosenau and Schwarzmeier with MHD and.
the most recent activity of the group from Braunschweig (Richter, Fuchs and
Galas), the use of Lie group methods for plasma-fluid models has not been

thoroughly explored.

The use of Lie group theory makes it possible to elucidate features of
the structure of differential equations and their solution sets, and to construct
some exact particular solutions. It is the intention of the present work to

explore these applications for a significant fluid model of plasma evolution.

In chapter 2 the derivation that proceeds from a kinetic integro-
differential equation that describes a plasma to a closed system of fluid PDE’s
is explained in some detail, emphasizing physical assumptions and regions of
validity for the ensuing truncation that is used to close the system of equations.
Next, a reduction scheme based on the smallness of the inverse aspect ratio is

adopted to model some interesting features of tokamak dynamics. We end the
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chapter with a plausible derivation of Hazeltine’s three-field model (HTFM)
as a further approximation of a reduced fluid model. This model contains in
appropiate limits the physics of two well-known but less complete plasma-fluid
models the Charney-Hasegawa-Mima equation (CHM) and reduced magneto-
hydrodynamics (RMHD). HTFM constitutes the basic fluid model of our Lie

group implementation.

In chapter 3 a concise introduction to the basic ideas of Lie group
methods for differential equations is presented. The emphasis is on establish-
ing the basic results of the theory that will allow immediate computation of

symmetries and interpretation of results.

In chapter 4 we implement the calculation of symmetries for the sim-

plest limit of HTFM, CHM. Using this model as a working example we calculate

the symmetries of the system, give a physical interpretation of the symmetries,
and use the symmetries to generate exact solutions for the CHM equation.
In order to do so we develop the concept of the adjoint representation of an

algebra and calculate the optimal system of first and second orders.

In chapter 5 we consider the full three-dimensional HTFM and calcu-
late the symmetry algebra. Based on earlier results, we calculate some inter-
esting reductions of the equations and some exact solutions. Then we consider
the two-dimensional limit and the RMHD limit of HTFM, obtaining some new

reductions and solutions.

We finish with conclusions and indicate directions of future work in

chapter 6.



Chapter 2

Nonlinear Plasma-Fluid Models

2.1 Introduction

The description of magnetized plasmas presents a highly challenging
problem from the theoretical point of view. It encompasses collective phe-

nomena from the many-body problem, fluid-like behavior from classical field

theory, and charged particle motion from single particle dynamics (among other -

detailed features), under a common nonlinear environment. The resulting per-
spective for the theoretical physicist trying to derive a model of such a com-
plicated system is, at best, to come up with an approximate mathematical
description for a particular regime, emphasizing specific scales in space and
time, that will allow some physical interpretation and basic understanding of
the real phenomena. In this regard, there is no ‘perfect’ model that will de-
scribe the global behavior of a plasma, however within the limitations of a
systematic approximation and explicit understanding of the physical picture it
represents, there is a wide variety of simplified models that can be derived to

study particular phenomena in plasmas with different ranges of applicability.

In this chapter, I embark on the task of deriving, from first principles,
some fluid models for magnetized plasma. They will provide an interesting
arena to apply the mathematical techniques known as Lie group analysis, which

will be introduced in the next chapter. Here, I will emphasize the physical




assumptions and approximations involved in the derivation of the fluid models.

Starting from a kinetic equation for the distribution functionf(x, v, t),
I obtain moment equations for the first few velocity moments of f (the fluid
variables), and through a systematic ordering and fluid truncation approach, I
arrive at a closed set of PDE’s containing the basic features of finite Larmor
radius (FLR) physics for a magnetized plasma. By studying some of this ef-
fects separately, as closed subsystems, one can define a family of fluid models
describing interesting nonlinear plasma behavior that have resisted nonlinear

analytical treatment.

In the remainder of the present chapter, I will review the principal fea-
tures of this family of nonlinear, plasma-fluid models, which share in common
their MHD like structure. This type of models have proven to be of immense
value in broadening our understanding of a wide range of nonlinear plasma

phenomena.

2.2 From Kinetic to Fluid Equations

2.2.1 Kinetic Description of a Plasma

A fundamental description for a large collection of interacting charged
particles starts with a kinetic equation for the distribution function f(x,v,t),
defined such that f(x,v,t)dxdv is the number of particles in phase space vol-
ume dxdv around position x, with velocity v, at time t. The distribution
function f contains the detailed information about the physical system, and
it is the purpose of kinetic theory to study the properties and solutions of the

kinetic equation for f. The generic form of such an equation, averaged over an




ensemble of macroscopically equivalent plasma systems, is

0 0 0
Uiy radlocy), (2.1)

where C denotes the collision operator that accounts for effects of particle
correlations, and a and f denote, respectively, the force per unit mass and
the distribution function averaged over an ensemble. I will consider eq.(2.1)
as the basic kinetic equation that contains the relevant physics governing the

dynamical behavior of the plasma.

While kinetic theory is a basic tool for studying central issues of the-
oretical plasma physics, the fact that it is set in six dimensional phase space
makes it more difficult to handle, compared to the lower dimensional configu-
ration space, where fluid variables exist. What I would like to do instead, is
to adopt a practical closure strategy based on some physical properties of the
plasma, and use moments of the kinetic equation as the fundamental entities
to be analyzed. This procedure allows easier access to physical insight, and
sidesteps the kinetic equation , reducing the burden. The closure strategy pro-
vides explicit limits of validity for the approximations involved and allows for

higher order corrections as needed.

A basic concept related to motion of charged particles in magnetic
fields is their gyration around the field lines. The thermal gyroradius is defined
as ps 1= %gf, where s refers to the plasma species, v; = (%)1/2 is the thermal
speed, and {25 = %fc- is the gyrofrequency. This simple concept, the magnet-
ically induced gyration, leads naturally to a fundamental small parameter for

magnetized plasma that can be used as a basis of an approximation scheme for

dealing with the kinetic equation. By a magnetized plasma I mean one of a




size much larger than the gyroradii of its constituent charged particles. Thus if
L is the scale length characterizing the plasma, and p the thermal gyroradius,

then the plasma is magnetized if the parameter

N
Il

(2.2)

RS

is much less than one. More specifically, if one assumes that all species have
equal temperatures, then the gyroradii of all ion species may be pressumed
comparable while the electron gyroradius is smaller according to
mo\ 1/2
Dg ~ (H) o (2.3)
Evidently the same kind of relation holds for the parameter §; therefore I will

call a plasma magnetized only if its ions are magnetized,

N\ 1/2
§; ~ (31) S < 1. (2.4)

e
Under this condition on the smallness of the gyroradius, one can estimate the
relevance of each term in the kinetic equation. For the sake of generality I
will consider an arbitrary collision operator and three dimensional geometry.
However, later on I will revert to the collisionless case, where one can exploit the
Hamiltonian nature of the system, and also restrict to two dimensions (2-D),

as simplifications in the context of symmetry analysis.

The first term of the kinetic equation (2.1) will be assumed small in

the sense

of
5~ 50f . (2.5)

- This ordering describes most plasma motions of interest. It is chosen so that

typical long-wavelength instabilities can be treated.



The convective term, v - V f, involves different scales, since plasma
motions can happen on very different lengthscales. Therefore two scale lengths
are distinguished: a slow scale length L, typically measuring a density gradi-
ent scale-length, and a fast scale-length )\, referring to the thickness of some
boundary layer or the wave length of a linear disturbance. I will assume in
the remaining present analysis that the plasma equilibrium varies exclusively
on the slow scale L. Thus decomposing the distribution function into terms

varying slowly, feow, and rapidly, ffee one has

f = fslow + Affcwt ' (26)

where A is a parameter that measures the amplitude of the rapidly varying
perturbation. For a magnetized plasma the condition A < 1 must be satisfied.
Thus |

V- VS~ 6o+ Afpast (27)

and the two terms in (2.7) are small of order § and A respectively.

The acceleration, third term on the left hand side of eq.(2.1), is given

by the Lorentz force
a(x,v, 1) = = [B, 1) + %v « B(x, t)] , (2.8)

where e and m are the particle charge and mass, respectively. The acceleration

due to E is decomposed into its components parallel and perpendicular to B
E=E”+EJ_. (2.9)

The contribution from E is estimated by

en Of eBj, _
—B) - 5= — f=vsf, (2.10)
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where the natural ordering & ~ § is mandatory to treat situations near equi-

librium.
The perpendicular components, are expressed in terms of the E x B
drift
Vi = cEJ;B : (2.11)
yielding the estimate
~Ey - g—i = z—fﬂf, (2.12)

where clearly two cases of interest can be distinguished: the MHD ordering,

Ve
£ 2.
t | (2.13)

in which case electric drifts dominate the dynamics and the most violent per-

turbations are described (fast phenomena); and the drift ordering,

Yo s (2.14)

Uy
in which case the electric drift enters the picture only in conjunction with other
slow motions, such as gradient-B drifts or curvature drifts. Although MHD-
ordered fluid theory is well recognized for its usefulness and has led to enormous
advances in our understanding of plasma phenomena, I will be interested in
deriving drift-ordered fluid models, motivated in part by modern confinement
physics, where most of the prevalent perturbations are consistent with the drift

ordering.
The largest term in eq.(2.1) is that corresponding to Larmor gyration

e 0
—_ - — A Q M 2.1
me’ B ov f.’ (2.15)
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this is a zeroth order term with respect to 8.

The collision operator C, is ordered such that the collision frequency

v is small compared to the gyrofrequency 2

C~vn~ Q. (2.16)

This analysis allows for different approximations to the general kinetic
equation (2.1) depending on the particular ordering chosen for the parameters
defined above. Specifically, as I said before, my main interest is to study an
ordering that forbids rapid E x B motion and fast variation of all perturba-
tions, i.e. Vg ~ 6v; and A = 0. This defines the drift ordering, where all
terms in the kinetic equation are of order § compared to gyration. The cor-
responding approximation of the general kinetic equation (2.1) is the so-called
drift-kinetic equation (DKE). It describes a wide variety of plasma instabilities,
transport processes, and confined plasma equilibria. In particular, it has been
studied in the pariaxial limit, where Newcomb has implemented a scheme that
involves moment equations coupled with the DKE in the collisionless regime
[Newcomb 85]. What I will do instead is to study moments of the general ki-
netic equation, then introduce the drift ordering at the moment equation level,
and finally make some assumptions that will allow a fluid closure. What I will
obtain is a typical FLR model for plasma dynamics which consists of a fluid
model of drift-ordered motion whose main effects will include slow evolution of

instabilities, diamagnetic drifts and gyroviscosity.
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2.2.2 Fluid Closure

As was mentioned before, in a fluid description of a plasma one works
with a small set of velocity moments of the distribution function. These are
the so-called fluid variables which represent the quantities commonly measured
in experiments. The first few, most relevant, velocity moments of f are defined

as follows. The density of species « is
naE/d%ﬁ“ (2.17)

and the flow velocity, V,, is given by

NaVy = /d%fav. (2.18)

For higher order velocity moments I use well-known conventions (see

e.g. [Braginskii 65]), which give for the stress tensor
Py = / v fomavv (2.19)
and for the closely related pressure tensor
Po = /d%fama(v - Vo) (v—=V,). (2.20)
The trace of the latter defines the scalar pressure p, as follows

1 ,
Do = §Tr(pa) ) (2'21)

and the temperature of species « is defined as

T,=2 (2.22)
N
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In the same context, one can write the definition for the energy flux
1 .
Q= / dvfamar™y (2.23)
and the energy-weighted stress,
I P
Ro = /d 'ufaimv vV, (2.24)

These are the basic fluid variables needed to write down the first three moment
equations of the general kinetic equation, (2.1). They are obtained by mul-
tiplying (2.1) by appropriate powers of v and integrating over velocity space.
Note that this procedure does not introduce any approximation, and therefore
the moment equations are exact relations and do not depend on particular

properties of the collision operator.

Following the approach depicted above I start with the most basic
moment equation, the conservation of the number of particles, obtained simply
by integrating eq.(2.1) over velocity space, yielding

% +V-(nV)=0. (2.25)

The next moment equation is obtained by multiplying eq.(2.1) by mv and
integrating over velocity. The resulting equation describes the momentum evo-
lution, and it takes the form
0 1 3
gmnV+V"P—en<E+EV><B>=/dvva’. (2.26)

This equation of motion can be cast in a convenient form in terms of the

pressure tensor p =P —mnVV

mn(%—Y+V-VV>+V-p—en(E+%V><B) =/d31}mvC’, (2.27)
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where I have used (2.25) to express On/0¢ in terms of V.

For the moment equation describing the evolution of pressure, or total
fluid energy, one has to multiply the general kinetic equation by mv?/2 and
integrate over velocity, yielding after some manipulation the following form
30 1 9
55&[p+§mnV]+V-Q=enV-E+W+V-F, (2.28)
where the first term on the right hand side represents electromagnetic work and
the next two terms account for collisional exchange. Since I will be dealing with
fluid models in the collisionless limit these terms will be dropped. Of course
this is a specifically contracted moment equation, I could have multiplied by
vv rather than v? obtaining an equation for the evolution of P, but for the -

present purpose eq.(2.28) will be enough.

At this point I would like to emphasize that one could keep calculating
higher order moments and in principle recover all the information contained in
the original kinetic equation. However, from a practical point of view, by
displaying a finite number of these moment equations one can recognize the
basic drawback of the procedure: Each moment equation, given in conservation
equation form, relates a fluid density with its corresponding flux, which in turn
is determined by the next moment equation in terms of a higher order flux, etc.,
generating an infinite set of coupled equations that cannot be rigorously closed
with any finite number of moments. This defines the fundamental problem of
closure for a fluid description, and there are essentially two ways to deal with

it: a) Asymptotic Closure, and b) Truncation.

The first approach, which is based upon solving the kinetic equation

perturbatively with respect to a physically motivated small parameter €, and
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using the corresponding distribution function (accurate to some order in the
perturbation parameter e) to evaluate certain moments, is rigorous and has
been used with some success in the past (see [Newcomb 85] for a particular
quasi-three dimensional application of this method). However, this method
requires solving a non-trivial kinetic equation and after that using this in-
formation to supplement the fluid equations that have to be simultaneously
solved. This could be a very complicated problem. Alternatively, one has the
second approach, truncation, which involves crude approximation but provides
the quickest route to physical interpretation, as has been proved by various
versions of MHD, best seen as truncation theories that nonetheless have lead

the way in understanding basic principles of plasma phenomena.

In this context I will derive below a closed system of fluid equations
containing the physics consistent with the drift ordering described before. The
ensuing approximations involved in this derivation are not completely system-
atic, as with any truncated system, but on the positive side, the result provides
easy access to FLR physics, a very simple form closely resembling MHD, and is
very accurate. Also this system defines a whole family of plasma-fluid models,

obtained as particular limits of a general model.

In order to implement a particular fluid closure, we need to study the
effects of the drift ordering in the fluid variables of the system. As a first step,
consistent with the small gyro-radius approximation for magnetized plasmas,
one can average the orbit of a gyrating particle over the short scale-length
of gyration, obtaining as an approximation the picture of a drifting magne‘tic

dipole, the so-called guiding center. Let the distribution function of guiding
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centers be denoted by £, then f is expanded as
f=F+0(), - (2.29)

where f denotes a gyrophase averaged distribution and the small terms of order
6 represent the gyrophase dependent part of the distribution. The guiding
center drift, up to first order in 6 is vy = yb + vy + O(6%), where v, includes
the E x B drift, the VB and curvature drifts. If we define the mean flow of
guiding centers as

NVge = /d%f(vu + vyg) (2.30)

and the plasma magnetization as

GME/ds’Uf/J. . (2.31)

then one can prove [Hazeltine-Meiss 92] the so-called “magnetization law” for

the plasma flow (2.18) in terms of eqs.(2.30) and (2.31) as follows:
nV =nVge+cV XM, (2.32)

which states the physical distinction between plasma motion and guiding center
motion due to the additional current generated by the curl of M, the so-called
magnetization current. In order to evaluate the plasma flow to first order in
8 one needs to specify the distribution function f. It can be shown (see for
example [Hazeltine-Meiss 92]) that for confined plasmas the equilibrium distri-
bution function is nearly a Maxwellian, therefore it is customary to evaluate
the plasma flow for f being Maxwellian: f = fas, where

1 —v* /v
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Using this Maxwellian distribution it is straightforward to calculate the first

order plasma flow consistent with the magnetization law, eq.(2.32), yielding
V=Vb+Vg+V,+ 06, (2.34)

where Vg is the E x B drift and V) is the diamagnetic drift given by

_ 1
P mnQ

b x Vp. (2.35)

One of the most important consequences of the drift ordering is that the dia-
magnetic drift, V,,, and the E x B drift are both small, of the same order §,

compared to the thermal velocity v;.

In order to derive a closed fluid model, let us consider the species
sums of the moment equations (2.25)-(2.28) in exact form. Starting with the

density evolution equation, its species sum becomes

P 1 pn¥ -V =0, (2.36)

where d/dt is the advective derivative

d 0

E=§+V.V' (237)

Next consider the equation of motion in the form of (2.27). By taking into
account collisional momentum conservation, 25 Fs = 0, and quasineutrality,

> sesns = 0, its species sum simplifies to

pm<%+v-vv>+v-pT=%JxB, (2.38)

where pr is the total pressure tensor. Finally, let us consider the species sum of

the pressure evolution equation (2.28) which reduces after taking into account
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collisional energy conservation, > ,(Ws + V- Fy) = 0, to the form

0 (3 1 9
a—t(§P+§§s:msnsVs>+V-Q—J-E- (2.39)

The three equations (2.36), (2.38), and (2.39), are exact relations, and will
represent the basic fluid model upon closure. In order to do this, expressions
for the pressure tensor and the energy flux in terms of lower order moments are
necessary. This will be achieved by imposing the drift ordering and using the
Maxwellian distribution as the lowest order approximation for f, as was done

before with the guiding center flow.

For the stress tensor, a simple form is assumed that effectively trun-
cates the moment equations by neglecting anisotropy of the Chew-Goldberger-

Low form [Chew et al. 56]. This assumption is given by
P =Ip+mnVV + 11, + O(8°), (2.40)

where II; denotes the gyroviscosity tensor, which represents a nondissipative
transport of momentum due to spatial variation- of the density and energy of
magnetic moments. An important remark is that according to the drift order-
ing both mnV'V and I, are of the same order 6%, and therefore for consistency
one has to retain gyroviscosity when keeping advective inertia. This is a typ-
ical feature of FLR theory. The expression for the pressure tensor is trivially

obtained from the relation
p=P-mnVV. (2.41)
Now, recall eq.(2.23), the definition of the energy flux, which is related to the

heat flux q through the relationship

.
Q=q+ ng +p-V+ §mnV2V, (2.42)
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and therefore can be approximated to first order in § as

Q=q+ ng +0(8%, (2.43)

where the statement of the drift ordering V' = O(6v;) has been used explicitly
and the fact that the lowest order stress is isotropic and proportional to the
scalar pressure. The first order expression for the heat flux becomes

_5 D 2
q=5-5bx VI +0(5). (2.44)

Notice that under the drift ordering one can neglect O(62)-terms for
the continuity and energy equations, (2.36) and (2.39), while neglecting only
O(6%)-terms in the equation of motion, (2.38).

These drift ordered expressions for the stress tensor, particle and en-
ergy flows, can be used in conjunction with the exact moment equations, or the
equivalent species-summed equations (2.36), (2.38), and (2.39), and Maxwell’s
equations, to provide a closed FLR fluid description of the plasma that gener-
alizes the MHD model. However, following this program in the most general
way produces a very complicated system of fluid equations. Therefore, in order
to facilitate the analytical treatment of the resulting equations, as well as the
comparison with known models in some particular limit, I will treat a simplified

FLR model that, nevertheless, contains a good deal of interesting physics.

As a first simplification, consider a two species plasma with equal

species temperatures:

{Z—; == Te (245)
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This together with quasineutrality makes both pressures the same, p; = pe = p,

and the total pressure, denoted by P, will be given by
P=p;+p.=2p. (2.46)

The center of mass velocity V will be approximated by the jon velocity V; by
freely neglecting terms of the order of the small mass ratio me /m;. Then one
will have, recalling the drift ordered plasma flow (2.34), the following approxi-
mate relation

VeV, 2Vb+Veg+V,. (2.47)

In general the variable V must be determined from solution of the model equa-

tions.

The zero order moment equation (2.25), expressing conservation of
the number of particles, is used in exact form and constitutes the first equation
of bthe closed fluid system. Next I consider the species-summed equation of
motion (2.38), together with egs. (2.40) and (2.41) for the ion stress tensor. For
electrons I keep only the first, scalar pressure term in (2.40) because gyroviscous

stress is proportional to mass and we are neglecting terms O(me/m;). Then
P. = Ip, (2.48)

defines the contribution of electrons to the total stress. Taking this into account

one can write down, in compact notation, the FLR equation of motion
av 1 :
mmE—I—V-HQi—EJxB—I—VP:O. (2.49)

The only term that has not been specified is the gyroviscosity tensor Ilg, which

in general is a very complicated object. However, under the assumption of a
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uniform magnetic field and the fact that the divergence of V is small, i.e.,
the plasma is nearly incompressible, one can prove the so-called “gyroviscous
cancellation” (for a detailed proof see [Hazeltine-Meiss 85]) which is a general

feature of FLR acceleration and consists of the following result:

dVyp; _
min—, + V.- I, =

_v B;;b VX (Vg + vp,.)} —bmn(Vy - VIVi + O(F), (2.50)

which shows how gyroviscosity serves to simplify the nonlinear equation of mo-
tion by cancelling various terms due to diamagnetic acceleration. The surviving
terms involving the gradient of the quantity b -V x (Vg + V), the parallel

vorticity, provide a small correction to the pressure

w1 - 22N o), (251)

because Vi; = O(6). Therefore they are neglected in the lowest order approxi-
mation. This implies that the FLR equation of motion can be written simply

as
Ve
dt

where d/dt is the ordinary advective derivative (2.37), and d/dt|prmp corre-

d 1

sponds to the MHD version

d 0 0 ‘
%IMHDEE'*“VMHD‘VEa"l‘(V—Vm)'V. (2.53)

The relatively simple form of the equation of motion (2.49) is due in part,
as was mentioned before, to the gyroviscous cancellation and the neglect of
the parallel vorticity terms, but also because of the particular representation

chosen. Recall that V is the physical fluid velocity and if one decides to write
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the equation of motion as an evolution equation for V instead of Vg, then the
form of the equation would be transformed according to (2.47), which can be
seen as a coordinate transformation between a fixed (lab) frame and one moving
with the E x B drift velocity. By doing this transformation of coordinates one
would be forced to deal with terms containing the diamagnetic acceleration in

the lab frame. I will come back to this point in later sections.

In order to complete the closed fluid description we need to consider
the pressure evolution equation in its species summed form (2.39). By applying

the drift ordering and keeping only first order terms in § we obtain

5-67'+V‘(Qi+Qe)=V'VP, (2.54)

where the drift-ordered equation of motion, conservation of mass, and Ohm’s

law have been used to eliminate J - E in favor of V- VP. If we now use (2.43)

and (2.44) to find the energy flux of species s, we get

) c 1 :
Q. = 5Ps [ggb X <5Vps B VTS> + Vg + bw] +0(6%). (2.55)

Since we need to add the contribution of each species, and we assume equal
temperatures (2.45); the terms involving gradients will cancel out because they
are equal and opposite for the two plasma species. This implies for the total

energy flux
Q=Q;+Q.= EP(VE + bV||) + O(6%) & §PVMHD . (2.56)
Finally, recall (2.35), which implies

V.VP=Vygp- VP (2.57)
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and therefore we can write (2.54) in its final form
d 5

which together with (2.25) and (2.52) represent the first three moment equa-

tions, closed under the truncation procedure presented above.

A constitutive relation between the electric and magnetic fields, and
some of the flow variables is needed. This is typically achieved using Ohm’s law.
Here we will adopt a generalization of Ohm’s law that is plausibly consistent
with the approximations done so far, althought not a systematic consequence of
drift-ordered kinetic theory. Starting with the electron version of the equation
of motion (2.26) and neglecting the acceleration term and nonscalar stresses,

as in (2.48), due to the smallness of the electron mass, we find that
Voo + en (E + %Ve X B>‘ _F,, (2.59)
where F, is the friction force. Using the definition for the current density
J=en(V;—V,) Zen(V-V,) (2.60)

we can express (2.59) in terms of V and J as follows:

1
Cc

1

1
" E+ V><B+i<vpe—-J><B>=—Fe. (2.61)
en C en

The term on the right hand side leads to the usual Ohmic resistivity, but we
will consider the ideal case from here on and therefore it will be dropped. The

Vpe term on the left hand side is the so-called Hall term.

The three moment equations (2.25), (2.52), (2.58), and the general-
ized Ohm’s law (2.61), together with Maxwell’s equations for the electromag-

netic field, constitute a closed fluid model known in the literature as the Drift
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Model [Hazeltine-Meiss 92]. It is based on early work by Roberts and Taylor
[Roberts-Taylor 62] and Rosenbluth and Simon [Rosenbluth-Simon 65]. In the
following sections it is shown to contain as particular cases a family of plasma

fluid models of general interest.

2.3 Reduced Fluid Models

The derivation of the drift model in the preceding section was carried
out in some detail for pedagogical reasons, it shows the vast spectrum of non-
linear effects that this kind of fluid model describes and also the limitations of
such an approximate approach to the exact kinetic equations. On the other
hand, even though a series of systematic approximations were made to facilitate
physical insight, few results based on analytical analysis have been obtained,
because of the obvious complicated nature of systems of coupled nonlinear par-
tial differential equations, leaving hope for further understanding to numerical
simulations. Here is where novel techniques, such as Lie’s analysis, can open
new horizons of understanding for the set of solutions and general behavior of

plasma. evolution, approximately modeled by this fluid description.

As was emphasized during its derivation, the drift model describes
a wide range of physical phenomena for confined magnetized plasmas. The
most important effects taken into account by the model are slow evolution,
diamagnetic drifts, gyroviscosity and some effects of electron dynamics. For the
sake of simplicity, sometimes it is useful to pinpoint some of this phenomena
and derive a model, much simpler than the original, that emphasizes specific

nonlinear behavior at the cost of neglecting other important effects. I will show
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in the present section how the drift model generalizes some well known models,

obtained as extensions of MHD, containing some of the above mentioned effects.

In order to do this we have to adopt a simplification scheme devised
to select dominant effects by the systematic use of a scale-length ordering. Note
that this approximation is taken in addition to the “fluid closure” already ex-
plained in the previous section, and therefore may appear rather crude. When
such geometrical simplification is applied to the full nonlinear model, the re-
sulting dynamical system is said to be “reduced”. In spite of the “double” ap-
proximation involved, reduced fluid models have been found to be remarkably.
predictive for the dominant nonlinear effects of tokamak physics. In particular
I will present a reduction based on a large aspect ratio expansion, which is
traditionally used to simulate conditions in tokamaks and other confinement

devices.

The aspect ratio of a circular cross-section tokamak is Ry/a, where
Ry is the major radius of the magnetic axis and a is the minor radius of the
confining vessel. In general, the aspect ratio measures the ratio of cylindrical
curvature to toroidal curvature for any device. At sufficiently large aspect
ratio, a tokamak appears nearly cylindrical with respect to curvature, although
it remains topologically closed. Thus, the large aspect ratio approximation
treats toroidal curvature effects perturbatively by considering an expansion in

the inverse aspect ratio &

e:=a/R, K 1. (2.62)

The implementation of the ordering procedure is clarified by means of dimen-

sionless field variables and coordinates, chosen to make the various powers of
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€ explicit. A convenient set of dimensionless coordinates (z,y, z) is defined in
terms of cylindrical coordinates (R, 8, Z), centered on the symmetry axis of the
tokamak, by

z=(R—R,)/a; y=2Z/a; z=-4. (2.63)

where R measures radial displacement away from the symmetry axis, 6 is the
toroidal angle, and Z varies along the symmetry axis. Hence, (z,y, 2) is a right-
handed set of effectively Cartesian coordinates. The basic geometric assump-
tion of this ordering is to distinguish the transverse (poloidal) and longitudinal
(toroidal) scale lengths by taking the latter relatively large: 8/0z = O(€). This
result is complementary to the conventional assumption that the vacuum mag-
netic field By, is purely toroidal, and therefore the confining magnetic fields
follow the ordering Bp/Br ~ €, comparable to a flute-like ordering where per-

turbations are characterized by & being small,
k< ko, (2.64)

and giving as a consequence the distinction between two time scales for elec-
tromagnetic disturbances. It turns out that the most important toroidal in-
stabilities belong to the slow time scale. Thus, we define the Alfvén time 74,

as

TA = CL/'UA R (265)

where v, is the Alfvén speed
V4 = B2/ (4mnem;) (2.66)

with m; the ion mass and ng a constant measure of the plasma density. Taking
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this into account, we introduce a dimensionless time variable T, such that
T =¢t/Ts = e(tva/a), (2.67)

which is appropiate for the shear-Alfvén fluid motions of interest.

Having defined the relevant scales in time and space, we can study the
scaling of the fields in terms of the natural units Br, vs and a. The magnetic

field is written as

B=DBrs/(l+ez)+V x A, (2.68)

where Br is constant and A is the vector potential. The first term in (2.68)
is the dominant vacuum toroidal field, consequently we write for the vector

potential

A =¢eBradA, (2.69)

where the hat denotes a dimensionless variable. Splitting A into its components
parallel and perpendicular to the vacuum field: A = A, + 24,, with A =

A, + JAy, we can rewrite (2.68) using Br to normalize as
B=B/Br=3+¢e(—3z+ 2B — 5 x V,9) + O(e?). (2.70)
Here, I have introduced the useful abbreviation
PY(x,t) = A, (x,1). (2.71)

It can be seen that (—%)) is proportional to the poloidal flux. Also, in (2.70), I

have used V, the normalized gradient in the poloidal plane, given by

8 8




28

Similarly a dimensionless electrostatic potential can be introduced as
0(x,t) = (¢/eBravs)®(x, t), (2.73)

where ® is the ordinary potential.

If we exploit the fact that the longitudinal scale length is relatively
large, then for any scalar function f, we would get Vf = V, f + O(e), which
combined with (2.70) yields

B-Vf=g<%—2-vﬂvalf>+<9(52). (2.74)
We will use a more compact expression of (2.74) in terms of the conventional

Poisson bracket

[fi9]=2-V1fxV.g, (2.75)

and the definition of the nonlinear parallel gradient

vir=L g, (2.76)

zZ

resulting in the following expression for the normalized directional derivative
along B:
B-Vf=¢eVf+0(). (2.77)

As for the electric field, using Faraday’s law, we get the dimensionless definition

E = —&(Vo+ ag—‘f) , (2.78)

where the shear-Alfvén time scale (2.67) has been used. Note that, as a con-

sequence of this shear-Alfvén time scale ordering, the lowest order transverse
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field is electrostatic. However, for the parallel component Ej|, the electrostatic

and electromagnetic terms make comparable contributions, namely

Ej=-¢ (Vu(ﬁ + %—f) +O(*). (2.79)

These geometrical approximations define the basic structure of the reduction

in terms of a large aspect ratio ordering.

2.3.1 The Reduced Drift Model

Now, we are ready to tackle the task of “reducing” the simplified
moment equations derived in the last section, by the systematic ordering scheme
just explained above. In particular, let us consider the plasma equation of
motion (2.49), under the time scale relevant to this ordering. Recall that we are
considering relatively slow evolution on the scale of compressional Alfvén Wavés,
described by w =~ wey = kvg; while shear-Alfvén waves have the frequency

wga = kv, comparable to the frequencies of interest. Evidently,
wsa K wga (2.80)

in the case of a long toroidal scale length, where (2.64) holds. Plasma accel-
eration is measured by the competition between the forces represented by the
last two terms in (2.49). A simple estimate from Ampere’s law shows that
the J x B force yields acceleration on the fast scale, wo [Hazeltine-Meiss 85].
Therefore, a description of slower evolution, proceeding through a sequence of
near-equilibrium states, requires that the dominant part of the J x B force
be annihilated. A simple way to achieve this simplification is by taking the

parallel component of the curl of the plasma equation of motion, (2.49). The
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resulting equation, a vorticity equation, is called the “shear-Alfvén law”. It is
the plasma equation of motion, in which the relevant electromagnetic driving
force is to be extracted by the operation B - V(J x B), when w < wga. Then,
following this procedure, we can obtain the geﬁéral form of the shear-Alfvén

law
B (Vxf—-2kxf)=c"'B°B-V(J;/B)+2Bx k-VP, (2.81)
where f is a shorthand for the acceleration terms in the equation of motion

f= min% +V.1II, (2.82)

and x denotes the magnetic field curvature k := (b - V)b. The “reduction”
of the shear-Alfvén law, consistent with the large aspect ratio ordering, will
be carried out by considering the dimensionless form of the different terms in
(2.81). In particular, we will start analizing the terms on the right-hand side,
representing the “kink” and interchange instabilities respectively. For the first
term, using (2.77) and the definition of the parallel current J; = B-V x B/B,

we obtain

B-V(Jj/B) = XV} J) + O(¢), (2.83)
where J, proportional to the negative of the parallel current, is defined as
J=V34y. (2.84)

For the second term, involving the curvature k = —eV z, we can use the

lowest order field to obtain the interchange term up to order &2

EBx k- -Vp=—€’2xV,z -Vip=—£z,p]. (2.85)
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In order to consider the reduced form of the terms in the left hand side of
(2.81), we need to use the gyroviscous cancellation shown in the previous sec-
tion, (2.50). The main result is contained in (2.52), where we can identify the

function f given by

dv d
f=mn—2= + man— |yrzp (BV)) (2.86)

dt
This result can be expressed in a more convenient form, by explicitly using

(2.53), as

The velocity is naturally expressed in units of v4, and it is assumed of order &:
V/va = eu. (2.88)

Then we write Vg = evaug, Vi = evauy, and u = ug + uy, to obtain, by

making use of (2.35), (2.78), the following
u=2xV_[p+bp, (2.89)

where the usual Boussinesq approximation of fluid dynamics has been used
to avoid higher order nonlinearities, and § is the gyroradius parameter that

measures FLR effects entering the dynamical equations. It is defined as:
6= (20m4)7, (2.90)

which differs from the gyroradius parameter, 6, defined by (2.2), directly pro-
portional to the gyroradius. In fact, the gyroradius is measured by the product

of § and a special version of an electron toroidal beta Be = 8mn,.I,/ B2 as follows

528, ~ p2/a® ~ p2V2, (2.91)
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where p; is the ion gyroradius. Hence restricting our attention to the small-
gyroradius case, we assume 32@3 ~ €. Then, consistent with the low-frequency

case that we have been emphasizing, the basic ordering assumed would be

§~1 Be~e. (2.92)
The reduced shear-Alfvén law is obtained by substituting (2.83), -
(2.85), and (2.89) into (2.81), yielding

5V x Fl (5& +u- VuEﬂ =V J - 2[z,7]. (2.93)

Ne \ OT
The left-hand side of this equation can be written more explicitly by noting

that

2.V, xug=V23¢:=U, (2.94)

where U denotes the vorticity, and using the following identity

2.V x [uE-VLuE+upi-VJ_uE]=[g0,U]

A

o ([ + o, Vipl + V2o l} (295)

which can be straightforwardly verified using (2.89) and the cartesian nature
of V. Also, we use the Boussinesq approximation to replace the n/n, factor by

unity. Then (2.93) becomes

U .
5 + [QD + 6p, U] + V||.]+ 2[z, p]
6
=5 {le, Vil + Vil e} - (2.96)

This is the shear-Alfvén law describing the perpendicular evolution for ions.

The second term on the left-hand side shows that U is advected by the total
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drift u, while the terms on the right-hand side reflect spatial variation of the

diamagnetic drift.

For electrons we need to consider only the parallel dynamics. This is
accomplished by considering the parallel component of the acceleration law for
electrons, i. e. , the generalized Ohm’s law (2.61). The parallel electron speed is
deduced from the definition of the current density (2.60), and the normalization

of the parallel velocity given by v = (ev4)~'V}, yielding
Vie = eva(v + 287) + O(e?). (2.97)

If we consider for the parallel electric field the form given by (2.79), and take
the normalization suggested by (2.97), we find

o n
‘6—:/_} + v”(p =nJ + 5V'||p, (2.98)

which is the generalized, reduced Ohm’s law, where the O(m,/m;) electron

inertia terms have been neglected.

The final equation to close the system is the equation of pressure

evolution (2.58). Its normalized form reduces to simple E x B convection

Op .
5 +lel =0. (2.99)

As was mentioned before, compressibility has been consistently neglected by
dropping terms O(e3).
The coupled equations, (2.96), (2.98), and (2.99), represent a closed

reduced model for the three independent fields: ¢, 1, and p, which measure re-

spectively, the electrostatic potential, the poloidal magnetic flux, and the single
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specie pressure. The vorticity U and current J are given in terms of the poten-
tials as (2.94) and (2.84) respectively. This model generalizes reduced MHD
[Strauss 76-77], which can be recovered in the limit § — 0. Terms involving
§ enter the model equations as finite gyroradius corrections in a‘conventional

sense. Neglecting  is equivalent to assuming the MHD ordering, (2.13).

2.3.2 A Simplified Model and Compressibility

In this section I will discuss briefly the consequences of retaining the
higher-order terms due to compressibility in the reduced model described above,

even though it implies departing from the systematic € ordering. Such an

extension of the theory is justifiable if one recognizes the qualitative importance:

of compressibility in certain contexts. Therefore, I will rederive the pressure
evolution equation (2.99), but this time keeping terms proportional to V - u.
Later, I will derive a simplified reduced model that keeps effects of parallel
compressibility.

For an isothermal plasma, pressure evolution is determined by den-
sity evolution, i. e. , by the particle conservation law, and in particular, for

quasineutral plasmas, by simply considering electron conservation

o N, Vn=—nV-V,. (2.100)

ot
A straightforward normalization of this equation yields
Op Be
e 4 =_22Vv. 2.101
5 T Le.pl ~V o, (2.101)

where it is clear that the right-hand side of (2.101) is O(8.) = O(e) and

therefore consistently neglected. But in order to include the lowest order con-
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tribution to V - u,, we will treat £, as O(1), unlike the basic ordering assumed
so far (2.92), allowing us to retain terms O(f.£2) but neglecting O(e3). Then

the parallel contribution is easily written down as

%V ‘buje = BV (v + ZSJ) , (2.102)
where v is the ion parallel flow velocity, which will be neglected in order to study
effects of electron parallel mobility. This implies that the parallel current will
be approximated by

Jj = —enVj.. (2.103)

The perpendicular terms can be easily calculated, see [Hazeltine-Meiss 85], to
finally give, for the pressure evolution equation with lowest order compressibil-
ity effects, the following

5 A A o
5]7—9. + o, ] = B{2[z, ¢ — op] — V(267) + 1 Vip}. (2.104)

The first term on the right-hand side measures perpendicular com-
- pressibility due to toroidal curvature. This term is similar in form and sig-
nificance to the interchange term in (2.96). The term proportional to J re-
flects parallel compressibility, as was noted above. The final term corresponds
to resistive diffusion. The parameter § = [1 + B¢] 7', is a convenient new
measure of beta. Equation (2.104) together with (2.96) and (2.98) form a
reduced drift model with compressibility effects. When 8 and é are both ne-
glected, one obtains the high-beta RMHD equations of Strauss [Strauss 76-77],
[Morrison-Hazeltine 84].

The reduced drift model and the compressible version derived above

contain a significant amount of physical effects in addition to the basic fluid-
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like behavior described by RMHD. For the sake of analytical tractability and
clarity of the forthcoming Lie group analysis, I would like to further simplify
the compressible reduced model, by emphasizing electron parallel flow and
neglecting the additional physics contained in the other terms proportional to
§ and B. To achieve this goal, first I consider the low-beta ordering, which
implies By ~ €2, getting rid of all toroidal curvature effects. This will allow us
to omit the interchange term in the shear-Alfvén law (2.96), as well as all the
§ terms that involve the pressure, obtaining the final form of the equation of
motion
ou

5=+, U1+ V)] =0, (2.105)

which corresponds exactly to the one used for low-beta RMHD. Next, we con-
sider the density evolution equation, (2.100), where the density is treated as

only mildly perturbed from a constant n,
n(x,t) = ne + 7i(x,t), <K ne, (2.106)

and where, for low-beta, the transverse electron velocity is approximated by
the first term of (2.89), while the electron parallel flow is given by (2.103),

yielding an equation for the density perturbation 7/n, of the form

0 n n 2ear
En—c + [90, Ec-:l + TVHJ =0. (2.107)

The last term of (2.106) has been ordered by assuming A ~ g, in such a
way that we will obtain the simplest nonlinear syétem containing the effects of
electron parallel compressibility. The parameters o = p%/a?, and A = B./Qr7a,

with p? = (Tp/m;)Q7? and Qr the ion gyrofrequency, define an appropriate
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normalization for 7 as follows

n

where x is the dimensionless field variable that represents density perturba-
tions, and satisfies
ox

E + [QD, X] + V”J =0. (2.109)

The final equation is obtained from reduced Ohm’s law, (2.98), by retaining
the parallel pressure gradient term, Hall term, which represents the fluid man-

ifestation of electron parallel mobility, and writing it in terms of y as

0
8_?‘ +Vie=nJ+aVx. (2.110)

The reduced fluid system given by equations (2.105), (2.109), and (2.110), was
first derived by Hazeltine [Hazeltine 83] as a generalization of both RMHD and
the Charney-Hasegawa-Mima (CHM) models. The first model, RMHD in its
resistive, low-beta version, describes the nonlinear dynamics of several instabil-
ities in large aspect-ratio tokamak geometry. The second model, constructed
by Hasegawa and Mima [Hasegawa-Mima 78] to describe electrostatic plasma
turbulence in slab geometry, was first derived by Charney in the context of

planetary atmosphere investigations.

The two models differ sharply in their intentions, but they can be
shown to appear as special limits of the inclusive reduced model derived above.
When the parameter « is negligibly small, x is decoupled from the evolution of
 and 9. In this case, (2.105) and (2.110) show that ¢ and ¢ evolve according
to RMHD dynamics. Thus, the RMHD limit is obtained when the fields are

assumed to vary on scale lengths large compared to ps. On the opposite end,
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for short scale length variation we have o ~ 1, and the system of equations
can be interpreted as an electromagnetic generalization of CHM. In the special

case: ¢ = ay, which corresponds to adiabatic electrons, i. e. ,

f o
= (2.111)
substituting into (2.109) implies
1 0p

which together with (2.105) and taking a = 1, yields
ou Op

= +lp, U] - =0, (2.113)

or T

This equation coupled with the relation U = V2 ¢, constitute the intensively
studied CHM equation. Note that in this case, the generalized Ohm’s law

(2.110) describes ordinary resistive diffusion.

Besides the fact that Hazeltine’s inclusive nonlinear model includes
and generalizes the physics of RMHD and CHM‘; as shown above, it possesses
intrinsic interests, particularly in regard to nonlinear applications, where it has
been shown to provide electromagnetic generalizations of drift-solitary waves
[Hazeltine et al. 85]. Also, because it requires an additional field than RMHD,
it is sometimes called the Three-Field Model (HTFM). This system will consti-
tute the base for our implementation of Lie group techniques for plasma fluid

models in chapter 4.




Chapter 3

Lie Groups and Differential Equations

3.1 Introduction

Solving differential equations has been one of the most important
problems in mathematical physics since Newton and Leibniz introduced the
basic concepts of what we know as differential and integral calculus. It turns
out that most of the physical laws and models that we use to describe physical
phenomena are written as differential (or integral) equations. From the earlier
days up until now there have been developed several integration methods for
special cases, ad-hoc techniques for particular classes of differential equations
that have to be applied on a case by case basis; unfortunately no sytematic
way to solve a given equation exists. This is particularly true for nonlinear

equations where our knowledge of “solvable” cases is very limited.

This was the state of affairs at the end of last century when Sophus Lie
started his research on solution of differential equations motivated by Abel’s
work for polynomial equations. Lie recognized that for ordinary differential
equations (ODE’s) there is a systematic method that places under the same
construct all the previously developed integration techniques, e.g. those for
differential equations that are homogeneous, linear, and separable; the use of
integrating factors and reduction of order techniques; undetermined coefficient

methods; transform techniques such as Laplace transform; etc. The basis of
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Lie’s method is the concept of an infinitesimal transformation and the closely
related concept of a one-parameter group [Lie 1891], which together constitute
the building blocks for the so-called symmetry group analysis of differential
equations, which I will be discussing in the present chapter. Lie’s idea rep-
resented an impressive discovery and was accompanied by his developing of
the theory of continuous groups, now known as Lie Groups. However, this
powerful method did not receive proper attention for a long time, due to the
fact that in order to find the symmetry group of a differential equation one
has to perform a very large number of algebraic computations and solve the

resulting system of coupled differential equations. This task is difficult or im-

possible to do with pencil and paper. With the recent development of symbolic

manipulation programs we have discovered many of the implications of Lie’s
methods for differential equations. There has been a growing interest in the
last two decades to expand and augment Lie’s mathematical formalism, and
there have been numerous research papers applying these techniques to physi-
cally interesting problems (see [Olver 93], [Ibragimov et al. 93] and references

therein).

My main concern in this study is systems of partial differential equa-
tions (PDE’s), like the ones we encountered in the previous chapter. Lie group
techniques have proven to be an effective tool for finding particular solutions
(the so-called similarity type) for the full nonlinear problem, for reducing the
number of independent variables of the system, and for studying conservation
laws. The emphasis throughout this work is on the novel use of analytical meth-
ods for finding solutions of nonlinear fluid equations rather than the further

refinement of approximate models.
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In the remainder of this chapter I will develop the necessary mathe-
matical tools to study the symmetry group of a éystem of nonlinear PDE’s in
a condensed and self-contained exposition, stressing their applicability rather
than mathematical rigor. I refer the interested reader to the excellent gen-
eral texts on the subject [Olver 93], [Bluman-Kumei 89], [Ibragimov 85,
[Stephani 89], [Ovsiannikov 82], for proofs of the most important results, fur-
ther details, and possible applications. Examples pertaining to plasma-fluid

equations will be treated in later chapters.

3.2 Classical Lie Point Symmetries

The fundamental concept behind the symmetry group of a system
of differential equations is that of a transformation acting on the space of de-
pendent and independent variables, with the property that it will transform
solutions of the system to other solutions. The simplest form of such a trans-
formation is when the mapping is of a purely geometrical nature, the so-called

point transformations.

To make this concept more precise let us consider a system S of
n-th order differential equations that involves p independent variables x =
(z,...,27), q dependent variables u = (ul,...,u?) and the derivatives of u

with respect to x up to order n: u™, given as a system of equations
Axu™y =0, v=1,...,4, (3.1)

whose solutions will be of the form u* = f*(z!,...,2?), « = 1,...,q. Let
X = RP be the space representing the independent variables and let U = RY

represent the dependent variables. A symmetry group of the system S is a local
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group of transformations G acting on an open subset M of the base space X x U
with the property that whenever u = f(x) is a solution of S, and whenever
go f is defined for g € G, then @ = g o f(x) is also a solution of the system.
The one-parameter group of point transformations will depend explicitly on a

continuous parameter € as follows:

it = 5" (z,u;¢€),

4% = 4%(z, u€) , (3.2)

with the usual properties of closure, inverse, identity € = 0, etc., which guaran-
tee that the transformations form a one-parameter Lie group. Note that}this
definition of a point symmetry allows for arbitrary nonlinear transformations of
both the independent and dependent variables but does not involve derivatives

of u the dependent variables.

From a more geometrical viewpoint, the one-parameter group given
by (3.2) and its action can be visualized as motion in the base space X x U. For
simplicity lets consider one independent variable z and one dependent variable
u. Therefore, the base space would be defined by the z — u plane. Take an
arbitrary point (o, o) in that plane for € = 0. When the parameter ¢ varies,
the images (Z,%) will move along some line. If we repeat this procedure for
different initial points, we will obtain the picture given in figure 3.1, where
each curve represents points that can be transformed into each other under the

group action. They are called the orbits of the group.

Now, as I mentioned before, one of the key elements in S. Lie’s dis-

coveries is the use of infinitesimal methods; to introduce them in our treatment
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Figure 3.1: Action of a one-parameter group of transformations.

of symmetries we need to consider the expansion of (3.2) about € = 0:

—xte Fnue o) +0(@)

M

7e
ﬁ=u+%%%xmdhﬂ>+0@) (3.3)

Let
§(x,u) = g—f(x, ; €)|e=o (3.4)
B0x, 1) == 0 (%, 6)eco (35)

The transformation: X = x+e€£, @ = u+e¢¢ is called the infinitesimal transfor-
mation of the Lie group of transformations (3.2); the components of £(x, u) and
¢(x,u) are called the infinitesimals of the transformation. This implies that
the Lie group of transformations (3.2) is equivalent to the solution of the initial

value problem for the following system of first order differential equations:

dx -
E = {(x,1) (36)
M _ o, 0), (3.7)

de
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with X = x and G = u when € = 0. This is the so-called First Fundamental
Theorem of Lie, and it shows that the infinitesimal transformation contains
the essential information determining a one-parameter Lie group of transfor-
mations. Moreover, we define the infinitesimal generator of the one-parameter

Lie group of transformations (3.2), as the vector field (or differential operator)

(3.8)

xu)

Oue’
which can be shown to be equivalent to the infinitesimal transformations, and

therefore also equivalent to the finite Lie group of transformation through the

following relation:

= (].—l-EV—f—EV +..0)x
) k
where the operator v¥F(x) = vvk‘lF(x) with vPF(x) = F(x) for any differ-

entiable function F(x).

Related to our geometrical picture, the infinitesimal generator (3.8)
corresponds to a different representation of the transformation group; the set of
curves given in figure 3.1 (group orbits) is completely characterized by the field
of its tangent vectors and viceversa. This field of tangent vectors is precisely
the one defined by v given in (3.8). Therefore, the study of multi-parameter
Lie groups of transformations effectively reduces to the study of infinitesimal

generators of one-parameter subgroups.
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The infinitesimal generators form a vector space called a Lie algebra,
which is closed under an additional structure, the commutator. The commu-
tator of two generators: v, and vg is another first order operator defined as
follows:

[Va, Vgl = VaVg — VgV, (3.10)

The general properties of closure under commutation, antisymmetry, and Ja-
cobi’s identity for the commutator of elements of the Lie algebra are sum-
marized in Lie’s Second and Third Fu.ndament.al Theorems, which I briefly
paraphrase here: The commuator of any two infinitesimal generators of an

r-parameter Lie group of transformations is also an infinitesimal generator,

[Va, V] = CogVy, (3.11)

where the coefficients C; are constants called structure constants. (In 3.11 1

am assuming the usual convention of summation over a repeated index). The

structure constants satisfy the relations

Cos="Char (3.12)
ChsCe, + C5.Co0+ CoCo =10, (3.13)

which come out as an immediate consequence of the basic properties of the
commutator mentioned above. Knowledge of the structure constants amounts
to a complete picture of the structure of the algebra. This algebraic properties
will be of crucial importance when reducing the number of independent vari-
ables of a PDE. I will discuss additional properties of Lie algebras in the next

chapter where explicit symmetry groups will be calculated.
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In order to implement the infinitesimal criterion of invariance to cal-
culate the symmetry group of a differential equation, we have to realize that the
differential equation represents a hypersurface in a high dimensional “extended”
space, one that includes as additional coordinates derivatives of the dependent
variables with respect to independent variables. This means that we need to
“prolong” the basic space X x U, representing the independent and dependent
variables, to a space which also represents the various partial derivatives oc-
curring in the system. Given a smooth function u = f(x) = f(z!,...,2?) of p
independent variables, there is an induced function u™ = pr{® f(x) called the

nth prolongation of f, which is defined by the equations,
uG = 0;f%(z) (3.14)

giving the numbers needed to represent all the different kth order derivatives

of the components of f at a point z. In this compact notation

a]fa (X) _ 8kfa (X)

 Brh Pz - - - Ok

with J = (j1,..., %) and 1 < 5z < p. There are q - p; such derivatives for each

k, where py is the binomial coefficient

1)

Thus pr(™f is a vector whose entries represent the values of f and all its
derivatives up to order m at the point z. The total space X x U™ whose
coordinates represent the independent variables, the dependent variables, and
the derivatives of the dependent variables up to order n, is called the nth order

jet space of the underlying space X x U. In the same way, there is an induced
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local action of G, a local group of transformations, on the n-jet space denoted
by pr™@G, and if we take the corresponding infinitesimal generators associated
with the group transformations we can also define their prolongation on the

n-jet space, denoted by pr™v, and explicitly given as

0
prv =v + Z 3 ¢%(x, u™)— a -~ (3.15)
a=1 J
where the second summation runs over all multi-indices J = (j1, ..., jx), with

1 <5k £p, 1 £k < n; and the coeficient functions ¢% are given by the
following formula:
$3(x,u™) = D; (d’a Y e ) * Zf’uh , (3.16)
i=1

where u = %7;, , and ug; = gx, , and D stands for the total derivative operator,
which for a given function P(x, u(”)) has the general form

. 3.17

1 6 7 + az_% XJ: Jyi a ( )
The sum is over all J’s of order 0 < J < n, with n the highest order derivative

appearing in P.

The prolonged vector field (3.15) and the defining relation for the
coefficients ¢% given by (3.16) have a relatively simple, easily computable ex-
pression. But this is a misleading impression. Since the derivatives in (3.16)
are to be taken with respect to all arguments, using the chain rule, the ex-
plicit expressions for the prolongation coefficients become enormously large
with increasing values of n, p, and ¢. This is the main reason why the use of
symbolic manipulation programs is so important, to overcome the large number

of calculations that appear in Lie group analysis. On the positive side, these
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calculations are highly algorithmic, and therefore relatively easy to implement.
For references to the existing programs for calculating Lie groups of differential

equations I refer the reader to the recent review by W. Hereman [Hereman 93].

Now, using the concepts of this chapter, I present without proof,
the important infinitesimal condition of invariance for a system of differential

equations.

Suppose
A,(x,u™y =0, v=1,...,4

is a system of differential equations defined over M C X x U. If G is a local

group of transformations acting on M, and
prvIA,(x,u™)] =0, v=1,...,¢ (3.18)

whenever A(x,u™) = 0, for every infinitesimal generator v of G, then G is a

symmetry group of the system.

The meaning of condition (3.18) is that pr™v vanishes on the solu-
tion set of the system of equations (3.1). This condition assures that v is an
infinitesimal symmetry generator of the transformation (3.2), i.e. that u(x) is

a solution of (3.1) whenever G(X) is one.

The explicit expression for the infinitesimal condition given above,
(3.18), implies a set of equations for the infinitesimals ¢t and ¢*. These are the
so-called determining equations, which consist of an overdetermined system of
linear PDE’s whose solutions provide the infinitesimal generators of the sym-
metries and therefore the complete symmetry group allowed by the system of

PDE’s under consideration. The fact that the determining equations are linear
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is one of the main reasons why Lie’s infinitesimal techniques are so appealing,
even though the number of equations and the number of terms in them could

be very large.

When solving the system of determining equations, one of the follow-
ing three possibilities may ocurr: (1) The system of equations has only a trivial
solution. In this case ¢ =0and ¢* =0fori=1,...,p;a=1,...,q, and
the symmetry group is trivial. (2) The solution of the system depends on r
significant arbitrary constants. Therefore one obtains an r-dimensional sym-
metry group of Lie point symmetries. (3) The solution depends on arbitrary

functions of some (or all) of the independent variables z;. This would mean

an infinite dimensional symmetry algebra and symmetry group for the original

system of PDE’s.

In practice, most systems of differential equations modelling physical
phenomena, do have a symmetry group different from the trivial one. In the
following chapter I will present examples of symmetry groups corresponding to

cases (2) and (3) above.

3.3 Generalized Symmetries

In this section I will explore the basic consequences of the natural
generalization of the concept of Lie point symmetry discussed above. So far
all the symmetry groups of differential equations considered have been local

transformation groups acting geometrically on the space of independent and
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dependent variables. This means that for a vector field of the form
L 0 c 0
V=D € ug+ Y g (3.19)
defined on the space of independent and dependent variables X x U, the coeffi-
cient functions £ and ¢* depend only on z and u, and therefore v will generate

a local one-parameter group of transformations exp(ev) acting pointwise on the

underlying space.

A natural generalization of this notion of symmetry group is obtained
by relaxing the geometrical assumption, and allovﬁng the coefficient functions &
and ¢* to also depend on derivatives of u. E. Noether was the first to recognize
this significant extension of the application of symmetry group methods by
including derivatives of the dependent variables in the infinitesimal generators
of the transformations in her trascendental paper [Noether 18]. More recently,
these generalized symmetries have proved to be of importance in the study of
nonlinear wave equations, where it appears that the possession of an infinite

number of such symmetries is a characterizing property of “solvable” equations.

Following the generalization described above we define a generalized

vector fleld in a form analogous to (3.19) as

L i (n) 0 < o (n) 0

i=1

in which ¢ and ¢* are smooth differential functions of their arguments. For
simplicity we will denote this argument with a square bracket [u], meaning for
an arbitrary function F'[u] that F' depends on x, u and derivatives of u up to

an order n. A generalized vector field can be treated as if it were an ordinary
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vector field. Thus, we can define the prolonged generalized vector field

My =v+ Z > ¢°‘[u (3.21)
a=1J<n
whose coefficients are determined by the formula
% = Dy <¢°‘ Zf’ "‘) —I—Zéluh, (3.22)
i=1

in complete analogy with (3.15) and (3.16).

Now I introduce another fundamental concept that is extremely useful
when dealing with generalized symmetries. This is the concept of the charac-
teristic of a symmetry. It is defined as follows: Given v as in (3.19), let

Q%(x,u) = ¢*(x,u) Zf’(x wul, a=1,...,q, (3.23)

i=1
then the g-tuple Q(x,u")) = (Qy,...,Q,) is referred to as the characteristic
of the vector field v. Of course this concept can be trivially extended to gener-
alized vector fields, and among all of them, we will be studying those in which
the coefficients £%[u] of the 8/0z" are zero. These will play a distinguished role
and therefore will be defined separately as follows. The generalized vector field

of the form

0
Vg = Z Q%[u] Bua (3.24)

is called an evolutionary vector ﬁeld, and the q—tuple QRlu] = (Q1[ul, ..., Qqlu])

is called its characteristic.

Note that according to (3.21) and (3.22), the prolongation of an evo-

lutionary vector field takes a particularly simple form:

prvg = ZDJQ (3.25)

5‘uJ
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Then we can conclude that any generalized vector field v as in (3.20) has an
associated evolutionary representative v in which the characteristic @ is given
by (3.23), and these two generalized vector fields determine essentially the same

symmetry.

It is pertinent to distinguish between the point symmetries, intro-
duced in the previous section, and the true generalized symmetries, presently
being discussed, by referring to the former as geometric symmetries since they
act geometrically on the underlying space X x U. Notice that every geometric
symmetry also has an evolutionary representative with characteristic depending

on at most first order derivatives, as in (3.23). However, not every first order

evolutionary symmetry comes from a geometrical group of transformations; the -

characteristic, in this particular case, must be of the specific form
P

Q% =¢" =) &ud (3.26)

=1

with ¢¢ and ¢ depending only on z and , which of course is a very specialized

case.

In principle, the computation of generalized symmetries of a given
system of differential equations proceeds in the same way as the earlier com-
putations of geometric symmetries. In particular, we have a direct analogue
of the infinitesimal criterion given in (3.18) that can be stated as follows: A
generalized vector field v is a generalized infinitesimal symmetry of a system

of differential equations
AJul = A (x,u™) =0, v=1,...,],

if and only if
prviA)]=0, v=1,...,1, (3.27)
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for every smooth solution u = f(x).

The simplest method for calculating generalized symmetries is based
on the idea of displaying the symmetry in evolutionary form vg, effectively
reducing the number of unknown functions from p + ¢ to just g, while simulta-
neously simplifying the computation of the prolongation pr v, given by (3.25).
Next, one must fix a priori the order of derivatives on which the characteristic
Q(x,u™) may depend. lOf course, there is a basic trade-off in this regard
due to practical limitations, on the one hand the more derivativeé of u that @
depends on, the greater the possibility for finding generalized symmetries. On
the other hand, the larger we take m the more tedious and time-consuming the
solution of the ensuing symmetry equations becomes. Therefore, one usually
starts with a small value of m and tries to obtain information about the general
form of the symmetries. Evidently, such an approach cannot find all general-
ized symmetries, but the knowledge of a few generalized symmetries can be of
tremendous value for reducing the dynamics of a nonlinear system when they

are related to conservation laws through Noether’s theorem.

Above we have reviewed a topic that is the subject of current re-
search, with a growing number of papers in the literature (see [Vinogradov 84],
[Olver 93], and the latest review [Ibragimov 94]). I have only presented the
basic ideas leading to practical tools necessary for computations of symmetries
for physical systems. In the following chapter I will present explicit symmetry
groups for the plasma-fluid models discussed before. Later, I will get back to

generalized symmetries in chapter 6.



Chapter 4

Symmetries of Plasma-Fluid Models

In this chapter I will present symmetry groups admitted by Hazel-
tine’s inclusive nonlinear system HTFM and by the CHM equation. Besides
the fundamental physical relation between the two models, CHM being the
electrostatic, adiabatic limit of the inclusive system, they can be seen as pro-
totypical examples of the two types of Lie groups that one usually encounters
when calculating the symmetries of systems of nonlinear PDE’s. On the one
side, Hazeltine’s inclusive model admits an infinite dimensional group of point
transformations, characterized by a set of arbitrary functions of time and space.
On the other side, the more restricted, single nonlinear equation of CHM, ad-
mits a finite six parameter group of point transformations. These two cases
cover a wide spectrum of possibilities for symmetry reduction, and therefore,
will serve the purpose of showing the power of Lie’s analytical methods to deter-
mine and classify invariant solutions for systems of PDE’s. I will use the simpler
group for CHM as a working example throughout this chapter, as a vehicle for
developing some general results in the theory of Lie algebras. Exploiting the
algebraic structure of the symmetry generators constitutes the strongest point

of the theory, which will be done in the remainder of the chapter.

o4
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4.1 Lie Point Symmetries for CHM

The Charney-Hasegawa-Mima equation (CHM) has been intensively
studied, both in the context of geophysical fluid dynamics (GFD) and plasma
physics, as a prime example of a nonlinear system that describes large scale,
coherent structures of the solitary wave type ( for an updated review see
[Horton-Hasegawa 94]). Unlike the family of fﬁlly integrable equations, the
KdV equation and the like, the CHM equation has eluded extensive analytical
analysis due in part to the nature of its nonlinear term: the so-called Jacobian
(or Poisson bracket) nonlinearity, that is typical of fluid descriptions of contin-
uous media. To see this more clearly, let us take a look at the general form of

the CHM equation

0 0
5i(Vie =) —vag o+ [p, Vigl = 0. (41)

Note that the the last term of the equation describes the only nonlinearity,
the Poisson bracket defined in (2.75). These kind of nonlinear equations are in
general nonintegrable, and have been solved only under very special conditions.
Lie group analysis will allow us to study a number of systematic symmetry
reductions, from the original nonlinear PDE to a PDE with a reduced number

of independent variables, and also to nonlinear and linear ODE’s.

To begin the calculation of symmetries for CHM, we need to establish
a practical form for it. Note that (4.1) does not have the exact form of the
equation derived as the limit of Hazeltine’s inclusive system, recall (2.113).
Actually, their relation is very simple. It can be understood as a change of
reference frame. If we change frames, from the natural (“lab”) coordinate

system of (4.1), to a frame moving with the constant velocity vy, we would
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get a modified version of (4.1), in the new coordinate system which is exactly
(2.113). The net effect of this transformation is to hide the inhomogeneous
term, proportional to vy, in the new definition of the coordinate along the line of
motion of the moving frame. More precisely, we effect a Galilean transformation
of the form

Yy =y —vgt, o' =p—vz. (4.2)

This transformation implies, using z’ = z, and t' = t,

o 0 0

therefore (4.1) reduces to the more symmetric form
o)
57 (Vie' —¢) + ¥, Vigl=0, (4.4)

where V and the bracket are defined in terms of the 2’ — 3 coordinates. This
is the form of the CHM equation that we will be studying, and therefore, from
now on, we will drop the primes, keeping in mind the meaning of the new

" coordinates.

Now we turn our attention to the actual calculation of the Lie point
symmetries admitted by the CHM equation using the ideas exposed in the
prévious chapter. First, consider (4.4). It is a nonlinear, third order, PDE,
with a three dimensional space, X, representing the independent variables: x =
(z,y,1t), and a one dimensional space, U, for the single dependent variable: u =
(). These two spaces define the underlying base space X x U, upon which the
infinitesimal transformations act. I would like to emphasize that throughout the
symmetry group calculation, the PDE will be taken as an isolated mathematical

object, independent of any particular physical situation that, typically, enters in
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through initial and/or boundary conditions. These will be consider aposteriors;
the symmetry group will first be used to reduce the equation by adjusting the
free parameters or functions left in the problem. I will come back to this point

in chapter 5.

The strategy consists of finding transformations of the dependent and
independent variables for which the CHM equation remains invariant. As was
shown in the last chapter, this can be done by considering the infinitesimal

version of the transformation, recall (3.3)

= z+€%(z,9,t, )

=

§ = y+e¥(z,y,t,0)
t+ e€¥(z,y,t, ¢)

95 = 90+€¢<p(may:t>(p)7 (45)

o+
Il

which is generated by the vector field .
0 0 0 0
—gz 2 ey Dy ot D o _ . 4.6
v £8w+£3y+§8t+¢ 3 (4.6)
This infinitesimal generator was shown to be equivalent to the finite Lie group
of transformations through the exponential relation ¥ = eVx. Given (4.4) in

the abstract condensed form

A(xay)t) ©y Py Py, Pty - - - 7(pyyt) = O) (47)
we apply the infinitesimal condition of invariance, (3.18). For v to be an
infinitesimal symmetry generator of the equation (4.7) it must satisfy

pr(3)v[A(m, Y i) s ,Qoyyt)] = 0’ (48)

on Az, y,t, ..., 0y =0, (4.9)
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where pr®v is the third prolongation of the vector field v, consistent with the

order of the equation.

The explicit calculation of the determining equations for & and ¢,
which are an immediate consequence of expanding (4.8) subject to (4.9), was
carried away using a symbolic manipulation program, called SYMMGRP.MAX,
developed for MACSYMA by B. Champagne, W. Hereman and P. Winternitz
(see [Champagne et al. 91]). This program calculates the determining equa-
tions, a very large set of linear PDE’s, and can be used interactively to solve

them explicitly, step by step on the computer, by means of a feedback mecha-

nism.
For the CHM equation (4.4), the general solution of the determining
system is |
£z, y,tp) = atcsy (4.10)
E(z,y,t,0) = ca—cs (4.11)
&(z,y,t,0) = c3+ oot (4.12)
¢?(2,9,t,0) = ca—cep (4.13)

where the ¢’s are arbitrary constants. Thus, the CHM equation is invariant
under a six parameter group of transformations. Each of the six infinitesimal
generators will be obtained from (4.10)-(4.13), by taking one of the constants
equal to unity and all the others equal to zero, together with the definition of

v (4.6), yielding

0 0 0
Vl_%, V2_5§’ V3 (—9%,
0 0 0 0
V4_8_’ '\’5=y%—ﬂ7(9 ) Vg ta—8055~ (4~14)
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Each one of these infinitesimal generators corresponds to a finite transformation
that leaves (4.4) invariant. This can be easily seen by solving the initial value
problem referred to as Lie’s First Fundamental Theorem (see (3.6) and (3.7)).
Following this procedure, and writing only the variables that are changed by

the transformation, we obtain

v1=5% = I=Z+E€
0
V2=‘a—y- = Y=Yyte€
v3=g¥ = t=t+e¢
0 -
V4=% = QY=
0 _8_ T =mxcose+ysine
Ve = Vor T By — { J=—xsine+ycose
v(;—tg—(,oi = { £~_ eef
ot Op p=e"p

The meaning of the induced finite transformations is clear: the first two imply
invariance of the CHM equation under space translation, of z and ¥, respec-
tively. The third transformation implies invariance under time translation.
The fourth, is a simple gauge transformation for the ¢ field, which although
trivial from the point of view of the physics described by the CHM equation,
is an important part of the complete group of symmetries, and should not be
overlooked. The fifth transformation is rotational invariance in the z —y plane.
Finally, the sixth transformation implies invariance under a change of scale in-
volving ¢ and ¢. I would like to emphasize that the six transformations shown
above constitute the complete symmetry group of point transformations for the

CHM equation, and in fact, most (perhaps all) of these transformations could
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have been guessed by inspection of (4.4). However, the fact that we can be
sure none of the symmetries of the group have been missed, and that we know
their exact form, proves the value of using the powerful symbolic manipula-
tion program. This subject will be of critical imﬁortance when analyzing more

complicated systems.

4.1.1 How to Use Symmetries

The first and probably most obvious application of symmetry group
transformations is the mapping of solutions into other solutions of a PDE. The
point is that, by construction, the symmetry transformations leave the equation
invariant, and therefore the set of solutions remains invariant. Let an arbitrary
solution of the CHM equation be denoted as

0 = 0(z,y,1) (4.15)

~

and take, as an example, the transformation generated by vi = 0. According

to the finite transformation shown above, we have
F=z+e, =y, t=t, @=¢. (4.16)

Thus, if we transform a particular solution (4.15) by vy, as in (4.16), we will

obtain

p=2(&— ¢35 (4.17)

But we know that, by the definition of symmetry, the new variables (tilde) also
satisfy the CHM equation. We therefore conclude that if ®(z,y,t) is a solution
of CHM, then so must be ®(z — ¢,y,t), for any real number €. Repeating this
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calculation with the generators: vy = 0y, Vs = 0}, V4 = 0y, V5 = y0, — 20, and
vg = t0; — p0,, we obtain that, if (4.15) is a solution of the CHM equation,

then so are the functions

¥ = 0(z,y—¢t),

0® = B(z,y,t—e),

o = ®(z,y,1)+¢

©® = ®(zcose—ysine rsine+ycose,t),

©® = e ®(z,y,e7%),
where ¢ is any real number. Of course, the most general one-parameter group of
symmetries is obtained by considering a general linear combination ¢; vy +. ..+

ceve of the given generators, (4.14). Then, an arbitrary group transformation

g, can be represented in the form
g =exp(egve) - ... - exp(€e1vy), (4.18)
which implies that the most general solution obtainable from a given solution
@ = ®(z,y,t) by group transformations, takes the form
@ =e°D(rcoses —ysines — €1, zsines + ycoses — €9, 6t — €3) + €. (4.19)

The ability to transform solutions into solutions is sometimes useful by itself.
The transformation of even trivial solutions can yield nontrivial results. This
concept will be used explicitly when treating the more complicated three field

model.

Now, in order to make a systematic use of the algebraic structure
associated with the infinitesimal generators, we turn our attention to the de-

termination and classification of group invariant solutions, where the symmetry
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group methods show their full power. We start out by considering the Lie al-
gebra G, defined by the infinitesimal generators (4.14). It is a solvable Lie
algebra, composed by the direct sum of the two-dimensional Euclidean Lie al-
gebra (space translations and rotations), £(2), and the algebra associated with
time translation Py, gauge of ¢, P,, and the scaling (dilation) of ¢t and ¢, Dy,.

We can write G® as:
G® = E(2)® {{Py® P,} © Dy}, (4.20)

where @ denotes the direct sum, and © a semi-direct sum. Recall that F(2) =
{P,, P,}©50(2). Some basic properties of the algebra G® are contained in the
commutation relations between the infinitesimal generators, which are compiled
in table 4.1. One of the most important of these properties, is the closure under
commutation, which is a consequence of the correspondence between generators
and transformation groups. If v; and v; are any two generators, then their

commutator, defined as
[Vi, vj] = Viv; — Vv = C’fjvk, (4.21)

is a linear combination of all the generators. This result will be of utmost

importance when calculating group invariant solutions.

We have shown above how to use a symmetry to calculate solutions
for the differential equation from known solutions. But we can also use the
algebraic properties of the generators v;, to calculate particular solutions of
a PDE, called group invariant or “similarity” solutions. These are solutions
that remain invariant under the action of a subgroup of the symmetry group

of the equation. This condition of invariance imposes additional constraints on
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vi|l O 0 0 0 —vg O
vo || O 0 0 0 0
vs || O 0 0 0 0 V3
vall O 0 0 0 0 —vy
Vs || Vo —V1 0 0 0 0
Vg 0 0 —V3y V4 0 0

Table 4.1: Commutation relations for the algebra G® of the CHM equation.
The entry in row ¢ and column j represents [v;, v;].

the original equation, expressed as first order linear PDE’s, and therefore, the
group invariant solution will satisfy the original equation plus the additional
constraints, leading to the so-called symmetry reduction. What this means is
that the original equation will be expressed as a transformed equation with
a reduced number of independent variables, defined by the equations of con-
straint. In order to study this systematic reduction we need to introduce some

additional concepts from the theory of Lie algebras.

I will use the following example to motivate the concept of a group
invariant solution. For simplicity, consider the simple case of translational
invariance along the x-axis, given by the infinitesimal generator vi = 0,. If @
denotes a solution of the CHM equation, we would like to consider the special
case for which v;® = 0. Since v; has a single component in the x-direction,
then the condition of invariance under vy; i.e. vi® = 0, will be satisfied only if
® = ®(y,t, ). That is, solutions invariant under the transformation generated

by v; are independent of z and take the form ¢ = ®(y, ).

For an arbitrary generator v, the invariant solutions are calculated by
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a method that amounts to finding the special coordinates in (z,y,t,¢) space
for which v takes the canonical form of a simple translation in the new frame.
This is easily done by the method of characteristics, where one determines the
invariant functions of the generator v, called differential invariants, and uses
this information to reduce the number of independent variables of the equation.

This yields an invariant solution under the generator v.

To illustrate the method, lets calculate the invariant solutions corre-
sponding to the generator a;ve+ v of the CHM equation, with as an arbitrary

constant. The generator has the form

0
agVy + V3 = G~ + (4.22)

oy ' at’
which corresponds to the translation group on the space of independent vari-
ables y and ¢. In general, we can expect travelling wave solutions to arise as

a consequence of using a translation group on a given PDE. The form of the

generator (4.22), implies the characteristic equations

Y _ g (4.23)
5}

Integration of these equations yields the differential invariants

m =z, M =y — ast, N3 = . (4.24)

If we choose 713 as the new dependent variable ¢, and 7; and 7, as the new
independent variables, then the invariant solution takes the form ¢ = F'(n1,72),
where F' is a function to be determined by substitution into the transformed
CHM equation, which depends on one less independent variable. In terms of

the original variables the invariant solution takes the form

¢ =F(z,y— ast). (4.25)
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Solving for the derivatives of ¢ with respect to z, y and t in terms of those of

¢ with respect to n; and 79, we find

do_ 0 e % T
o 28m, 9z om’ 0z2  on3’ (4.26)

and so on. Substituting these expressions into the CHM equation, yields the

reduced PDE for the special travelling wave solutions,

) d
— a2 - (vf,c) + ar@f—z +[¢, VX, =0, (4.27)

where the subscript 1 implies that the operators V2 and [f, g] are taken in the
space with 7; and 7, as independent variables. This nonlinear PDE can be

rewritten, neglecting the subscript 7, as
[C —agmy, V3 — az?h] =0. (4.28)
This single bracket equation has a general solution of the form

V3 — agm = f( — azn) , (4.29)

where f is an arbitrary function. A solitary vortex or “modon” solution was
first discovered by Stern [Stern 75] and independently by Larichev and Reznik
[Larichev-Reznik 76], for an equation similar to (4.28) in the context of geo-
physical fluid dynamics, by imposing a condition for localized solutions to the
general solution (4.29). This condition reduces the problem of finding a solu-
tion of (4.29) to a piecewise linear one, by choosing f as a linear function of
its argument, with different coefficients inside and outside the circle of radius

r = a. Introducing polar coordinates defined as: 72 = n?+n3 and tan 6 = n; /79,



66

and taking the limit { — 0 as y — oo, for each z, which implies using a linear

function for f, we obtain for (4.29) the form

V¢ =¢(  r2aq (4.30)

V2 = —k*¢ + ap(k* + 1)y, r<a, (4.31)

where k is an arbitrary constant. The famous dipole solution of these equations

is given by
as [ak% 518:3 -7 (1 + k—lz)] sinf, r<a,
¢ = (4.32)
—azaﬁigg sin 6, r>a,

where J; is a first-order Bessel function, and K; is a modified first-order
Bessel function. This dipole vortex solution has properties that makes it
somewhat similar to a soliton, for instance, its size depends on the transla-
tional speed, and it is stable with respect to collisions (see [Flierl et al. 80] and

[Meiss-Horton 83]).

It is pertinent to make some comments on the procedure that we have
followed to derive the group invariant solution of Larichev and Reznik (4.32),
which, by the way, represents the only known analytical family of solutions for
the CHM equation (The other members of the family are obtained from the
same reduction of the equation (4.29), only imposing different conditions on f
at infinity, see [Petviashvili-Pokhotelov 92]). First, notice that we have used a
very simple subgroup (4.22), of the complete six-parameter group for the CHM
equation. What this means is that in principle we have available a large number
of potentially useful symmetry reductions to analyze the solution space of the

CHM equation. Actually, as many as the number of different subgroups that
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we can construct by combining the six generators. However, we don’t know
if the group invariant solutions from different subgroups are all fundamentally
different, i. e., invariant solutions which are not related by a transformation in
the full symmetry group, as was shown before when transforming solutions into
solutions. The answer to this question constitutes the so-called classification of
group-invariant solutions, which is a systematic approach leading to an optimal
system of group-invariant solutions, from which every other such solution can
be derived. This implies that usually we won’t need all subgroups of G to span
the space of possible solutions, but only a selected “optimal system” of them.
The crucial concept to generate this élassiﬁcation is the study of the adjoint
representation of the symmetry group acting on its Lie algebra. In the next

section I will develop this powerful classification scheme.

4.1.2 Classification of Solutions: The Optimal System

The basic concept underlying the classification scheme for group-
invariant solutions can be simply stated as follows: Let G be the symmetry
group of a system of differential equations A and let H C G be an s-parameter
subgroup. If ¢ = f(x) is an H-invariant solution to A and g € G is any other
group element, then the transformed function: ¢ = f(x) = g - f(x) is a H-
invariant solution, where H = gHg™! is the conjugate subgroup to H under g.
What this means is that the problem of classifying invariant solutions reduces
to the problem of classifying subgroups of the full symmetry group G under

conjugation.

Then, for a Lie group G, we define group conjugation as Ky(h) :=
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ghg™*, for each g € G, h € G. The differential dK, determines a linear map

on the Lie algebra of G, called the adjoint representation
Ad g(v)=dK,(v), veg. (4.33)

This definition has a simple interpretation: if v € G generates the one-para-
meter subgroup H = {exp(ev)}, then Ad g¢(v) is easily seen to generate the
conjugate one-parameter subgroup K,(H) = gHg™ .

The problem of finding a classification of subgroups is equivalent to
that of finding a classification of subalgebras. This statement can be para-
i)hrased in a formal context by saying that if we take H and H to be Lie
subgroups of the Lie group G with corresponding Lie subalgebras H and H of
the Lie algebra G of G, then H = gHg™! are conjugate subgroups, if and only
if ' = Ad g(H) are conjugate subalgebras.

In practice we deal with the Lie algebra of the generators, and there-
fore, we will take advantage of the fact that the adjoint representation of a Lie
group on its Lie algebra is most easily constructed from its infinitesimal gener-
ators. If v generates the one-parameter subgroup {expev}, then we let ad v
be the infinitesimal adjoint action generating the corresponding one-parameter
group of adjoint transformations, defined by

ad Vv = ac_lg |.zo Ad(exp(ev))w, WwEeEG. (4.34)

which can be shown to agree (up to a sign) with the Lie bracket on G

ad V|w = [w,v] = —[v,w]. (4.35)
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Conversely, if we know the infinitesimal adjoint action ad G of a Lie
algebra G on itself, we can reconstruct the adjoint representation Ad G of the
underlying Lie group, by integrating the system of linear ODE’s

d
d—v: =ad vi|w =—[v,w],  w(0)=wy, (4.36)

with solution
w(e) = Ad(exp(ev))wo, (4.37)
which can be represented by a matrix A such that w(e;) = AFwy with ¢ =
| 1,...,r and r being the number of parameters in the group. The general adjoint
transformation is then
W = ATw, (4.38)
where AT is the transpose of the matrix: A = A;-...-A,. This representation

will be useful when we treat higher dimensional optimal systems.

Another, perhaps simpler way to reconstruct the adjoint representa-

tion is by summing the Lie series

Ad(exp(ev))wy = iﬂ %(ad &n(wo)
= wo— €[v,Wp] + —ez[v, [v,wol] —.... (4.39)

2

The convergence of this series follows since (4.36) is a linear system of ODE’s,
for which (4.39) is the corresponding matrix exponential. Therefore, in order
to compute the adjoint representation for the Lie algebra of the CHM equation,
we use the Lie series (4.39) in conjunction with the commutator Table 4.1. For

instance, we can calculate
1
Ad(exp(evy))vs = vs—€[vy, vs] + 562[V1, [Vi,vs]] — -

= Vst €Vq. (440)



70

A simple geometrical interpretation of the adjoint representation can be given
as follows: If the trajectories tangent to vs are subjected to a coordinate trans-
formation corresponding to vy, then the transformed trajectories are tangent
to a linear combination of vs and vy. Now, we can regard the trajectories as
material lines in a perfect fluid with velocity v;. Then, the material lines are
carried along by the fluid, and the tangents to these lines are Lie dragged by
the velocity field v; in the same way as the magnetic field vector in a per-
fect fluid. Therefore, in analogy with the induction equation, the evolution for
the tangent w is given by (4.36), whose Taylor-series solution is (4.39). Thus,
in the previous example (4.40), an “advection” by v; drags vs into vs + evs.
Following in the same manner, the adjoint operations for all generators of the
CHM equation are calculated by summing up the Lie series (4.39). The results

are given in Table 4.2.

Now we are ready to introduce the concept of an optimal system.
We have already mentioned the equivalence between the classification of sub-
groups and subalgebras, and so we concentrate on the latter. Then, a list of
s-parameter subalgebras forms an optimal system, if every s-parameter subal-
gebra of G is equivalent to a unique member of the list under some element of
the adjoint representation: H = Ad g(H), g € G, and no two algebras in the
list are conjugate to each other. This concept leads to a natural classification of
the algebra into conjugacy classes, where the union of single representatives for
each conjugacy class, of given dimensionality r, defines the optimal system of
order r, denoted by the symbol ©,. Each member of the n-dimensional optimal
system ©,, is a collection of n linear combinations of generators of the algebra

g.
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| Ad ” Vi Vo V3 V4 Vs Vg l
Vi Vi Vo V3 V4 Vs + €y Vg
Vo Vi Vo V3 V4 Vs — €Vy] Vg
V3 Vi Vo V3 V4 Vs Vg — €Vg3
Vy V1 Vo V3 V4 Vs Vg + €Vy
Vs ViCOS€E Vo COS € V3 V4 Vs Vg
+vysine —visine
Ve | V1 Vo evy e fvy Vs Vg

Table 4.2: Adjoint table for the algebra G° of the CHM equation. The (3, 5)
entry represents Ad(exp (ev;))v;.

In general, the problem of finding an optimal system of subalgebras
for a given dimensionality r can be quite complicated, although for small dimen-
sionality < 3, it can be done relatively easily. For Lie algebras with additional
structure, like simple, semisimple, Levi decomposed algebras, etc., sophisti-
cated techniques are available to find the appropriate classification method
(see [Winternitz 90] and references therein). Here, I will be concerned with
optimal systems of first and second order only, which will lead, respectively,
to single and double reductions of the number of independent variables for the

PDE in question.

In order to calculate the first order optimal system ©; for the algebra
of the CHM equation, I will use the simple (and naive) approach of taking a
general element v in G given as a linear combination of all the generators of

symmetries for the CHM equation, namely
V = a1V + Q9Vy + A3V3 + Q4V4 + A5Vs5 + A6V, (441)

where the a;’s are arbitrary constants, and subjecting this element to judicious
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applications of adjoint transformations, defined in Table 4.2, so as to simplify it
as much as possible. Using this procedure I present next the explicit calculation
of the elements of the optimal system of first order ©; for the algebra G of the
CHM equation.

Suppose first that ag # 0 in (4.41). We can assume that ag = 1
without loss of genefa,lity (using a simple scaling of v if necessary). Referring
to Table 4.2, if we act on v by Ad(exp(—aqvs)), we can make the coefficient of

V4 vanish:
v' = Ad(exp(—aqv4))v = a1vy + agvy + azvs + asvs + ve. (4.42)

Next we act on v’/ by Ad(exp(asvs)) to cancel the coefficient of v3, leading to

"

v’ = Ad(exp(asvs3))V' = a1vy + agvy + asvs + vg. (4.43)

Now we have to consider two possibilities: (i) as 5 0 or (ii) as = 0. If we take
case (i), as # 0, the following further reductions take place. Upon acting on
v" by Ad(exp(—az/asv1)) the coeficient of v, is seen to vanish
v" = Ad <exp (—%%w)) v = a;vi + asvs + vs. (4.44)
5
Finally, we act on v with Ad(exp(a;1/asv2)) to cancel the coefficient of vy, so

that v is equivalent to

v = Ad <exp <%V2>) v" = agvs + Ve, (4.45)
s .

under the adjoint transformation in case (i), and no further simplification is

possible.
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For case (ii), we have to go back to (4.43) and consider as = 0. From
Table 4.2 we see that by acting with Ad(exp(evs)) on v” we can either cancel
the coefficient of vy by choosing € = arctan(a;/ay), or the coefficient of v, by
choosing € = arctan(—as/a;). We select this second form, leaving as a final

reduction

v = Ad <exp <arctan [—%] V5>> v = ajvy + v, (4.46)
1

where a is a certain scalar depending on a; and as, and no other simplification
is possible. Therefore, any one-dimensional subalgebra spanned by v with
ag # 0 is equivalent to the subalgebra spanned by asvs + vg when as # 0,
or to one spanned by a;v; + vg when as = 0. These reduced subalgebras are

elements of the one dimensional optimal system ©;.

The remaining one-dimensional subalgebras, elements of ©4, are ob-
tained by following the same procedure as above with the constant ag = 0. If
as # 0, we scale to make a5 = 1, and then act on v with Ad(exp(—aqv1)),

cancelling the coefficient of vy, so that v is equivalent to
v = a1v1 + asvs + agve + Vs (4.47)

We can further simplify v/ by acting with Ad(exp(a;vs)), which cancels the

coefficient of vy, yielding
v = asVs + a4vy + Vs (448)

Now we use the action of the group generated by vg, which has the net effect

of scaling the coefficients of v3 and vy, as follows

v" = Ad(exp(eve))v" = aseVs + ase” V4 + Vs. (4.49)
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We cannot scale out both coefficients at the same time, therefore we choose to
rescale the coefficient of v4, which depending on the sign of a4 can be made to
take the values of either +1, —1 or 0. If ag and a4 are both equal to zero, then
v can be seen to be equivalent to vs. Thus any one-dimensional subalgebra
spanned by v with ag = 0 and a5 # 0 is equivalent to one spanned by either
agVs V4 + Vg Or V3 + Vg Or Vs.

Next we consider the case where ag = a5 = 0 and as = 1, which
simplifies by acting with Ad(exp(arctan|a;/as]vs)) on v, yielding ayvs +asvs+
vy, as the irreducible element of ©;. Then we consider the case with ag = a5 =
as = 0, and a3 = 1, which is simplified again by acting with Ad(exp(evs)) on
v, resulting in the form ayvy + vs. For the remaining cases we take ag = a5 =

aq = ag = 0, which are similarly seen to be equivalent either to vy or to vy.

Summarizing, we have found an optimal system of one-dimensional

subalgebras of the CHM algebra G°, that is generated by

asVs + Vg
a1vi + Vs
a3Vs + V4 + Vs

V3 +V5

(f) aava +azvs + vy
(g Ao Vy + V3
(h Vo

)
)
)
)
e) Vs
)
)
)
)

Vi (4.50)
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This classification of one-dimensional subalgebras is now directly useable for the
classification of group-invariant solutions. Actually, the collection of all group-
invariant solutions, corresponding to subgroups of the optimal system, forms
an optimal system of group-invariant solutions of the original equation. One of
the elements of this optimal system of group-invariant solutions for the CHM
equation has been already calculated in the previous section. Recall equations
(4.22)-(4.32), which describe the calculation of the group-invariant solution
corresponding to the subalgebra spanned by the generator (g) of the optimal
system given above (4.50). This is the famous Larichev-Reznik dipole solution
already discussed. A salient feature of such a symmetry reduction is how the
dimensionality of the base space for the original equation is related to that of
the reduced equation. The original equation possesses a base space composed
of three independent and one dependent variables. By using a one-dimensional
subalgebra, like the (g) element of ©;, we obtain a reduced equation, (4.28),
with a reduced base space composed of two independent and one dependent
variables. The symmetry reduction amounted to a reduction in the number of
independent variables by one, resulting in a noniinear PDE that we were able
to solve. The obvious extension of this idea is to find optimal systems of higher
dimensional subalgebras, which would allow, at once, a multiple reduction in
the number of independent variables by means of symmetry reduction. For
instance, for the CHM equation, a reduction by a two-dimensional subalgebra,
an element of ©,, will reduce the original PDE to an ODE, which in principle
is orders of magnitude easier to solve. This constitutes the most powerful
application of the algebraic properties of the symmetry group, namely the

successive application of symmetry reductions to transform a PDE into a more
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tractable and often solvable form. But before tackling the higher dimensional
case, I would like to present some other single reductions afforded by the use
of elements of ©1, where we can get some analytical insight into the solution

space of the CHM equation.

It is easy to see that not all the symmetry reductions implied by the
one-dimensional optimal system will lead to analytically tractable equations.
The point is that the result of this single reduction of the CHM equation is a
nonlinear PDE in two independent variables, which in general is an unsolvable
problem by analytical methods. But in some cases, like the one presented

before for the dipole solution, we can solve the resulting equation.

Another fully solvable example is given by the rotationally invariant
solution, obtained from the subalgebra spanned by vs, corresponding to element
(e) of the optimal system ©; shown in (4.50). This element vs, is the generator

of rotations in the z — y plane with the obvious invariants

m=t, o = (22 +y?)Y?, (=op, (4.51)

where ((n1,72). The CHM equation is reduced upon substitution of (4.51) to

the stationary form

0% o¢
20°¢ LS Y
Up o2 + 72 B, 3¢ = f(n2), (4.52)

with f an arbitrary function of its argument. The general solution of equation
(4.52) is an arbitrary function J of n,, which is the consequence of imposing ro-
tational symmetry on solutions of the CHM equation. If we further reqﬁire this
function to be localized, then we would get an exact axisymmetric monopole

solution, which consists of an isotropic function of r that decays rapidly when
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r — 00. A typical form for this kind of stationary solution would be the well

known soliton solution:
¢ = Asech®(kr) = Asech®(k[z® + (y — v4t)?)), (4.53)

where A is a constant and we have made explicit use of the relation: y =
y —vgt, defined before, recall (4.2). In the literature the monopole solution has
been defined by taking the particular choice f(n3) = 0 in (4.52), and studying
the remaining equation, which is a modified Bessel equation, with localized

solutions

¢~ Ko(m), (4.54)

where Ko(n3) is the modified Bessel function of the second kind of order zero.
Therefore an axisymmetric, rotational invariant solution is necessarily a local-

ized monopole of arbitrary shape.

A slight generalization of the previous example is given by element

(d) of the optimal system (4.50), i.e. as

0 0 0
V3 + v = % + Vg ~ ma—y (4.55)

The differential invariants corresponding to this generator are

m =xsint 4+ ycost, Ny = —x cost + ysint, w=7C, (4.56)

which describe a time dependent rotation of the coordinate system. Writing

the CHM equation in this new coordinates yields the reduced form

[Virac+ T2, CH ot =0, (4s0)
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where « is an arbitrary constant, and the V operator and the bracket are given
in terms of 7; and 7, in the usual form. The general solution for the bracket
equation (4.57) implies a relation between both terms in the bracket, given as

follows:

ViC+al+ T2 ) =P (¢t 4m) . (459)

The form of the free function F' can be determined by imposing again the
condition for a localized solution: ¢ has to approach zero faster than 1/r,
which in this case means that { — 0 for r = (n? + n2)Y/2 large. This implies

for (4.58) the condition
1 1+a
P (508 +m) = (-52) (7 +) (459)
and therefore the function F' has to be linear in its argument, i.e.
F(Z)=(1+0a)Z. (4.60)

Substituting this form of F' back into equation (4.58), yields a simple equation

for ¢ which satisfies the condition for an exterior solution:
V¥ =¢. (4.61)

This equation is formally the same as that for the Larichev-Reznik case, recall
(4.30). The main difference is the interpretation of the coordinates, which in
the present case depend on ¢ in a fundamental way; recall the definitions of 7,
and 72, (4.56). The solution can be given again in terms of modified Bessel

functions K, and a harmonic 8-dependence as follows:

¢ =Y D,Ky(r)sin(nf), (4.62)
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where the D,, are constants, and r, 6 are defined by

r=(ni +n5)"% = (a® + %), (4.63)
6 = arctan (ﬁ) = ¢ — arctan <£> . (4.64)
! Y

For simplicity we take only one mode out of the sum (4.62) and try to match
with the interior solution. The only condition on F' for the interior solution is
that ¢ should be finite at the origin. Therefore, we take a linear function of its

argument as the simplest form of F":
F(Z)=AZ+Q, (4.65)

where A and @ are constants that will be constrained by the matching condi-
tions at the boundary 7 = a. This ansatz for F' leads to the following PDE for
the interior:

k? k?

Vi +5(=Q-r’ (1 + ?> , (4.66)
where we have defined the interior wavenumber k2 = a®(a—A). Notice that the
inhomogeneous terms on the RHS are independent of , therefore the matching
solution will have to be proportional to the homogeneous solution of (4.66)
in order to preserve the anisotropic terms proportional to sin#, giving as a
result a dipole like structure. Otherwise, we can consider the problem as one
independent of the angle 6 obtaining again an isotropic monopole solution

similar to the one already discussed.

If we consider all the other reductions induced by the remaining ele-
ments of the optimal system of order one, ©;, we will get complicated equations

in two independent variables that are not easily solvable by analytical methods.
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However we can try to extend the concept of optimal system to higher dimen-
sions and reduce the original equation to an ODE, as was mentioned before,

yielding additional analytic solutions.

4.1.3 Two-Dimensional Optimal System

The method I will be using here to construct the two-dimensional op-
timal system was developed by F. Galas [Galas 88], which is based on a method
introduced by Ovsiannikov [Ovsiannikov 82]. The basic idea is to construct a
list of two-dimensional subalgebras G(u;,us), where the first component u; is
an element of the one-dimensional optimal system ©;, and the second compo-
nent uy is chosen so that u; and u, form a closed two-dimensional subalgebra.
Galas showed that a sufficient condition for this to happen is to choose uqy as
an element of the quotient algebra Nor(u;)/u;, where Nor(u;) is the normalizer
of u;. The normalizer Nor(7) of a subalgebra H of G is defined as the largest
subalgebra of G such that H is an ideal of Nor(H): Therefore, we can easily
calculate the normalizer of any subalgebra H of a given algebra G, by using the

properties given in the commutator Table 4.1, as follows:
Nor(H)={u€G:[u,w]eH V weH}. (4.67)

Finally, the list of two-dimensional subalgebras obtained by the above pre-
scription, is separated into conjugacy classes under the adjoint transformation,
which now will be taken in its more general matrix form given by (4.38), yield-

ing as a result the elements of the two-dimensional optimal system ©O,.

Continuing with the CHM equation as a working example, I will next

calculate the 2-D optimal system ©, for the symmetry algebra of the CHM

i



81

equation. We start out by constructing a list of two-dimensional subalgebras,
based on the result by Galas mentioned above. The normalizer is obtained by

setting
[ua, Z ;] = cuy, (4.68)

7

where ¢ is some constant, and determining the possible nonzero ¢;’s. This to-
gether with the one-dimensional optimal system (4.50), generates the following

list of two-dimensional subalgebras:

Gi(asvs + ve, as5Vs)

(
Ga(ve, a1vi+ aave + a5Vs)

Q

3(a1v1 + Ve, Q1vi+ agva)
Gu(azvs + vy + v, asvs)

Gs(ve +vs, asvs)

Q

(
(
(
Gs(vs + Vs, 0uqvy)
7(Vs, a3vs+ auvs+ aevs)
Gs(agva + asvs + vy, a1vi+ agva + 03vs)
(

Go(agva + V4, 01V1+ agve + asvs)

Gio(asvs + Vs, vy + aovy + a3vs + asVs)

KQ

11(Ve, oqvi+ 0gve + agvs + asVs)

Gi3(vs, a1vi+ aovy + aqvy + a5V + aVe)

Q

(

(
Giz(aavi + v, 1V + QaVa + V)

(
14(ve, Q1V1+ agvs + agvs + sVe)
(

Gi5(v1, Qgva+ a3vs + agvs + agvs)
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Now, in order to span the space of possible reductions induced by O,
we must simplify each pair of subalgebra elements as much as possible using the
adjoint action. This is accomplished by noting that for each two-dimensional
algebra G(ug,up) in the list above, we seek an equivalent algebra G'(u;,u,)
under the adjoint transformation. Since we are now dealing with a multidi-
mensional case, the new elements u; can be formed as linear combinations of

the transformed elements ;. For the two-dimensional case we can write this

A Co1 Co2 Uy )’

where both constants of at least one of the pairs (¢11, ¢a2) or (c12, co1) # 0, and

statement as

the 7;’s represent the adjoint transformation of the w;'s, @; = Ad(exp(ev))u;.
As in the one-dimensional case, we wish to find the simplest representation of

the u;’s through judicious choices of the €’s in the adjoint transformation.

In practice we use the inverse of (4.69) as a simpler representation for

the reduction of the w;’s, in the form

U\ _ [ on an Ull (4.70)
Ug Gg1 Qg2 uy ) '

We assume without loss of generality that both a;; and agy # 0. This form is
simpler than (4.69) because each separate equation implied by (4.70) contains
only one adjoint transformation, which makes clearer which of the ¢;’s must be

Z€ero.

For the general adjoint transformation (4.38), we need to calculate
the adjoint transformation matrix A. This matrix is defined as the product

of the matrices of the separate adjoint actions for each element of the algebra:
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A = A1 A A3AA5Ag. Each matrix A; can be read off the adjoint Table 4.2
by the following construction [Coggeshall-Meyer 92]: Let each element in Table
4.2 be labeled O;;, with ¢ and j being the rows and columns respectively, then

we have by definition

O;; = Ad(exp(ev;))v; . (4.71)
Each element can be rewritten explicitly as:
Oi; = gij(e)v; + thj(e)vk (no sum on j), (4.72)
k

where gij(e = 0) = 1, h¥;(e = 0) = 0, and h;(e) = 0. Each row in O;; makes a

matrix A; through
(Ai)ks = gij(€:)brj + hfj(ei) (no sum). (4.73)

Therefore, according to this construction, we obtain for each single element

adjoint action matrix the following:

1000 0 O 1000 —& O
0100 ¢ O 0100 0 O
001000 0010 0 O
Al‘000100 A2*000100
000010 0000 1 0
0000 0 1 0000 O 1
10000 O 10000 O
01000 O 01000 0
00100 —e ~loo100 0
A3‘000100 A4_0001OE4
00001 O 0000T1 0
00000 1 00000 1
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coses sines 0 0 0 O 10 0 0 00

—sines coses 0 0 0 O 01 0 0 00

0 0 1000 0 0ee 0 0O

As = 0 0 0100 As=100 0 e% 0 0
0 0 0010 00 O 0 10

0 0 0 001 00 O 0 01

The general adjoint transformation matrix A is equal to the product

of all six matrices, given above, taken in any order. The final result is

coses sines O 0 €1 Sin €5 0
—€9 COS €5
—sines coses O 0 €1 COS €5 0
—+€5 sin €5
A= 0 0 e* 0 0 — €3
0 0 0 e 0 €4e”%
0 0 0 0O 1 0
0 0 0 0 0 1

This matrix A will be used to construct the two-dimensional optimal system,
©,, by separating the previous list of two-dimensional algebras G; into equiva-
lence classes under the adjoint action given by (4.70). A will yield the adjoint

of an arbitrary element of the algebra, u, through the relation: 1 = ATu.

As an example, consider the case of Go(ve, 01 Vi +0ove+asvs). First,
we must consider the possibility that the constants s, a9, and/or as could
vanish. If two of the three constants vanish we get the three irreducible cases
(ve, V1), (Ve,Va), and (ve, vs). If we suppose that only one of the three con-
stants vanishes at a time we will get (vg, agva + asvs), (Ve, a1v1 + a5vs), and
(ve, 1 vi+agvs), for ay, ap or as = 0, respectively. These three cases, together
with the general case (with all the constants different from zero), must now be

considered under the adjoint actibn. Taking (4.70) with the adjoint matrix
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defined above yields the following pair of equations:

—€3€%V3 + €487V, + Vg = a11Vg + alg(o/lvl + a;VQ + agw) ,  (4.74)
a1 (Vicoses — Vasines) + ao(visines + vocoses)
+os5 [(e15in€es — excoses) vy + (€1c08€5 + €28ines)va + V)

= a9V + aga(a Vi + Qv + V) . (4.75)

In these equations oy, a; and o are fixed constants, and the €;’s and a;;’s are
. . . ! ! I
free parameters that can be chosen in such a way as to simplify o, ay and ag;

it is desirable to have one or more of these constants equal to zero.

In the case where all the o;’s are different from zero, we start by

equating the coefficients of the v;’s in equation (4.74), yielding e3 = ¢4 = a1 =
0 and ay; = 1, which does not provide any helpful reduction. Following the
same procedure for the second equation (4.75), we obtain: azza; = @5, Which
means that we can scale o/s to 1 by setting ass = as. The remaining conditions
imply that o) = ay = 0 by means of the choice ¢; = —ap/as and e = a3 /as.
Therefore this case reduces to (vs, vs), which is already known.

Next we consider the case with a; = 0. From equation (4.74) we get

the same result as before, €3 = €4 = a15 = 0, and from (4.75) we obtain cy = 1

4 . . .
and o, remains arbitrary. Therefore, this case reduces to (vs, agve + vs).

Following exactly the same rationale for the case ay = 0 we obtain

the reduction (vg, a1 vy + vs).

The last case to study is when a5 = 0. In this case equation (4.75)

yields: a; = 0 or o, = 0, by using the free constant es, and the remaining




86

« can be normalized to one using age. Finally we end up with the reductions

(v, v1) or (ve, v2), which are already known.

In conclusion, we have found that the two-dimensional algebra
Ga(veg, @1V1 + aavy + asvs) is equivalent, under the adjoint transformation
(4.70), to one of the following algebras: (ve,vi1), (Ve,V2), (Ve,1V1 + V),

(vs, gV + Vs), where the o’s are arbitrary real numbers (possibly zero).

This procedure has been done for each of the two-dimensional algebras
G;, listed before, and has generated a collection of all unique reduced two-
dimensional algebras O, the two-dimensional optimal system. The following

is a complete list of the elements of ©, for the CHM algebra:

Ha(asvs + v, Vs)

Hs (Vs, V2)

Hs(ve, agvy + vs)

Hr(a1vy + vg, va)

Ho(vs + Vs, Va)

Hia(vs, vy)

Hisz(azve + agvs + vy, vi)
His(aava + azvs + V4, 01 vy + v3)
Hiz(agvy + Vi, V1)

Hig(agve + vy, 01 vy + aavy + v3)
Hor(azvs + va, V)

Has(asvs + vy, azvs + vs)

H25(Q1V1 + vz, 1V + Vz)

Ha(ve, V1)

Ha(ve, a1v1 + V)

He(arv1 + ve, V1)

He(asvs + vy + Vs, v3)

Hio(vs, vs)

Hia(vs, Ve)

His(agva + azvs + vy, va)

Hie(aave + agvs + vq, @ava + V3)

His(aava + Ve, 1 vi + V2)

Hao(asvs + v, Vi)

Hao(asvs + V4, Vs)

Hoa(arvy + v, vi)
(

Hag(a1vi + Vs, 1 V1 + Ve + vy)




Har(vs, asvs + Ve)
Hag(vs, ava + Ve)
Ha1(vs, cgvy + Vs)

Haz(vs, v1)
Has(Va, a1v1 + Ve)
Har(va, c1vi + vs)
Hao(v1, aava + V)
Ha1 (v, v + Vs)
Has(Va, a3vs + vs)

Has(Va, 0ova + v3)
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Has(v3, rvi + V)
Hso(vs, a1vi + vy)
Haa(vs, 02V + Vy)

Hsza(vs, va)

Hse(va, a1v1 + agvs + v4)

Hag(va, v1)

Hao(V1, aava + azvs + vy)

Hao (Vl,' V)

Haa(vy, 01y + v3)

Hag(va, va)

Har(va, v1).

We obtained 47 elements for the two-dimensional optimal system ©,, of which

only 31 will generate the appropriate similarity variables to reduce the CHM

equation to an ODE, and therefore yield group-invariant solutions. The actual

criterion for the existence of group-invariant solutions consists of examining

the rank of the matrix of the coordinate functions defined by each element H;.

More specifically, let 7.(&,n) be the general rank of the tangent map-

ping of the algebra element H;. This r.(&,n) corresponds to the dimension of

the orbits induced by H; in the base space (z,y,t, ¢). In addition, let r.(£) be

the rank of the mapping of H; in the space of independent variables (z,v,t).

Then, the condition for having a non-singular H-invariant solution is given by
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the relations
7"*(5777) <n, ’)"*(f) =T*(§)??)7

for each H;. Here n corresponds to the dimension of the space of independent
variables (for details on this condition see [Ovsiannikov 82]). The algebras
Ho, Hio, Hi1, Hia, Hoo, Hor, Hoo, Hoa, Has, Haz, Hsa, and the last five
elements of ©,, Hys thru Hyy, fail to satisfy the condition described above
for the determination of group-invariant solutions. They have been included

for completeness only.

To perform the reduction implied by all the remaining algebras, the
ones that satisfy the invariant solution condition, we need to construct the
invariants of the two subalgebras involved in each element of ©,. We start by
calculating the invariants of the first of the two subalgebras, by solving the
corresponding characteristic equations. Next, the second subalgebra is written
in terms of these invariants (which must be possible since the reduced equation
is invariant under this second algebra). The integration constants from this
second set of characteristic equations are then invariants of both subalgebras,

and define the so-called similarity variables.

As an example, consider the case of His(agvy + asvs + vy, a1 vy +v3).
The characteristic equations for the first element of the algebra, asve+aszvs+vy,

are

= === dp. (4.76)

From the integration of these equations we obtain the group invariants, which

are equal to the integration constants, given by

1
Cl=$, C'2=y——%t, 03=(p——t. (477)
as as
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The second generator is written in terms of these invariants,

0 ay O 1 0

V1 + V=01 — — ——— — ———. 4.78
V1 Vs 1801 as 802 as 803 ( )
Therefore the second set of characteristic equations is
dC dcC: dacC
o2 B (4.79)
(0%] as / as 1 / as
whose integration constants are the new similarity variables given by
a0, a 1
n=z+ 13<y__2>, C=p——y. (4.80)
as as a2

These new variables n and ¢ define the independent and dependent variables
respectively, which will reduce the CHM equation to an ODE. They represent
a combined boost in the z and vy directions and the respective shift of the ¢
field. This tfansformation of coordinates linearizes the bracket nonlinearity
and generates simple linear standing waves as the group-invariant solutions.

The reduced form of the CHM equation is:

¢ ¢
o TEg =0 (4.81)

where k is a constant given in terms of oy, ap and as. Integrating (4.81) yields

the solution

¢ = Asin(kY?*n+b) + D (4.82)

where A,b and D are integration constants, and 7, ¢ are given by (4.80) in

terms of the original variables.

Using other members of ©5 we can obtain all posible reductions to
ODE’s, induced by point transformations, of the CHM equation. Among these

reductions we distinguish families of solutions that characterize some special
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behavior. The first such family is the one that corresponds to monopole-type
solutions. It is obtained from the algebras Hj, Hy, Hs, and His. The typ-
ical characteristic of this reduction is the choice of an isotropic independent
coordinate, n = r = (22 + y?)'/2, which makes the nonlinear bracket automat-
ically vanish, as was pointed out in the previous section for single reductions.
Together with the transformation ¢ = ¢t we get the typical modified Bessel

equation as the reduced form of the CHM equation

¢ df
27 5 S 02 —
n an? +77dn n°¢=0. (4.83)

The general solutions of this equation are the functions Iy and Ky, the modified
Bessel functions of the first and second kind, which diverge as » — oo and
r — 0, respectively. In order to get a continuous localized solution we can take
K as the outside solution and match it with an interior soiution that remains
finite at = 0, in the same fashion as with the dipole solution presented earlier

in this chapter.

Another interesting family of reductions can be obtained by using the
elements Hay, Has and Hag, of ©5. These three cases provide the only genuine
nonlinear reductions of the CHM equation by means of the elements of ©O,.
They all correspond to stationary solutions, whose only explicit dependence on
time ¢ is through the shifted coordinate y' = y —v,t, (recall (4.2)). Ultimately,

they correspond to a “bracket equal to zero” type of equation.

For instance, take Hag(vs, a1vi + vg). The corresponding similarity

variables are

n=y, (= e, (4.84)



91

which immediately reduce the bracket to the form

3¢ d¢d¥

This nonlinear equation is a disguised form of a simple linear ODE of second
order. This can be easily seen dividing (4.85) by ¢? and noticing that the
resulting form can be written as the total derivative in 7 of a second order

linear ODE, as follows:

d (1d%¢
i (28) = )
which after an integration yields
d*¢

The solution to this simple harmonic oscillator equation (4.87) is given by
¢ = AeO™ 4 Bem(=O)'n (4.88)

which, depending on the sign of the integration constant C, will represent
oscillatory or exponentially decaying behavior in the variable y. If we consider

C > 0, then the form of the solution in original variables is
¢ = Ae™®/* sin(ky — vat]) (4.89)
which constitutes a localized travelling-wave solution propagating in the y di-

rection and decaying exponentially in the z direction.

The solution generated by Hay belongs in the same family of station-
ary solutions as the previous example, but with a slight generalization. In the

present case the similarity variables turn out to be:

2 ._
n= (1122 n y2) 1/ , C=0¢ eals arctan(z/y) ’ (4.90)
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and the reduction of the CHM equation is

B¢ dg(d\ | ¢d 1(d\® ¢d¢ 2
i (o) o3 (&) e 6o

Following the procedure of the previous example, we rewrite (4.91) as a linear

equation in the form

d (1d*¢ 1d¢ 1 )
— =+ + =0. 4.92
(C dn® * nCdn  odn? (492)
Integrating once yields
4% d¢
’Tld—n2+’l’]%+(gg—0n>(:—0. (4.93)

This equation can take different forms, and therefore solutions, depending on
the value of the integration constant C. For C = 0 we obtain an Euler homoge-
neous equation with solution ¢ ~ n™. For C > 0 we obtain a modified Bessel’s
equation with the monopole-type of solution already discussed in terms of the
function Ko, and for C' < 0 we will get a Bessel equation, which generates a
global solution. All these three cases require a5 to be a pure imaginary num-
ber, as = ias|. This represents a mild extension of the theory by allowing
the constants to be complex numbers. If we assume that this extension holds,
then we will get from the Bessel equation a new form of localized solution,
one proportional to Ji/jes), Which is finite for the whole domain R2. This so-
lution, in terms of plane polar coordinates defined from the original variables:

r = (z? +y%)?, 6 = arctan(z/y), is

0 2
¢ = Acos <| |> J1/las| (IO| Y ) (4.94)

It resemblances the form of the interior solution of the Larichev-Reznik dipole,

recall (4.32), but here we have a globally valid solution, with physically proper
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limits at » — 0 and r — co. Thus the matching problem is avoided and our
solution is C* everywhere. It describes a dipole-like structure that decays

slowly with the distance from the center r = 0.

Finally, the remaining reductions induced by elements of ©5 can be
classified in three different families: 1) Homogeneous wave equations, which
reduce to either the single harmonic oscillator or exponential decay depend-
ing on the value of the integration constants, 2) Euler homogeneous equations,
which have solutions composed of powers of the independent variable, and 3)
Inhomogeneous wave equations, leading to mixed type of solutions encompass-
ing the former two cases. As a typical example, I present below the reduction
implied by Hig(agva + V4, @1v1 + agvy + v3), which falls in the third category

above. The similarity variables induced by this subalgebra are
1 (6%}
n=2z—at, (=p——y+—t, (4.95)
ag Qo

which are simple translations of the coordinates and fields, and which are well-
known to induce travelling wave solutions. The form of the reduced CHM
equation is

%—A%:B, | (4.96)
where A and B are given in terms of the group constants as A = oy /(a;+1/as),

B = ag/as(0on + 1/as). The general solution of this equation is given by

¢ = etVan _ %7 +C, (4.97)

with C an integration constant. As can be seen, many of the group-invariant
solutions have a singular behavior and therefore may not satisfy physical bound-

ary or initial conditions.



94

Now we turn our attention in the next section to a more sophisticated
plasma fluid model, which in turn will represent a richer example from the point

of view of its Lie point symmetries.

4.2 Hazeltine’s Three-Field Model: Symmetries and
Reductions

In this section I present the results of the systematic application of the
Lie-Group techniques developed in the last few sections for the CHM equation,
to the three-field model of Hazeltine [Hazeltine 83], HTFM. The presentation
here is more concise, with emphasis on results rather than the method used
to obtain them. Further analysis will be given for some representative and

physically interesting cases in the following chapter.

HTFM consists of a system of five coupled nonlinear PDE’s that de-
scribe the evolution of the five fields U, ¢, J, zp and ¥, in three-dimensional
space and time. These equations are given by (2.105), (2.109), (2.110), and the
relations between vorticity U and the stream function ¢ and the parallel cur-

rent density J and the poloidal flux 2. Written out explicitly, these equations

are
e+ Ul + 52~ [, 1] =0, (4.99)
L [w, A~ (— - ) =0, (4.99)
X b o + 2 [, 0] =0, (4.100)
U_8_2§€_32_€0=0 (4.101)
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J—— -1 =0, (4.102)

where [f, g] stands for the usual Poisson bracket with respect to z and y (c.f.

Chapter 2).

Evidently, this system of PDE’s is substantially more complicated
than the CHM equation, both from the physics and mathematics viewpoints.
The base space is composed of the four independent variables ¢, z, y and z,
and the five dependent variables: U, ¢, J, ¥ and x. This means that the
Lie point symmetry calculations will involve a very large number of linear
coupled PDE’s, the so-called determining equations. Again, we take advantage
~ of the symbolic manipulation package SYMMGRP.MAX in MACSYMA to
calculate these determining equations and solve them explicitly, obtaining as
a final result the infinitesimals ¢¢ and ¢, which correspond to the generators
of the Lie point symmetries as was seen before. The general solution of thé

determining equations for the infinitesimals is

&t 2,9, 2,U,0,0,%,x) = c1—cst (4.103)
&t z,y,2,U,0,J,0,%x) = ft 2)+yh(t, 2) (4.104)
&z, y,2,U,0,J,90,x) = g(t,2) —zh(t, 2) (4.105)
&t z,y,2,U,0,J,%,x) = ca—caz (4.106)
¢'(t,2,9,2,U,0, L0, x) = @,U—Z% (4.107)
&t z,y,2,U, 0, J,00,x) = — % - x% - 2a%

— 3+ 9) o + B

- / %dz + as(z) + csp (4.108)
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¢'(t,2,9,2,U,0,J,%,x) = csJ +2% (4.109)
dg of
1/) — —_— — —
¢ (t,a:,y,z,U,cp,J,z/),X) C3'(p xaz—*_yaz
1,5, 5.0h
+5E +y) 5 +Ut2)  (4110)
Oh

*(t,z,y, 2, U0, 0,0, x) = csx+s(z) —2 (4.111)

FTR
where f, g, h and [ are arbitrary functions of time and the coordinate z, as in-
dicated, and the functions k(t), s(z) are arbitrary functions of their arguments.
The only constraint on any of these functions is that A(¢, z) has to satisfy the

equation
Ph_h_
oz 922

a one-dimensional wave equation for the function h(t, z), whose general solution

(4.112)

is h(t,z) = ht(2 +t) + h~ (2 — t), a superposition of waves of arbitrary form

traveling in opposite directions along the z-axis.

Therefore, the HTFM system of PDE’s is invariant under an infinite
dimensional Lie group of point transformations characterized by the set of ar-
bitrary functions mentioned before. This property distinguishes the present
analysis from the finite dimensional example of the last section, and opens a
wider range of possibilities for symmetry reductions and solutions. The in-
finitesimal generators of the algebra can be obtained by setting each of the
arbitrary constants equal to one while the others are set equal to zero and by
setting the arbitrary functions to zero as well. This procedure yields a three
dimensional subalgebra, which is the finite part of the full symmetry algebra,
for HTFM. By considering each of the functions mentioned above different

from zero, while setting the others to zero (including the constants) yields the
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remaining part of the symmetry algebra, the infinite dimensional component.

The final result is the following set of nine infinitesimal generators:

i

V3

V4

Vs

Ve

Vv

Vg

Vg

+J587 + w% + x% ,

) -y 2 4 A0S 0

g(t, z)agy + m%j}ézZ% — m%% ,

h(t, 2) (y% - x%) - 2‘9}7’(37;’ ?) % (4.113)

IETIY: }8h(t,z)£
{2(x +y°) + 20 ot 7y
Oh(t,2) (O |1 o 5 0

oz (26J+2(‘” V)55

Oh(t,2) 0
ot 9y’

I, z)% — (/ 81(;2z)dz> %, '

From the explicit form of the generators given above, we can derive the finite

transformations that leave equations (4.98)-(4.102) invariant under the group

action. This is easily done again by solving the initial value problem of Lie’s

First Fundamental Theorem. Recall (3.6) and (3.7) yield, upon writing only




the variables that are explicitly changed, the following transformations:

0 -
Vi=— = t=t+c¢€

ot
0
Vo= — = Z=2+F¢€
0z
0 3] 0 0 0
——ta—zg—-l-Uéﬁ-l- 6—+J—+'¢5"¢;+Xa
(t=te ¢
fzi=ze‘6
U=Ue
> (é:(‘pee
J~'=Je€
P = e
[ X = xe*
Vi = Fr Ea—ﬁ'ya—z‘% == <é=w—6y%§
i Y=1+eysl
j=1y+eg(t, 2)
8 890 g d y=yreg
Vs=gat+ T a- — T => ( §=pteryl
Oy at Oy 0z 0 {¢=¢—€5’3%§

Ve = hya—hm— 2——+ — 8J+§(x2—l—y2)

0 0 Oh @ Oh(f0d 1 0
Oy 8t U ' 0z oY

LTI }@i_ oh 9.
{2(:B MERRIESS &y by e

cos(he) + ysin(he)
zsin(he) + ycos(he)

98
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I I AT b= (1 9dz) e
V7—l(t,2)a¢ ( atdz) B = {J=¢+z(t,6zt)e

Vo= k(t)% — =g+ h(H)e
Vo = as(z)% + s(z)% = { ;g : ;?I;)‘(SZ()ZE)E
The first three transformations constitute the finite subalgebra of the system
(although we can consider three more finite symmetries contained in the gener-
ators vy, vs and vg, by rewriting them appropriately using a simple integration,
as we will see later) and correspond to symmetry invariance under translation
in time, translation along the z-axis and scaling of ¢, z and the five dependent
fields. The next six transformations are given in terms of six arbitrary functions

of their arguments and constitute the infinite dimensional part of the algebra.

From v, we obtain a generalized translational invariance along the
z-axis, with time and z dependence, together with some interesting generaliza-
tions of the usual Galilean and space translations that naturally couple with
gauge conditions of the potentials ¢ and 1. As expected, the gauge conditions
of the potential fields do not affect the value of the physical fields U and J.
Notice that this transformation includes the usual z-translational invariance
in the particular case of f=constant. For f equal to a linear function of time
we get a Galilean boost along the z-axis. These limiting cases are well known
symmetries of simpler models like MHD (see [Fuchs 91]). The next generator

vs corresponds to an equivalent invariance but along the y-axis.

From v we obtained invariance under time and z-dependent rota-
tions, with the rotation angle being proportional to A, a solution of the one

dimensional wave equation (4.112). This symmetry involves all five dependent
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variables: rotational transformations of the ¢ and % potentials, the correspond-
ing transformations impling a shift in the vorticity U and the parallel current J,
and a time dependent gauge of the perturbed plasma density x. It is interesting
to observe that the shift of vorticity and the gauge of the density field arise
exclusively from the time dependence of the A function. On the other hand,
the magnetic effect of the shift of the current density and the consistent change
in %, appear only as functions of the z-dependence in h. This means that the
magnetic effects under rotation are an explicit consequence of the model being
three dimensional, with z being the toroidal direction. This describes a helical
symmetric state where vorticity and toroidal current are generating “swirling”
around the parallel direction to the toroidal field. The limiting case h=constant
yields the usual rotational invariance in the perpendicular plane (z — y plane),

similar to the one previously studied for the CHM equation.

The last three symmetries vy, vg and vy, imply invariance under
different gauges of the potentials ¢, ¥ and the density field x¥. From v; we
have invariance under a time and z-dependent gauge change for ¢ and 7. The
case of vg implies a time dependent gauge change of the ¢ field alone. The last
generator vy, implies a z-dependent gauge change of the ¢ and x fields. All
these gauge symmetries are independent of each other, and will be used for the
symmetry reduction of the system under consideration. As was pointed out
before, because of the computer aided calculation of the symmetries, we can
rest assured that we have the complete group of Lie point symmetries allowed

by HTFM.

The essence of the Lie algebra, composed of the infinitesimal gener-
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ators, is given in terms of the commutator operation. In Tables 4.3 and 4.4,
I present the commutatioh relations for the nine generators of HTFM. The
algebraic information contai‘ned in the commutation relations constitutes the
basis for a classification scheme of group-invariant solutions for thel system in
question. In the commutation Table 4.3, and in the remaining of this analysis,
we have used uppercase calligraphic letters to denote arbitrary functions of the
same argument as their lowercase counterparts. Recall, the functions f, g, A,
and [, are arbitrary functions of (¢, z), with h constrained to be a solution to
the one dimensional wave equation (4.112). The function k depends on ¢ alone

and the function s depends on z only.

With this information we can study the adjoint action of the algebra
on itself, which will generate the optimal system ©; of order 7. Recall, this was
shown to give all the possible symmetry reductions of the system of differential
equations. It is important to notice that for the present case the space of inde-
pendent coordinates has dimensionality equal to four, and therefore we would
need to calculate ©3 in order to reduce the system to ODE’s, as was done with
the CHM equation. This procedure is rather involved and here I have chosen
to get as much information with the least amount of effort, therefore studying
only the consequences of using elements of ©; and ©,, which will amount to
single and double symmetry reductions of the number of independent variables,
respectively. For the case of three-dimensional MHD, Fuchs [Fuchs 91] calcu-
lated ©3 and ©4 and presented some reductions to ODE’s and to algebraic

equations for the ideal MHD system.

Following the construction of the adjoint representation given by the
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sum of the Lie series (4.39), we obtain the adjoint table 4.5 and 4.6 for the
symmetry algebra G° of HTFM. We can use this information to construct the

optimal system of first order ©;, which constitutes the basis of further analysis.

As was done before for the CHM equaﬁon, we calculate the first
order optimal system ©; by judicious applications of adjoint transformations
to a general element of the algebra v, composed of a linear combination of all
the generators of the algebra. What we obtain is a much simpler irreducible
form that can be used to reduce the number of variables in the system. By
considering all possible cases, we get a set of independent vector fields that
span the space of possible reductions. These are the elements of ©;. Below is

a list of all the elements of the first order optimal system for HTFM:

(a) V3

(b) a1vy + vy

(c) Vi GgVy

(d) Vo + agvg

(e) ve+ arvy+ agvs + agvy
(f) aava+ve +agvs +agvo

V4 1 agVg + GgVy

a7Vt + agvg + Vg

)
)
)

h) Vs + agVg + agVy
)
) arvy + Vg
)

V7
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Evidently, the last three cases, (i), () and (k), which deal with gauge sym-
metries of the fields, do not induce reductions of the number of independent
variables. However, all the remaining cases, (a) thru (h), do generate single re-
ductions on the number of independent variables and, although we are dealing
here with a four dimensional space of independent variables, in some instances
these single reductions can simplify substantially the form of the nonlinear sys-

tem of PDE’s. As an example, consider element (g) of the optimal system

above:
0 0 0
V4 + agvg + agVgy = f% — (ya—]; + agak — ags> 5;
of 0 ag O
+y$% + 285}? . (4.114)

Iritegrating the characteristics for this element yields the invariants that repre-
sent the new similarity variables for the symmetry reduction. The independent

variables are given by
m=t, m=Y, MW=2,
while the dependent variables are

0
G=U, C2=fﬂp+$<ya—{+asak—a93> , G=J,

C4=f¢“$yg—£> C5=fx—%$3-
The new independent variables are simply equal to three of the original inde-
pendent variables: t,y, z, while z is added to the potential fields ¢ and %, and
to the density field x as part of a gauge transformation that leaves U and J

invariant. The net effect of this symmetry transformation in the three field
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model equations (4.98)-(4.102), is to linearize the Poisson brackets appearing
in them. This is done by breaking the symmetry between the coordinates z
and y. Therefore, we are left with a linear system of five coupled PDE’s, which
is much simpler to analyze than the original nonlinear set. The form of the

reduced system is

g—fg — ;; <772g—7;c1 + agak(n) — 093("73)> g—g:
0 _mOf 0 _
o, o om (4115)
106 _, KO 10f 8
fom U fom  fromom Tt
10f 10 N
+F8—ma—m(m(a§5 —(2)) — ?%(0@5 —¢2) =0, (4.116)

o (1.\ 106¢( of B
o, (f<5> " Fom, (’”am F ek = e
ag 8 00a 003 M2 Of 0C3

130806 0 mOf 06 _ o 4117
o f20n,  Ons  f Ons One ( )
182%¢, .
G- 352 =0, (4.118)
10%¢,
1%y 4.119
(4.120)

where f(n1,ms), k(m) and s(n3), are arbitrary functions of their arguments and
ag, ag and « are arbitrary constants. Besides the freedom afforded by the pres-
ence of these arbitrary functions, which can be chosen at will to further reduce
the problem, we have reduced the number of independent variables by one and
also linearized a complicated system of PDE’s without making any approxi-
mations. The trade-off that has to be made to achieve all these advantages

is that solutions corresponding to the linearized system shown above won'’t
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necessarily be of physical interest. In many cases, group invariant solutions
describe asymptotic behavior of dynamical systems or constrained solutions,
which are valid only in a restricted region and describe physical situations near

a singularity. This is only known after the solution has been calculated.

The next chapter will be devoted to an in-depth exploration of sym-
metry reductions and solutions of HTFM, with emphasis on physical interpre-

tation and connection with the underlying ideas of plasma physics.



Chapter 5

Physical Interpretation of Symmetry Solutions

In the last chapter, symmetry group techniques were implemented
for two extensively studied nonlinear plasma fluid models, HTFM and its elec-
trostatic limit the CHM equation. By using the CHM equation as a working
example, we were able to see the benefits afforded by a thorough and system-
atic analysis of the symmetry reductions based on the use of the Lie algebra
associated with the generators of the symmetries. Following this program,
we obtained some analytical solutions and learned the fundamental principle
of succesive application of symmetries for multidimensional reduction of the

number of independent variables.

In this chapter we concentrate on the more general HTFM. The Lie
point symmetries of this model were calculated in the last section of the preced-
ing chapter and were shown to form an infinite dimensional Lie algebra. This
property of the underlying group makes the analysis of the present problem far
more complicated, but at the same time with an enormously richer structure

than the finite dimensional case exemplified by the CHM system.

Besides the actual calculation of different symmetry reductions, we
place special emphasis on possible physical scenarios for the calculated solu-
tions. Particular consideration is given to the two-dimensional limit of the

model and to the RMHD reduction of it, mentioned before. We will start out

110
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from the most general, three-dimensional case and later revert to particular

limits.

5.1 Hazeltine’s Model: Three-Dimensional Results
5.1.1 Extension of the Algebra

As noted above, a salient feature of the symmetry group calculated
for HTFM is the fact that the infinitesimals depend on arbitrary functions of
time and the space coordinate z (see egs. (4.103)-(4.111)). What this means is
that the corresponding Lie algebra is infinite dimensional, allowing for a wealth
of particular cases describing the three dimensional nature of the model and of

the corresponding symmetry solutions.

In order to compare with the finite dimensional case of CHM and the
simplified two-dimensional and RMHD limits, it is convenient to rewrite the
symmetries given by (4.113) in a more explicit form, extracting in a unique
way, the structure of simple translations and rotations included in the general
form of the generators v4, vs and vg. This can be done by formally integrating
out the known symmetries and expressing the result as a set of equivalent
“renormalized” symmetries, which still preserve the infinite dimensional nature

of the algebra.

More explicitly, consider the form of the generalized Galilean trans-

lation in the x-direction, given by the generator v4 in (4.113)

_ 0 Of(xt) 8 0f(zt) &
va=flzt)m —y—p, 50 TV 9, o (5.1)

Evidently, this generator contains as particular cases the following two very
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fundamental symmetries:

1) Invariance under translation along the x-axis. This symmetry is
obtained for the special choice f(z,t) = constant and has the infinitesimal

generator of the simple form

2) Invariance under a generalized Galilean boost in the x-direction.
This symmetry is obtained from the general case v4 by letting f(z,t) = n(¢),

yielding the following infinitesmal generator:

0 dn 0
V= n(t)a; - %% )
which reduces to the well-known simple Galilean boost t% - y—a%, when n(t) is

a linear function of time.

In order to extract the information contained in these symmetries we
have to formally integrate the functional dependence of f(z,t) with respect to
its arguments. This can be done as follows: First differentiate f with respect
to z and then define it as a new function of z and ¢, f*(z,¢t)

0f(z,1)

o f*(z,t). (5.2)

Then integrate the z-dependence, obtaining

flz,t) = / F*(z,t)dz + / n(t)dt,

where the last term is just a convenient way to write the arbitrary function of

t that comes from the integration in z. Next, we take the time derivative of
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the above expression for f, and integrate with respect to its time dependence,

yielding

fat)= | 86]; " dadt + [ i@yt + e (53)

This is just the function f(z,t¢) rewritten in a more convenient way, where
some of its features have been made explicit thru the integration constant
¢y and the arbitrary function of time n(¢). What this means is that each
separate function and constant of integration in (5.3) will represent a separate
symmetry of the system of PDE’s, when substituted in the place of f(z,t). The
constant ¢4 corresponds to simple translation along the x-axis, the function n(t)
corresponds to a generalized Galilean transformation in the x-direction, with
arbitrary time dependent coefficients, and the function f* corresponds to the
general case, excluding the two previous symmetries. Therefore, the generator

v4 can be replaced, without loss of generality, by the three symmetries:
' 0 7]
v, = 8 v, = (/n(t)dt) . yn(t)—,

III 6f
(// ddt) y( §d>—+f¢
where we have replaced f* by f(z,t) in the last generator.

If we follow the same procedure with v instead of v4 from (4.113),
we will end up with three symmetries equivalent to the ones presented above,

but describing invariance in the y-direction. Their explicit form is given by
; 8 " 0 0
v = Vi = ( / m(t)dt) 5 5,

(// gddt)——i— </agd>—(p— g;;
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where m(t) is an arbitrary function of time and g = g(z,t) is an arbitrary

function of its arguments.

The last function that we would like to consider under the present

scheme is the function h(z,t), related to the generalized rotational symmetry

vg in (4113)Recall tlrat 7i(z, t) is constrained to be a solution of a one dimen-
sional wave equation (4.112). Our goal here is to single out the invariance under
rotations in the z —y plane, contained in the form of vg when A(z,t) =constant.
This can be achieved by formally integrating the z and ¢ dependencies of the
function h(z,t), in the same fashion as was done before for the generator vy.
The end result is again a splitting of the general symmetry into three inde-
pendent symmetries covering all possible cases of the original generator. These

three symmetries have the form:

VI —_— .?__mﬁ
6= Yoz dy’

= (1 5o) i =o3) /2 -3
_< %dz) <%(w2+y2)+2a>£z+h(z t)( K 1(96 +y)aa¢>

where the function h(z,t) has to satisfy an integral version of the wave equation
constraint (4.112), given by

2
Oh, . dr(t) _oh

72T g T oz (54)
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What we have accomplished with this procedure is to expand the
number of basic generators, from nine to fifteen, for the representation of the
infinite dimensional algebra admitted by the three field model, therefore un-
covering a richer algebraic structure in the new representation, but most im-
portantly, separating a finite dimensional subalgebra that can be directly com-
pared with simpler models, like the CHM equation previously studied, and
whose algebraic properties have been thoroughly analyzed. All this has been
done without having to choose a particular case for the arbitrary functions
involved, and therefore keeping the freedom afforded by these undetermined

functions.

The extended finite subalgebra is given by the six generators:

I T SR )
1_8t7 2_82, v3_am1 4_8y)
0 0
5_ya ay)
0 0 0 0 0

They correspond to invariance under time and space translations, rotation
in the x-y plane and scaling of the five fields together with time and the z-

coordinate, respectively.

The extended infinite dimensional subalgebra for the system is given
by the generators v, vV, , Vs, Vs , Vg, Vs , listed above, plus the three gauge
symmetries: vr, vg and vy listed in (4.113). Notice that the six symmetries vy,
V3, V4, Vs, Vg and vg correspond to a three dimensional generalization of the

symmetry algebra G® for the CHM equation, with one of the generators, vsg,

being an element of an infinite dimensional algebra.
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In the two dimensional limit, the generalization of the algebra G8
stems not from the fact that we are dealing with a system described by ad-
ditional fields, but by the occurrence of the free time dependent function k(%)

involved in the vg generator

0

vs = k(t)5. (5.5)

If we consider the particular case k(t) = constant, we will have a six parameter
subalgebra isomorphic to the CHM symmetry algebra G°, and therefore with
known elements of the first and second order optimal systems, ©; and O,

derived in the last chapter.

However, since we are exploring the most general set of reductions
given by the infinite dimensional algebra for HTFM, we will try to keep the
functions of z and time ¢, which appear in the generators of the symmetries,
arbitrary whenever possible. Particular reductions and detailed comparisons

with lower dimensional systems will be left for later sections.

Now we proceed with the analysis of the extended representation of
the Lie algebra for the three field model, G'%, by following the procedure used
with the CHM equation in the previous chapter. First, we calculate the basic
commutation relations for the symmetry generators, which describe the prop-
erties of the infinite dimensional algebra and lead to the determination of the
optimal system through the adjoint transformation. The commutation table,
divided into three parts, Table 5.1, Table 5.2 and Table 5.3, is given below and
contains all the information that is needed to generate the possible symmetry

reductions of HTFM.
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As was pointed out before, the extended representation of the algebra
G'® used here enables us to study a variety of possible cases, some containing
exclusively elements of the finite subalgebra G® composed by the first six gener-
ators, (vi, Vo, V3, V4, Vs, Vg) (see Table 5.1). Some of the cases contain elements
of the infinite dimensional subalgebra composed of the generators vy through

V15, where we have made the following identifications for these elements:

m H

"
Vr=Vy, Vg=Vy, Vg=Vg,

m

n n
Vig=Vy, Vi1 =Vg, Vi2=Vg,

and the last three generators of (4.113) are

0 ol(t, 0
Viz = l(t, z)% —_ </ —(g-ti)dZ) %,

0
Vig = k(t>% ,

0 0
Vis = as(z)% + s(z)a .

These latter three generators can describe quite general situations in terms of
the free functions of space and time. Other mixed cases containing elements
of both the finite and infinite subalgebras are considered. In any case, as
we will see below, the set of possible reductions given by the elements of the
optimal system for G'° is larger, in a nontrivial way, than the set of reductions
calculated for the unextended algebra G° of HTFM (see the last section of the
last chapter). This could be understood as an indirect proof of the need for an
extended representation, which would extract véluable information from the

structure of the algebra that was hidden in the original compact form of G°.

Of course this situation arises in the context of an infinite dimen-

sional Lie algebra, where very few problems have been solved (see for example




118

‘pred 4810 “WALH JO ;5 ©1qe3[e AIjomImuAs oY) I0f 9[(e) UOTeNUIWO)) 1°G S[qE],

(&)™ 0 o 0 @m0 [
(o) ™ 0 0 0 0 (35) 7a— || (n)7a
(G%+%)™ o 0 0 (B (B)ma | @)
() 0 (@)fa— ()°ra 0 (3) = || )oia
AN.N&|MN+ ¥M|%©v TIA 0 AIV LA— A:v 6A Mﬁl@@v TIA— AM&|®©V ITA — AM&\VHH\V
(oop) ™ )8 0 (w)ma—- (5%5) a— | ()oa
(GRtwnes O 0o (G (Z)ea- (F)a- | (B)ea
A&,wv@v 8A (N)0Ta— ()7 0 0 Aﬁv sa— || ()V)sa
(e ) @ @m0 (@)ae (B)as | e
0 0 0 0 . A oA
0 0 ta— PA 0 0 A
0 eA 0 0 0 0 A
0 YA~ 0 0 0 0 €A
eA— 0 0 0 0 0 ea.
tA— 0 0 0 0 0 A
9A SA VA SA TA A __




119

“jred puooeg "¢ 5 viqesS[e A1jewiAs oY) I0] 9[qe} UOT)RINWIO)) 7'C 9[qR],

0 0 0 0 (9)a
0 0 0 0 ()7
0 0 0 0 (7)¢a
(w2 [ w+ :
pw L) 8a— (2L [ 6)ta— (2L fu+3pu [2L) 0ta (waff)ea | (u)%a
(2pb [ 1+ (zpH [ £+
(pws [ 1) 20— ZpH, [ 6) La— (#pu [ 1) oA z2pf [H)ea || (H)"A
0 0 (ww futwpuf )7 a—  (pw [HEa || ()a
(zp5 [ f+
0 0 (#pu [ 5) €1 zpf [B)Ea || (5)6a
(pw [ N+
wN [w)VA  (ipN [ b)ETa— 0 0 (V)8a
(zpb [ £+
(spw f 1) £~ zp [ 6) Ela— 0 0 (L)
(f + %=+
() o= (7% + 320) oa () *a— 1)t | oA
(w)8a— (6)2a— (u)ota (£)oa A
0 0 (u)7ia— (£)era A
Avaa\r Amvmﬁ>| 0 0 €A
0 M,m 6A 0 Wm LA CA
Asﬁ'ﬂ.v 0TA Mm 6A A“lWV 8A WW LA TA
(w)01A (6)6a (u)8a (£)a __




120

“yred pIry, “orf eIqeS[e A1joWIuAS o) IO 9[qe} UOIJRINUIWIO)) ¢°C 9[]e],

0 0 0 0 0 (9)s1a
0 0 0 0 0 (x)7ta
0 0 0 0 0 (7)8ra
0 0 0 0 0 ()era
0 0 0 0 0 VAL
(ap+ [ W+
0 0 0 ww [ 4) 8 (W [y) 4o (n)ora
(zpy [ 5+
0 0 0 (1p4 [ B) LA zpH [y) LA (5)oA
(4 [ N+
0 0 0 WN[4) A~ (1N [Y)6a— (V)8a
(zp£ [ u+
0 0 0 (ap4 [ ) 6a— zpy [ £) 68— || (L)t
(o) o= (aip) ™= (a+in) s (dp)@a-  (Betag)ma—| o
0 0 0 0 0 A
0 0 0 (4)8a (y)ia A
0 0 0 ALvoH>| Aﬁvm>| €A
A%v STA 0 MW €TA 0 ) 1A A
0 A%v Vip 0) &1 A%v TIA o) A A
_ A%Vm.ﬁxw Au\vwﬂ.\r Cvmfw A&vmﬁ.\r AQVHH\V __




121

[Salmon-Hollerbach 91] and [Won 90]) and our understanding of the theory is
still at a basic level. However, we know that for fluid models of plasma repre-
sented in terms of potentials (i, 1)) we are going to inevitably face the infinite
dimensional Lie algebra case, [Acevedo-Morrison 93] lending importance to the

present study.

We now calculate the adjoint representation of the algebra G5, that
will allow us to determine the linear combinations of generators spanning the
space of similarity solutions. Making use of the commutation relations showh
above we can calculate explicitly the adjoint table, Tables 5.4-5.7, which is
divided in four sections to present in detail the elements that generate the
optimal system. The operators D(e) and D' (€) represent integro-differential
operators whose form is too complicated to display in the table and unneces-
sary for the calculation of symmetry reductions. From the tables we can see
that the presence of the arbitrary functions of time and the space coordinate z,
(f,F,9,G,h,H,1, L), arbitrary functions of time only, (n,N,m, M,r, R, k, K),
and arbitrary functions of z alone, (s,S), enrich the algebraic structure under
consideration and will play an important role in determining most of the mem-

bers of the optimal system.

Following the standard construction of the optimal system of first or-
der, shown in the previous chapter, we obtain from the adjoint action associated

to G1° the elements of Oy:

(CI,) asVy + Vg -+ asgVs -+ agVg
(b) agvs + Vg

(c) a1Vy1 + Vo + Vs + agVvg + agVy




122

qred 9sarg “A((*a3)dxe)py
o[qrey yuolpy G 9qe],
(1) oUT, “WALH JO ;5 ®Iqad[e oI oY1 JO SI09RIAUAT 9] I0] 9[(
squesaxdor A1qus ([“1

QT
e AHV STAD 4 CA A (9)
YA €A tA MWM £TA5 4+ Ta AQV €A
. zZQ N.> —
YA A AW«MV Fras + Je .
P a-  [PAE).a- () | (ea
[8A](3)q + A [Ta](G)a — A
[6a](3) e/ [£A] va\glm A%v TiA> 4+ %A AI@@V TAs + T || ()T
[2a](@)q + 7A [6a](3)@ — Ea e n Am,ww 01A3 + TA || (3v)0a
A (W)7tas + €A . ) 30 605 4 Ta (5)6a
o1 €A Ahv 6A3 4 A 5e o
€
(V)7ias —7a N (28) v +en () rao+1a | (£)a
JETAS A oA ¢ A, A
Ah\\. gA N>wl® MP ; N
YA ZA
— 3800 €A N
2UIS A 4380074 sUISTA m>w S ZA HM en
TA N ZA . Za
TA A A
€ A
A A ] TA TA
YA €A

A L _pv |
A

€A

YA




123

e 0995 ‘N
ALH jo
d pu H JO o5 ®©Iqe8[e oI o) JO s103eI0Us3 91} I0J o[qe) Jurolp q
0PV “G'G 9l9eL

(u)%a D
(u)sa (f)ta AMMNU Ta> — A "N
: (u)8a (f)a A % VIAD — %A N ()sTA
o1a]() a—[Baled)a 6 QNMm + wlm“ €TAD — 9A (x)7ia
[54](),@— e)a-iela A&wsvmﬁwu _9a MM (77t
[LAl(T — (0)@) — (W)Ea  [5A](3) @ — [ Amwﬁl ()%
(v [u+ ! “AlG)a &wmv A — %A g
. A
wul W)+ (Wi ([ )T~ () (5) O | (spv [ W) A — ()i
AN\NQQ_\..\LI vap A — 9A C\<.vw>w B z2
(2pu [ B) €1ad — z@ SA
5) £1a3 — (u)8a 2pf [ B) €1A> — (f)a Omlmvm+ (495 [ 52) AL+ (w)ota
. umwv 6A> — 9A (5) s — m.?u
(u)3a ()i g (N NVE) AL (5)6a
A;wﬁv 8A2 — 9A C<.v3>w+m>%+
()ea (f)a AHQN._. (#p£ [ £7T) E" 4 (V)ea
5 A:vw>ﬁ+w~?m (f)iA,, = Wwwv LA3 — 97 (£)8 ApT
urs (u)0TA — 5500 (u)8A  >ws Qv@m._jl un+£ P 9A £) wu + A (£)4A
(u)7TA3 + 8A : (Fyeras Amoom £)ia on A N
() M> (£)a i 9A . “A SA
(1% (f)iaze o °a ¢>w o A
ks S5 (yinm s 9492 e oA
(u)sa o TAS + 9A A A
(£)2a 9A A Ia
SA
[ pv




124

"4red payT, “IWALH JO o5 ©1qeS[e or] oy} Jo s10ye1pued oy} 10§ 9[qe) JUIo[PY :9°C 9[qe],

(y)Tra
(y)Tra
(y)rta
(y)Tra

(y)Tra
(v 1) y) 1al+
(v [y) 242 — (y)Tia

(205 [ of +2p.f [ B) F1a5+

(of )25 — (y) 1A
Gﬁ\\/\..\, *mv mH>|+

AEV 0TA
AEV 0TA
AEV 0TA
Fa](3) @ + ['A]e)a
[4a](3) @+
[6a] (x — (®)@) + Ot

AEV 0T A

AEV 0T A

(pw [ N+

@y (5
(60 (0)¥ia
(0)°a (7)ia

[La](@) @+ [AlG)a@ || (A)%a

[LalG) @+ [AlG)a || (H)Ta

(6)° ()oa

(6)6a (B)sa

(6)583 + (11)Tia PN Jw)Vias — (w)0ta  (3pyv [ 6) €Tas 4 (6)6a || (NV)Ba
(2.6 [ £ +zpL [ 6) TaS+ (2pb § £+
(,6)6A2 + (y) VA (ppw [ £) €TA> + (w)0TA  zps | 6) €15 + (6)6A (£)4a
ASH;? 0;.120,0 (w)ota; +2249 Amvm>ﬁ+£n+£ 3 %A
(y v:,\r > urs (w)8A + wmooA )0IA  ous (6 vtwl_.umoo (6)6A SA
(y)eras+
(1) 283 — () 1A (w)ota (6)6a A
()eras+ |
(y)oa3 + (y) 1A (we)7TA> — (wr)0TA (6)¢1A5 + (6)6a €A
(y)Tta 2.9 (w)0TA (6)6Aze e 2 eA
ASH;%lw Asvo;m%lw (6) m>m%|w A
(y)T1a (w)0Ta (6)a L_pv




125

“4red Mo WALH JO 5 ©Iqa8[e o] 91} JO s109eI0ULS Y} 10§ o[qe) Juolpy : N.m 9qe],

(s)<1A (3)7ta (DEra (4)%ra (9)1a
GELN (3)7a (DEa (4)IA (y)7ra
(s)TA (3)7a (DEta (4)tA (7)8a
(s)ta (3)7a (DEra (4)%rA ()%
(s)Ta (9)7a (nEa (4)era (H)'ra
()T ()71 (DEa (apwy [ 4) 843 — (4)2Ta || (J)0%a
(s)1A (3)7a (DFta (s [ 5)Lad — (4)%a || (5)6a
(s)Ta (3)7ta (DEra (4ur)0Ta3 + (4)eTA RS
(s)sta  (y)71a (NEa (psf vmv vma + (4)%1A fm?
A%vm.ﬁ? Aw\vﬂxr vaH.P A&vNH\r SA
’ AL\V EKVWI
(5)era ()7ia (1)ra (4)842 — (4)eTA A
(4)7ta+
(s)e1a (3)7Ta (DEta (4)0TA3 + (£)eTA 2
mﬂ?%lv Av\viby Cvma?%lw A&vmﬁ»\r m?
(5)1a  (4)7A 2 (1)laze o (4)%raze 3 A
| (8)Ta  (y)7a (nEta (4)%1a | pv




126

(d) a1Vi + Vg + agvs

(e) Vo +a3V3 -+ agVy + a12Vi2

(f) Vi azVvs + ai5Vis

(9) @svs+anvi + via + a13Vi3 + G14Via + G15V1s
(

h) a3zvs+ agvs + a1oVig + Vi1 + a13viz + a1svis

(1)  asvs+ agvy + agvg + Vi1 + a13Vig + a15Vis
(5)  asvs+agvy+arvy + agvs + Vi + a15Vis
(k) azva + aqVy + a7y + agvs 4 Vo + a15Vis

() agvs + a4Vy + arvy + Vg + a15Vis
(m) agVs -+ a4V + V7 + a15Vis \
(n) a3Vs + Vis

(0) V3

(p) a13V13 + Vig

(9) Vi3

which yield, by definition, all the possible single reductions of the number of
independent variables of the system, leading to solutions not connected by a

group transformation.

Comparing this list of seventeen elements of ©; for G'° with the equiv-
alent list for G° (composed of ten elements) given at the end of the last chapter,
we note that there are some additional elements of the optimal system arising
from the explicit choice for the coefficients of the three generators: generalized
Galilean transformations along x and y, and generalized rotational invariance

in the x-y plane, that otherwise would be impossible to generate as particular
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cases of the reduced representation of the algebra, G°. Therefore, our extended
algebra G'°, has a richer algebraic structure that brings out some properties
that were hidding in the compact form of the original representation, G°, help-

ing us discern new potential reductions of the syétem.

This result supports the argument that our extension of the number
of fundamental symmetries for HTFM, with the construction shown at the
beginning of the present chapter, is a nontrivial new representation for the

elements of the associated Lie algebra.

5.1.2 Single and Double Reductions

Now we turn our attention to some explicit reductions of HTFM. In
order to accomplish this task, we make explicit use of some elements of the opti-
mal system of first order, ©;, shown above, and elements of the optimal system
of second order, ©9, whose construction is based on the previous knowledge of
©; and the properties of the algebra contained in the commutation tables. Re-
call this was shown in detail for the CHM equation in the last chapter. The
common denominator of the single and double reductions is the fact that they
generate a three and two dimensional base space, respectively, from the original
four dimensional space of independent variables (z, v, z,t). In general, the new
similarity variables will involve the three space coordinates and time, making
the symmetry solutions of the reduced system time dependent and fully three

dimensional.

Consider first the simple reductions of HTFM, those of equations
(4.98)-(4.102) that are induced by element (f) of the Optimal system ©; shown
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above, and the corresponding element of ©4, Hg ‘given by
He (V1 + agVs + a15V1s, V4 + Q15Vis) - (5.6)

The physical motivation for this example becomes clear if we recall the reduc-
tion of the CHM equation that lead to the Larichev-Reznik dipole solution,
eq. (4.32). In that example, invariance under time translation combined with
space translation along one of the axis, yielded a similarity variable corre-
sponding to a moving frame along the invariant direction. In the present case,
element (f) of ©; also includes translations in time and space, v; and vs, re-
spectively, plus an additional 2-dependent gauge transformation of the fields ¢
and x. Therefore, we should expect some travelling wave solutions under this

reduction.

Starting with the single reduction induced by element (f) of Oy, we

obtain the new independent variables
T =% — ast, m=Y, | =2z, (5.7)
and the new dependent variables
G=U, GQ=p—aass(z)t, G=J, G=v, = x —ais8(2)t, (5.8)

which yield, upon substitution into the HTFM equations, the following set of

equations:
g_@ + G2 +asma, Gl =[G, 3] =0, (5.9)
s
9(¢e — afs) 04 _
8—773—038—7714‘[@*0!(5, G4 =0, (5.10)
%s + [C2 + asna, C5) — [Ca, Ca] + [a1sm1, s(ms)me] = 0, (5.11)

ons
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G 0%, _
W“l‘a—n%—gl—@, (5.12)
¢ 0% .
W+a—?ﬁ—4},—0, (5.13)

where the brackets are the usual Poisson bracket in terms of n; and 7.

From eq. (5.11) we can see that the net effect of vi5 is the inhomo-
geneous term written last in the equation. The easiest simplification, and the
closest to the CHM reduction mentioned above, is given in the limit when a5
vanishes. In this case the dependent variables (s and (5 are reduced to ¢ and x
respectively, as is seen from (5.8). Thus, the difference of egs. (5.9) and (5.11)
yields

[&2+asme, G —Cs) =0, (5.14)

which has a general solution given by

C1— G = F($2 +azma), (5.15)

where F is an arbitrary function of its argument. This relation together with
eq. (5.12), which gives (7 in terms of {3, imply that we can eliminate ¢; and (s

in favor of (5, obtaining
(s =V — F(Ca+ asms) - (5.16)

Also, notice that eq. (5.10) can be cast in the following form

ou
oy T Gl=0, (5.17)

which has the generic form of the nonlinear parallel gradient B- VU ~ ol /0z—
[¥,U] equal to zero. The new variable U is defined by

U= —aV3+asgn + aF (G + azna) . (5.18)
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Depending on the form of the free function F one can make I/ proportional to
the vorticity field ¢; = V?(y, or to a more complicated combination of both
the fields U and ¢ = {;. The simple choice F = —1/a({s + aszn;) implies
U= —a(; = —aV2{,. Finally, eq. (5.17) couples with the equation obtained
from adding eqgs. (5.9) and (5.11), yielding

V¢,
ons

— [¢a, V2] + [G2 + aama, V2] = 0. (5.19)

Equations (5.17) and (5.19), together with the definition of U, eq. (5.18), repre-
sent a set of two nonlinear PDE’s for the fields (5 and {4, and even though they
are still quite difficult to solve, we have achieved a substantial reduction from
the original set of equations by using some of its simplest symmetries. However,
considering the fact that they still depend on three independent variables, and
-we have a substantially large subalgebra of the original system that we have not
yet used, we propose taking a further symmetry reduction that will eliminate
another of the independent variables and obtain a system of equations in two

variables related to element (f) of ©;.

The most general element of ©, that can be derived from element
(f) of ©; is given in eq. (5.6). In order to obtain the corresponding similarity
variables for the ensuing reduction, we need to determine the invariants of the
first element of the two dimensional algebra in Hg, vi + azvs + a15v1s, which
we just did while calculating the single reduction shown above. The invariants
are given by egs. (5.7) and (5.8). Then we write the second element of the
algebra, v4 + a15V1s, in terms of these first invariants. Finally, we determine
the invariants of the transformed second element, which will yield the similarity

variables corresponding to the double reduction. Following this program we
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obtain from Hg

m =2z — ast, Mo =12, (5.20)

as the new independent variables, and

G=U, (=¢—as(z)(osy+ast),

43 = J) (4 = "pa CS =X S(Z) (a15y-{— a’15t) ’ (521)

as the new dependent variables of the double reduction. This particular case
linearizes the HTFM by reducing the brackets for {; and {5 to linear functions
and making all other nonlinear terms zero. The final form of the reduced

equations is

8{1 | 8{1 _ % _

as B, + as( 2)04158771 Iy 0, (5.22)
0 0C | 0
% on  Om aaﬂz ( )
o 0 0 0

a38—?§i + a158(72) (aa—i - 8—5?) - 5_572— = a155(72) (5.24)

PG .
8_77% - (=0, (5.25)

0%(4

5 0= (5.26)

If we eliminate the fields {3 and (3 in favor of {; and (4 respectively, by means
of egs. (5.25) and (5.26), and substitute into (5.22), we notice that we can

integrate twice with respect to 7y, yielding the following:

(as + aass(ng)) g_fyj — %% = Fi(ma)m + Fa(n2) (5.27)

where Fy and Fy are arbitrary functions of 7;. Following the same line of

thinking, if we substitute (3 from (5.26) into (5.24) and integrate with respect
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to 11, we obtain

32
(ag + cass(n2)) &5 — cuss(me)e — G _ a1ss(m2)m + F3(ma),  (5.28)
57718772 .

where F3 is an arbitrary function of 7,. This equation gives a simple relation
between (5 and the other two remaining fields ¢, and 4. The remaining equa-
tion (5.23) coupled with egs. (5.27) and (5.28) yields a linear system of PDE’s
that can be written as a single fourth order linear PDE for one of the fields by
substituting subsequently the other two fields. The general form of this single

PDE, when written in terms of (4 is

8244 84(;4 oy 83C4
—A
5771 a3 ( )37713772 as (77 )5771 577
, 2, 0% i 00 ‘
— A*(ng )a >+ AA (n )—772 = B(n2) + C(n2)m, (5.29)

where the functions A, B and C are given functions of s(72), Fi(7s), and
Fy(ng). Although eq. (5.29) is still a complicated linear PDE, we have made
great progress from the original nonlinear system of PDE’s. In particular, if we
recall that « is a physical parameter such that in the RMHD limit o = 0 and
the second and third terms vanish, A becomes equal to a constant which cancels
the fifth term, and B and C become proportional to Fy and Fj, respectively.

The end result is

260G 32(4
3 (9771 3772

which represents a one dimensional inhomogeneous wave equation with the

= Fy(ma)m + Fi(n2), (5.30)

velocity of propagation equal to a3, and 7, = 2z taking the place of time. The

solution to the homogeneous equation is simply

Co = Arf(m — asmg) + Asg(n + asme), (5.31)
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which is the well-known general wave solution, where 4; and A, are constants
and f and g are arbitrary functions of their arguments. Depending on the form
of the functions F; and F; we could obtain a general solution for the complete
inhomogeneous equation. In any case, from the homogeneous problem we learn
the type of behavior that we can expect under the present reduction. It de-
scribes a perturbation moving in the poloidal direction x, that at any fixed time
changes its form as a function of the toroidal direction z. Of course (5.29) will
correspond to a generalization of this wave-like behavior with the characteristic
velocity depending explicitly on z. This reduction generalizes previously found

particular solutions using other more intuitive methods [Prahovié et al. 92].

5.2 Two-Dimensional Limit

A natural simplification for HTFM, given the complicated nature of
three-dimensional systems presented above, is to take the two-dimensional limit
of (4.98)-(4.102), where we drop any dependencies on the z coordinate. Such
configurations still represent some interesting physics particularly when refer-
ring to a helical symmetric state, whichis two-dimensional. The big advantage
from the symmetry reduction point of view is the fact that we will be getting
systems of ODE’s by simply using elements of the optimal system of second
order ©4, which generates double reductions in the number of independent

variables from a base space of order three, (z,y,t).

Exclusion of the z dependence reduces the number of degrees of free-
dom in the problem and also reduces the number of free functions appearing

in the symmetry generators. A computer aided calculation using MACSYMA
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shows that the two dimensional system admits an infinite dimensional Lie alge-
bra with eleven basic generators in contrast to fifteen generators for the three

dimensional case. The explicit form of the infinitesimal generators is

) )
1_815’ 2_8ya
=2 Vo= 2
3_8t) ‘ 4_a¢7
vs= 2 ve=yo—al
5_8X’ G—yax xay)
B 9 9 8 ., 5.0
vy = 2tyam+2tacay+48U+(x +y)a€0, (5.32)

0 0 0 0 0 0
Vg—ta—U%—(p%—Jgj— %—Xa,

0

V9=f(t)"5;,

Vio = (/g(t)dt) (;% - yg(t)%a

v = ([ r)ae) -c% + xh(t)% ,

where f, g and h are arbitrary functions of time. We have again found in-
variance under translations in space and time (vi, v, v3), a constant gauge
invariance for the fields ¥ and x (v4,Vs), invariance under rotation in the
perpendicular plane (vg). The symmetry given by vv, representing invariance
under a time dependent rotation, is a reminiscent of the generalized rotations
encountered in the three dimensional case. The generator of dilations, vg, is
the two dimensional limit of the one used before. The time dependent gauge
for ¢ (vg) is the same as before, and the generalized Galilean invariance along
x and y, given by (vig, v11), are just two dimensional limits of the ones used

before.
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Notice that ﬁhe first five generators form an abelian subalgebra, and
the first six generators together with vg constitute the largest finite subalgebra
(dimension 7). Upon making use of these properties and the adjoint action
explained before, we can calculate the elements of the optimal system of first

order, ©4, given by

(a) agVe + Vg + a11Vi1 .

agvs + arvy + Vg + agvo + G10Vio -
agVvs + a4vy + a5Vs + V7 + a11vig .
(d) V3 + a4V4 + a5Vs .

(e) a4V4 + a5Vs + Vg -+ agVy .

(f) Vi agve+agva+ asvs + aovio -
(9) vi+asve+asvs + aoVio + a11via

(h) Vo4 asvs—+ asvs + aiovio + a11vii -

(1) a4V4 + asVs + Vip + @111y -
(4) agvy + asvs + viy .

(k) a4V4 + a5Vs + Vg.

(7) G4V4 + Vs.
(m) Vy.

The direct use of any of the above elements, except for the last three, will lead to
a single reduction in the number of independent variables of the system. Since
we are interested in double reductions that reduce the two dimensional HTFM

equations to a set of ODE’s; we will use an element of the optimal system of
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second order, O, to illustrate the kind of results that can be obtained for such

a complex system.

Consider element (c) of the optimal system of first order given above,

in the case a3 = a4 = a5 = a;; = 0. The corresponding element of ©, is
H (V7, QgVe + Vg) , (533)

where we have used the commutation rules of the algebra. For the sake of
simplicity consider the particular case where ag = 0. Then, we first calculate
the differential invariants corresponding to vy

Cr= (2?2 4+, Cy=t, Co=U-— %arctan <—CyE> ,  (5.34)

2

T +y2

Co=p— arctan(%), Cs=J, Ce=1v¢, Cr=x, (5.35)

and using this information we write the second element of the algebra, vg,
in terms of the invariants of the first one, and integrate the corresponding

characteristics, yielding
n=Ci= @+, (5.36)

as the single independent variable, and

C]_ = 0203 = tU — 2arctan (%) s Cg = 0205 = tJ, (537)
24,2

(o= CoCy =t — z -;—y arctan <%> , G=CCs=t1), (5.38)
(s = CoCr =1y, (5.39)

as the new dependent variables. Under this transformation the HTFM system

of equations becomes

1 dé

¢ 2d¢
2" dn

ta-15 =0, (5.40)
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‘jlc‘* +204=0, (5.41)
nig’ +2¢;=0, (5.42)
il:—?f;'i'%i—%— 1 =0, (5-‘43)
%277% %j—% - (=0, (5.44)

where the second and third equations are identical and readily solvable. The
reason for the decoupling of the {4 and (s fields is due to the fact that their
mutual Poisson bracket vanishes which is equivalent to take the o = 0 limit.

Substituting ¢; from (5.43) into (5.40) yields a simple equation for {, given by

d® &°C d*¢s g _
3 2
o G I =0, (5.45)

This is an Euler homogeneous equation with solutions
(o =A+ Bn*+Cn72, (5.46)

where A, B, and C are constants of integration. The solution of (5.41) and

(5.42) is also a power of n

G=Din"?, {s=Dan?, (5.47)

where Dy and D, are constants. The solution for the other two fields {7 and (3

is given by egs. (5.43) and (5.44), respectively.

The solution presented above corresponds to a case where the density
perturbation field decouples from the dynamics of the other fields, which is the
case in the RMHD limit. This will be the subject of the next subsection.
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5.2.1 The RMHD Limit

As was discussed in chapter 2, when the coupling constant o vanishes
in the HTFM, we recover the RMHD equations for plasma evolution. In the
three-dimensional case these equations provide physical insight into the solu-
tions of the more complicated HTFM equations. However, as was shown in
the last section, the two-dimensional limit provides the fastest route to obtain
analytic solutions, by taking advantage of the elements of the optimal system
of second order acting on a three-dimensional base space. Another interesting
feature of two-dimensional RMHD is that it admits an additional symmetry
than its HTFM generalization. This fact shows again that a system of differ-
ential equations derived from a parent system by symmetry reduction or any
other method, might contain additional symmetries that were hidden in the
original one. What this means is that at every level of the symmetry reduction
we can start a new symmetry calculation from scratch, and not only work with
the symmetries that were inherited by the reduced system. This problem has
been studied and conditions have been found for some families of ODE’s (see

[Abraham-Shrauner-Guo 92]).

The eleven generators for the two-dimensional RMHD symmetry al-

gebra are given by

w=2 —
' 8z’ ‘ 2T oy’
V3—ﬁ’ V4 2‘)
ot o)
9,9
5_ya$ ay)
_ o 9, 9 5 o 0
V6—2ty8m thay 48U (z +y)6’g0’
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5 K2 0
0 5 3 0 6
0
V9=f(’5)%,

o (f508) -0

v = ([ ner) 5 + wh(t)% ,
where f, g, and h are arbitrary functions of time. The new generator vy
corresponds to a scaling symmetry involving the two space coordinates and the
two potentials 1 and . Notice that vg, another scaling symmetry, is different
in nature from the corresponding symmetry of the two-dimensional HTFM (see
vg in last section). In this case, we have a scaling that involves time, space and

the two physical quantities U and J.

As an explicit example of a group invariant analytical solution, let us

consider the following element of ©,:
H(Vll, V7) . (549)

The first element of the two dimensional algebra v;; corresponds to a general-
ized Galilean transformation in the y direction. The second is the new scaling

symmetry discussed above.

In order to combine the action of both symmetries, we need to deter-
mine their differential invariants and obtain the resulting similarity variables.
During the analysis, we will try to keep the arbitrary function of time, h(%), as
general as possible. The characteristic equations for the first generator vy, are

ay de
TRdE ~ zh(D)’ (5.50)
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which generate the six differential invariants

Cl:t) O2=$) C_f:,((?ty_
C4=¢’ C5=U) OG=J

Now we write the second generator vy in terms of these invariants, yielding

0 0 0

=Cga, T Gga; T 2045,

(5.51)

From the corresponding differential invariants, we derive the following similar-

ity variables

Ci=t=n, (5.52)
&= Thaat— 5 =G, (5.53)
G=5%=0C, (5.54)
Cs=U=(s, (5.55)
Co=J =4, (5.56)

which define the new independent variable for the reduced system 7, and the
new dependent variables {1 — (4. Given the simple form of {3 and (4, and the
fact that the new independent variable is equal to time, the Poisson brackets
involving U and J will vanish identically. Then the vorticity equation takes

the simple form

d

% _y, ‘ (5.57)
which implies the vorticity U is constant in time. The other evolution equation,

the parallel component of Ohm’s law, becomes

46 _ o hln)
dn [ h(n)dn

G2, (5.58)
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whose exact solution is given by

G=c( [ hnddn) - (5.59)

This function {, is proportional to %, recall (5.54), and therefore we have
obtained an exact solution to RMHD. The other variables will be found by
analyzing the Laplacian relations between J and 9, and U and ¢, which reduce

to the algebraic relations
Ca=2(s, G3=—2C1. (5.60)
If we write all these results in the original variables, we get

U=c, ' (5.61)

__h(®) 2
0= Thit )dt C (5.62)

e
( ) . (5.63)
J=2 ( / h(t)dt> , (5.64)

where ¢ and C are two constants of integration and h(t) is an arbitrary function

of time.

In order to obtain a physical picture of this analytical solution, it is
necessary to recall the relation between the potential fields and the physically
measurable velocity and poloidal magnetic fields. The electrostatic potential
or stream function ¢ is related to the flow velocity through the relation V =
v4% X V1. The poloidal magnetic field is given by Bp = V1% X 2. From

these definitions we obtain

— __h(®)
V, = —mx, (5.65)
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»> - -
B 1

Figure 5.1: Velocity flow and magnetic field lines for the X-point solution of
RMHD.

_ _h®) -
V;J = ny +Cx ,: (5.66)
By = —2¢(f h(t)dt)’z. : (5.67)

This corresponds to a flow around an X-point with a time dependent magnetic
field. The function A is arbitrary and can be made proportional to a harmonic
function of time. Then as the field oscillates with strength varying in the
position z, the plasma flows in along the z-direction and flows out along the

y-direction (For more detail see figure 5.1).

This example shows how we can solve the system of nonlinear PDE’s

regardless of the boundary conditions and at the end try to understand the
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physical picture corresponding to the actual solution. Following this method a
number of interesting new solutions have been obtained. It will the subject of

future work to explore further reductions and solutions.



Chapter 6

Conclusions and Future Directions

Lie group methods for solving differential equations have been imple-
mented to study the solution space of systems of nonlinear PDE’s that describe
the fluid evolution of plasmas. One of the main features of Lie’s techniques is
the applicability to a wide range of equations regardless of their order, type
of nonlinearity, or integrability, making these techniques an important tool for

analytical study and solution of complicated physical systems.

From the family of plasma-fluid models derived in Chapter 2 we have
found that the typical nonlinear term of this description is of the Poisson
bracket type. Therefore the solutions found in Chapters 4 and 5 represent
a case study of this type of nonlinearity, an ubiquitous feature in fluid descrip-
tions of continuous media. In many instances we have shown that the Poisson
bracket nonlinearity can be linearized through a nontrivial symmetry reduc-
tion of the number of independent variables, thus providing a much simpler

equation to be solved.

In general, Lie group invariant solutions often do not satisfy initial
or boundary conditions pertaining to a particular physical situation. However,
if one has an initial condition near one of these solutions, since the equations
are local, due to the fact that we are dealing with PDE’s, the solutions for the

physical initial or boundary condition will behave like the symmetry solutions
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away from the singularities. This situation is often seen with soliton solutions

when the solution is near a localized travelling wave.

The local nature of the symmetry solutions, like the one found at the
end of Chapter 5 for RMHD, suggests that perhaps it is possible to “stitch”
together several of these solutions in a manner similar to the procedure used to
construct the modon solution for the CHM equation. This will be the subject

of future work.

Of course, the great number of potential reductions for the three
dimensional HTFM, implied by its infinite dimensional Lie algebra G'°, has
only been explored on the surface. The construction of ©s-optimal system of
third order, would imply symmetry reductions to ODE’s that promise to yield
a number of interesting analytical solutions. This will also be pursued in the

future.

So far, we have based our study exclusively on Lie point symmetries
for the plasma-fluid systems, which are just the simplest geometrical symme-
tries consistent with Lie’s original idea. However, as was mentioned in Chapter
3, there exist more general symmetries involving not only transformations of
the dependent and independent variables but higher order derivatives of the
dependent variables as well. This concept defines what are called “generalized
symmetries”, which constitute an extension of Lie’s work and have been found
in early work by Noether on variational symmetries and conservation laws. The
plasma-fluid systems that we have considered seem especially suitable for study
because of their Lagrangian and/or Hamiltonian nature, leading naturally to

the concept of their generalized symmetries. In this direction, little progress
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has been made, particularly because of the difficulty in calculating the gener-
alized symmetries. This requires more powerful computer programs than the
ones used for Lie point symmetries. This is another area that needs to be
explored, using the newest computer manipulation programs, which we believe

will yield new conservation laws and integration schemes for fluid systems.

In summary, the present work has demonstrated the use of an im-
portant tool for analytical solution of systems of PDE’s. Lie’s methods are
still being developed and we believe will be more widely used and shown to be
of practical relevance. The solutions obtained represent some interesting local
behavior of plasmas, and can be used for instance to test computer codes for

numerical simulation.
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