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Abstract

‘ Differentially rotating disks are subject to the axisymmetric instability for perfectly
conducting plasma in the presence of poloidal magnetic fields (Balbus & Hawley 1991).
For nonaxisymmetric perturbations, we find localized unstable eigenmodes whose eigen-
function is confined between two Alfvén singularities at wg = w4, where wy is the
Doppler-shifted wave frequency, and ws = kyua is the Alfvén frequency. The radial
width of the unstable eigenfunction is Az ~ w4/(Ak,), where A is the Oort’s constant,
and ky is the azimuthal wave number. The growth rate of the fundamental mode
is larger for smaller value of ky/k,. The maximum growth rate when ky/k, ~ 0.1
is ~ 0.2Q2 for the Keplerian disk with local angular velocity Q. It is found that the
purely growing mode disappears when ky,/k, > 0.12. In a perfectly conducting disk,
the instability grows even when the seed magnetic field is infinitesimal. Inclusion of the
resistivity, however, leads to the appearance of an instability threshold. When the resis-
tivity n depends on the instability-induced turbulent magnetic fields 6B as n({§B2)),
the marginal stability condition self-consistently determines the a parameter of the

angular momentum transport due to the magnetic stress. For fully ionized disks, the
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magnetic viscosity parameter ap is between 0.001 and 1. Our three-dimensional MHD
simulation confirms these unstable eigenmodes. It also shows that the o parameter
observed in simulation is between 0.01 and 1, in agreement with theory. The obser-
vationally required smaller ¢ in the quiescent phase of accretion disks in dwarf novae

may be explained by the decreased ionization due to the temperature drop.

Subject headings: accretion, accretion disks — hydromagnetics — instabilities — plas-
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1 INTRODUCTION

In conventional accretion disk models (e.g., Shakura & Sunyaev 1973), the o prescription of
the viscosity is adopted. In this prescription the component of the stress-energy tensor 7w,
is equated to aP, where P is the pressure, which may include the radiation pressure. The
Twe component contributes to the radial angular momentum transport. Thus the viscosity
parameter « determines the time scale of the evolution of accretion disks.

In dwarf novae, bjr fitting the theoretical and observed durations of the quiescent phase
and the bursting phase, it is suggested that « is of the order of 0.1 during the bursting phase;
that on the other hand, a is about 0.02 in the quiescent phase (Cannizzo, Shafer, & Wheeler
1988). Since the molecular viscosity cannot provide such a high rate of angular momentum
transport, various models of anomalous viscosity have been pushed forward; the convective
turbulence (Lin & Papaloizou 1980; Kley, Papaloizou & Lin 1993), the global hydrodynamic
shear flow instability (e.g., Papaloizou & Pringle 1984; Drury 1985; Goldreich, Goodman, &
Narayan 1986; Kato 1987; Glatzel 1987), and the hydromagnetic turbulence (e.g., Eardley
& Lightman 1975; Ichimaru 1977; Pudritz 1981; Kato 1984; Kato & Horiuchi 1985, 1986).
Although the hydrodynamic shear flow instability has been studied extensively as a possible
mechanism of generating turbulence in accretion disks, its contribution to a was shown
to be only O(107%) in geometrically thin Keplerian disks (Kaisig 1989). Another model
of angular momentum transport is the magnetic braking due to the emission of torsional
Alfvén waves along large-scale poloi&al magnetic fields in star forming regions or in active
galactic nuclei (Mouschovias & Paleologou 1981; Uchida & Shibata 1985; Shibata & Uchida
1986; Uchida et al. 1991; Stone & Norman 1994). In this paper, we will concentrate on the
angular momentum transport inside the disk and will not consider the exchange of angular

momentum between the disk and external medium.



In hydromagnetic models of turbulent viscosity, the angular momentum is transported
inside the disk by the magnetic stress incurred by fluctuating magnetic fields. Balbus &
Hawley (1991) pointed out the importance of the local magnetic shearing instability on
the generation of fluctuating magnetic fields. When a differentially rotating gas cylinder is
threaded by sufficiently weak poloidal magnetic fields, it becomes unstable against axisym-
metric perturbations, undulating the magnetic field lines (Velinhov 1959; Chandrasekhar
1961). When the disk is perfectly conducting, the maximum growth rate of this instability
is of the order of the angular velocity of the disk €2, even if the strength of the magnetic
field approaches 0 (Balbus & Hawley 1991). Although the local stability analysis by Balbus
& Hawley (1991) was questioned by Knobloch (1992), the normal mode analysis by Kumar
et al. (1994) showed that unstable axisymmetric eigenmodes exist. Nonlinear ideal MHD
simulations (Hawley & Balbus 1991, 1992; Hawley, Gammie, & Balbus 1994) also confirmed
the presence of this robust instability. In the local incompressible limit, Goodman & Xu
(1994) found an exact solution of the axisymmetric magnetic shearing instability that grows
exponentially in the nonlinear stage. The resulting predominantly toroidal magnetic field
can also be subject to nonaxisymmetric magnetic shearing instabilities (Balbus & Hawley
1992; Vishniac & Diamond 1992; Hawley et al. 1994) andother’ parasitic instabilities (Good-
man & Xu 1994). By adopting the shearing coordinates (Goldreich & Lynden-Bell 1965)
which has conventionally been used to study the amplification of global nonaxisymmetric
waves in differentially rotating disks, Balbus & Hawley (1992) numerically showed that per-
turbations can grow significantly even when unperturbed magnetic fields are purely toroidal.
Hawley et al. (1994) showed by three-dimensional MHD simulations that the two channel
flow (Hawley & Balbus 1992; Goodman & Xu 1994) created by the axisymmetric magnetic
shearing instability breaks up by nonaxisymmetric effects.

In Sec. 2, we develop the theoretical framework for modes in the presence of shear flows.

We show that nonaxisymmetric unstable eigenmodes exist in differentially rotating mag-




netized disks. The origin of these eigenmodes is the trapping of Alfvén waves between two
Alfvén singularities where the Doppler shifted wave frequency equals to the Alfvén frequency.
These modes we find are distinct from those by Balbus & Hawley (1992), which were global
noneigenmodes. Our linear theory finds that the instability now has the threshold with
respect to the magnetic field strength in the presence of a small but finite resistivity. On
the other hand the presence of finite viscosity does not change the qualitative behavior of
the instability. The growth of turbulent magnetic fields due to this instability and its effect
on anomalous resistivity are pronounced and discussed in Sec. 3. Even when the original
resistivity is small enough to allow the instability, the enhanced resistivity by the instability-
induced magnetic fields can lead tc; the stabilization of the instability. The strength of the
fluctuating magnetic fields and the resulting magnetic stress are determined by applying the
marginal stability theory (e.g., Manheimer & Boris 1977). In Sec. 4 we carry out three-
dimensional MHD simulations of magnetic shear flow instabilities. These results on unstable
parameter regimes, growth rates, eigenmodes etc. are in a good agreement with our linear
theory of Sec. 2. The nonlinear evolutions observed in Sec. 4 such as the turbulent state,
saturation level, the magnetic viscosity etc. are in a reasonable agreement with our nonlinear

theory of Sec. 3. The astrophysical implications are discussed in Sec. 5.

2 LINEAR STABILITY ANALYSIS
2.1 Basic Equations

Since the compressibility is not important for magnetic shearing instability (Balbus & Hawley
1991), we assume an incompressible fluid for simplicity. The basic MHD equations in the

frame rotating with angular velocity € are
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and

V.-v=0, ' (3)

where v is the kinematic viscosity, 7 the electric resistivity, g the gravitational acceleration,
and r the position vector. Other symbols have their usual meanings. We assumed that 7
are v are spatially uniform.

We use the local Cartesian coordinate (z,y, 2) in the rotating frame where z-axis is in
the radial direction, the y-axis in the azimuthal direction, and the z-axis is parallel to 2.
The uniform velocity shear v, = —2Az is assumed, where A is the shear rate, which equals
to 3Q2/4 in a Keplerian disk. We neglect the gravity in the z-direction.

Theoretical approaches to the mode growth in a system with a velocity shear depend
on the ratio of the shear scale-length L, and the relevant wavelength L,. For the global
spiral pattern in galaxies whose wavelength is much longer than the shear scale length (s =
L,/Ls > 1), the WKB method is not appropriate. Goldreich & Lynden-Bell (1965) studied
the growth of the spiral mode in self-gravitating gas disks by assuming the dependence
é(z,t) = ¢(t) expli(ks(t)z + kyy)], where ky(t) = kz(0) + 2Akyt. Since ¢(z,t) only depends
on ¢ along the line y = —k,(t)x/k,, the perturbation describes a long-wavelength mode along
the direction swinging from the leading side (¢ = —o0) to the trailing side (¢ = oo) with
the fluid. The amplification factor of perturbations imposed at ¢t = —oo can be obtained by
time-integrating the linearized equations. Balbus & Hawley (1992) followed this technique
to study the growth of nonaxisymmetric perturbations in magnetized accretion disks. They
showed that the growth of the swinging perturbation can occur not only for disks with
poloidal seed magnetic fields but for disks with purely toroidal seed magnetic fields. Similar
technique has been applied by Miller et al. (1994) to the velocity shear stabilization of the
toroidally coupled ballooning mode which limits the plasma 4 in tokamaks, and by Fogglizzo
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& Tagger (1994) to the velocity shear stabilization of the Parker instability, a sister mode of
the ballooning instability. Note that for these modes, too, s = L,/Ls > 1. Since the eikonal
is time dependent, the solutions by Goldreich & Lynden-Bell (1965) are not eigenmode
solutions. The temporally growing modes in this category are often said to be convectively
unstable. They do not, however, have eigenmodes.

When s = L,/L, < 1, the WKB method may be used to determine the response to a
localized fixed-frequency excitation of a shearing plasma (e.g., Tajima et al. 1991; Waelbroeck
et al. 1994). It should be emphasized that unstable eigenmodes can exist even if the velocity
shear is significant. One such example is the drift acoustic wave instabilities in the presence
of sheared flows where exact eigenfunctions have been obtained (Waelbroeck et al. 1992).
Another example is the nonaxisymmetric hydrodynamical shear flow instability in accretion
disks (e.g., Papaloizou & Pringle 1984; Drury 1985). In nonmagnetized, nonself-gravitating
differentially rotating disks, spontaneous growth of nonaxisymmetric modes occurs by the
overreflection of waves at the corotation resonance where w/k, = v, (Drury 1985; Goldreich,
Goodman, & Narayan 1986; Kato 1987). When the disk has a reflecting edge on the same
side where overreflection occurs, the disk becomes unstable. By imposing the appropriate
boundary conditions, several authors have obtained standing, growing modes as solutions
of the eigenvalue problem (e.g., Goldreich, Goodman, & Narayan 1986; Kato 1987; Hanawa
1987; Glatzel 1987). When unstable eigenmodes exist, they will eventually dominate over
* transiently amplified waves. '

In this paper, however, we are interested in localized instabilities and their subsequent
turbulence that are not influenced by the disk edge boundaries. These determine the local
property of plasma transport such as the angular momentum transport, i.e, the problem of
the viscosity of differentially rotating disks. Thus we adopt the eigeﬁmode analysis formu-
lation suitable for localized insﬁabi]ities. Note that in the presence of shear flow localized

modes show strong wave absorption characteristics and deviate sharply from sinusoidal be-



haviors and that thus a simpler and more naive local Fourier analysis is not adequate or at
least only approximate. On the other hand, such problems as the global pattern of spiral
arm magnetic fields need the temporal domain formulation mentioned earlier and are not in

the scope of the present paper.

2.2 Formal Solutions of the Initial-value and the Eigenvalue Prob-
lem

The stability of rotating disks can be studied by linearizing the basic equations around the
equilibrium state and looking for solutions of the form @(x, t) expli(kyy + k22)]. The Laplace

transform of the perturbation, ¢(z,w), is employed
= % Tt
Ba,w) = [ dtde @
for Im(w) > 0. Let the basic equation take the form
) _
T2 + L@, )3 = I(a,u). )

The initial condition enters through the function I'(z,w). This equation may be solved in

terms of Greene’s function,
G(z,%,w) = [p,(2,0)_(F,w)H(z - %) + ¢,(Z,w)¢_(z,w)H(E — 2)]/D(w).  (6)

Here ¢, and ¢_ are the solutions of the homogeneous equation vanishing at +-o00 and —oo
respectively, and H(z) is the Heaviside step function. These ¢, and @_ are the standard
eigenfunctions in the standard eigenmode analysis (Waelbroeck et al. 1994). D(w) is the
Wronskian of these solutions, D(w) = &, (z,w)$_(z,w) — ¢,.(z,w)$_(z,w). Having intro-
duced Greene’s function in Eq. (6), we can show that this analysis can be useful even for the

cases where no eigenmode exists. The solution is
_ 00
Bo,w) = [ d8G(z,3,w)0(E,u),
—o0
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and the response as a function of time ¢ is then

Bty = o [ due™B(a,0), @

27 oo+1ic

where the Laplace inversion integral extends over the contour lying above all the singularities
in the integrand. Equation (7) can have temporally growing solutions even if there is no
eigenvalue and eigenfunction to Eq. (5). In fact the global spiral modes of Goldreich &
Lynden-Bell are such a case. Still this formal solution of the initial value problem through
¢, and ¢_ is equivalent to the temporal formulation by Goldreich & Lynden-Bell (1965) if
we assume the functional form @(x, t) = ¢(t) exp[i(k,(0) + 24k, t)z].

Unstable eigenmodes occur when the Wronskian has a zero in the upper complex w
plane. It means that the solution vanishing as £ — —oo is proportional to that vanishing
as & — 00, or that there exists a globally well-behaved solution. The latter constitutes the
standard eigenmode problem. In the below we consider the localized eigenmode problem, as
discussed here and will find exponentially growing localized eigenfunctions. Such modes are
distinct from the temporal domain modes discussed by Balbus & Hawley (1992). On the
other hand Balbus & Hawley (1991) treated no radial eigenfunction structures.

2.3 Eigenmode Solutions of the Wave Equation

In this subsection we derive the wave equation in differentially rotating magnetized disks and
solve the eigenvalue problem. In the unperturbed state, the density, pressure, and magnetic
fields are assumed to be uniform. By assuming that v, = v, = 0 in the unperturbed state,

the unperturbed momentum equation is
g+2vox 2+ (2 xr)x 2=0. (8)

We further assume that B, = 0 in the unperturbed state. We linearize the basic equations

and look for eigenmode solutions of the form ¢(z, t) exp[i(k,y + k. 2)] according to the above



discussion. The Laplace transform of the momentum equation and the induction equation

are
—iwgV — 2AT,7 — 2V X Q — (]ing +V (E:; + %) — vV = ¥(z, 0), (9)
and
—iwgb + 245,57 — (BV)¥ — nV?b = b(z, 0), (10)
where
wag =w+ 24k, (11)

is the Doppler shifted frequency, b, ¥, and 6p are Laplace transform of the magnetic field,
velocity, and the pressure perturbations, respectix?ely.

Substituting these results into the Laplace transform of the continuity equation V-v =0
yields the initial value equation

dx

d*v
wiwh, —= + LA kywnw?,

n 771 dx?

+ [— (kB2 + k2)wiwy, — 8A’k2wiw2, + K2 kowd (w2 + Aw? /D B)] T = '(z,w) (12)

where
v S PR
Wy = wg + “7(]% + kz de)) (l3)
wy = wg+w(kl+ k- -C%), “ (14)
and
W2, = wpwy — W5 (15)

Here Qp = Q — A, k = 2(Q0Q5)Y/2 is the epicyclic frequency, and wy is the Alfvén frequency

. _ (k-B)?
Wa= 4mp

= kijv. (16)

The initial condition enters through the right-hand side of Eq. (12).
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First, we consider the case when there is no dissipation (n = v = 0). The homogeneous

part of Eq. (12) reduces to the second order differential equation as

wZ + Awi/QB
(wi — wh)?

It is noted that in the presence of shear flows the eigenmode equation such as Eq. (17)

dv, = 4Awik, du,
dr?  we(w? —w?) dx

8A%k2w)

) =0 0

+ Kk2k2

+ |- (k2 +k2) -

does not take the self-adjoint form anymore. Thus the eigenvalues w are not guaranteed to

be real or pure imaginary. We express Eq. (17) in terms of

_ 2Akyx
==

3 (18)

as
d*7, 2w’ dv,
d€?  wa(wi—wj) d¢

Lo (i k) (ea) 24 (=) W Wi+ Awd/08]
+[ (1+Q) (2A) wﬁ(w?i—wﬁ)-}- 24 q (W2 — w)? Ty =0 (19)

~ where

k2
=z, 20
1= (20)
This differential Eq. (19) has two singularities at wy = £wy4. These are the shear Alfvén
singularities where the absorption and mode conversion of Alfvén waves take place (e.g.,

Ross et al. 1982). The locations of Alfvén singularities in the complex plane are

£a=+1— Z(:JZ (21)

By applying the Frobenius method around wg = Fwy (or £ = £4), and solving the indicial

equation, we find that the exponent s in the series expansion

56 = 3 aalb — £

becomes complex. Thus the solutions which pass through these points are singular (called

regular singular points). The corotation point wg = 0 (or § = —w/w4) appears to be also
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singular in Eq. (19). However, by solving the indicial equation, we find that the solution is
regular at the corotation point.

The solutions of Eq. (19) which vanish as £ — 00 have an asymptotic form
T, o< exp[F(L + 1/)wat/(24)]. (22)

We now numerically look for eigenmodes whose eigenfunction connects these asymptotic
solutions. At the numerical boundaries at £ = +5, we impose a boundary condition 7/, /7, =
k=, where k- are negative and positive solutions of the quadratic equation given by inserting
the functional form 7, o exp(k+z) into Eq. (19). The eigenvalues and eigenfunctions which
satisfy these boundary conditions are obtained through the shooting method.

Figure 1 shows examples of eigenfunctions 7, for the Keplerian disk (A4/Q = 3/4) when
wa = 0.1Q and ¢ = 0.01. The solid curve and the dashed curve represent the real part
and the imaginary part of the eigenfunction, respectively. Figure 1a is for the fundamental
mode, and Figure 1b is for the next nodal mode. Since the eigenvalues are pure imaginary
(w = 0.069Q: for the fundamental mode, and w = 0.036€% for the next nodal mode) in
these cases, the eigenfunctions are symmetric (or antisymmetric) with respect to £ = 0. The
eigenfunctions are confined between two Alfvén singularities located at £ = +1 where the
Alfvén waves vanish. The standing growing mode appears between these singularities. The
distance between these resonance points is Az ~ wa/(Ak,). When the unperturbed field is
purely toroidal, we find Az ~ va/A ~ (va/Cs)(Q/A)H, where H is the thickness of the disk
and C, is the sound speed. Thus when v4 < C;, the mode is localized in the radial direction
with the mode width small compared to the disk thickness. When the unperturbed magnetic
fields have poloidal components, Az is proportional to kj/ky. In such a case, the standing
wave can have a large radial extent for nearly axisymmetric perturbations (k, < k). The
purely toroidal field is a special case in which Az is independent of ¢ = k2/k2.

Figure 2 shows the dependence of eigenvalue in the Keplerian disk on wg and g. When
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purely growing mode exists, we find two unstable branches, which correspond to the fun-
damental mode (the upper branch in figure 2) and its next nodal mode (the lower branch
in figure 2). These two branches merge at wy = wy,, and form complex eigenvalues with
Re(w) # 0. Recall that the differential equation with shear flows is not self-adjoint. The
dashed curves show the real part of the eigenvalues. The maximum growth occurs when
wy ~ . When g = 0.01, the maximum growth rate of the fundamental mode is ~ 0.2€2.
This value is less than a half the maximum growth rate of the axisymmetric magnetic shearing
instability. The reduction of the maximum growth rate for nonaxisymmetric perturbations
is interpreted to arise from the radial confinement of the mode. The growth rate of the
modes decreases with increasing q. We find that the purely growing mode disappears when
g > 0.015. Although unstable modes with complex eigenvalues still survive, their significance
will be less than the purely growing mode partly because their growth rate is lower. Thus
we expect that unstable eigenmodes whose azimuthal wavelength is much longer than the
vertical wavelength will become dominant.

In the regime where wy <« 2, the growth rate of the fundamental mode is roughly

proportional to w4 and we write the growth rate as
v = fl@wi- (23)

The proportionality coefficient f(g) is a decreasing function of ¢ and f(g) ~ 0.5 when

g ~ 0.01. With dissipation, corresponding expressions with 7 and v can be derived.

2.4 Local Dispersion Relation

Here we compare the shooting code results in Sec. 2.3 with the local (Fourier) dispersion
relation. By replacing d/dz in Eq. (12) with ik, in a region around z = 0, the local dispersion
relation is reduced to

wf,(w,,wy —wi)? - wz(wg + Aw} /QB) + (8A%qy — 4Ageyiwn)w] (wows — i) =0,  (24)
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where w} = rk2k2/k%, k? = k2 + k2 + k2, gy = k2/K?, and ¢uy = koky/k?. For axisymmetric
perturbations (k, = 0) in a nondissipative disk (n = v = 0), Eq. (24) reproduces the local
dispersion relation derived by Balbus & Hawley (1991). In such a perturbation, unstable
modes appear when w? < (A/Qp)w?.

When the unperturbed magnetic field is toroidal (B, = B, = 0), the approximate so-
lutions of Eq. (24) in the regime |y| ~ w4 < wr yields the growth rate for a disk with

n=v=0as

A 24 0 2A4\?
2 _ [ —— _ _|__B_ T — 2 2
i 2Qg [1 qu\/l 4<1 Q)q (Q) g ]wA' (25)

In the Keplerian disk, purely growing modes appear only when ¢ < 2/9. This result is
qualitatively consistent with the numerical results of the eigenmode analysis discussed in

Sec. 2.3.

2.5 Threshold of the Instability

First, we consider a case where the unperturbed magnetic fields are purely poloidal (B, =

By =0). The criterion for the instability for axisymmetric (k, = 0) perturbations is

A
(W4 +nvk)? + w2 Pkt - —@wi) < 0. (26)

When 7 = 0, we have seen that unstable modes appear for weak magnetic fields which satisty
B2 < 47p(A/Qp)(k?/k?). There is no instability threshold for B, from below, as B, = 0+
satisfies this condition (Balbus & Hawley 1991). Note, however, that when B, = 0 there is
no instability.

When 7 # 0, however, there is a critical value for B,

QB 7]2k4
ch = 47rp (7) -7{;3—, (27)

below which the second term in the left hand side of Eq. (26) is positive. We now find that

the Balbus-Hawley mode is stabilized for sufficiently weak seed magnetic fields or sufficiently
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large resistivity. Such a threshold does not appear when 7 = 0 even if v # 0, and thus we
conclude that the kinematic viscosity does not play an essential role for the stabilization of
the Balbus-Hawley mode, but the resistivity does.

Next, we consider the toroidal field case. Approximate growth rates may be obtained
by solving the local dispersion relation (Eq. (24)). Figure 3 shows the growth rate when
k.H = 2n(A/Q)(Cs/va), k.H = w, ¢ = 0.01,0.025 and v = 0. Here k, is equated to the
width of the unstable eigenfunction. Thin curve and thick curve show the growth rates of
the purely growing mode for 7 = 0 and = 10~*C,H, respectively. Comparing the growth
rates for n = 0 with the eigenvalues in figure 2, we find that the local dispersion relation
gives reasonable estimates of the eigenvalues. The coincidence with the shooting code result
occurs because the purely growing modes are localized between two Alfvén singularities (see
figure 1).

When 7 # 0, unstable modes disappear when wy is below a threshold. The threshold for
the upper branch is w4 ~ 0.05Q when ¢ = 0.01. This threshold is close to that determined

by equating the nonresistive growth rate (y ~ kyv4) with the resistive damping rate (nk?).

3 MAGNETIC FLUCTUATIONS AND VISCOSITY
IN ACCRETION DISKS

When charged particles, electrons in particular, move in stochastic magnetic fields, their
orbits (or streamlines) in such fields become diffusive. This diffusiveness may arise both from
the field aligned directional motion and from that perpendicular to the field. Such diffusive
orbits may give rise to effective scattering of electrons and thus to effective resistivity. In
general such fluctuating magnetic field effects can be incorporated by a quasilinear theory.
Thus the resistivity becomes a function of fluctuations (§B2) as 7 = n({6B?)) in a generic
expression. As concrete examples of such an expression, we employ one by Ichimaru (1975)

and one by Horton, Tajima & Galvao (1984) in the following. Although details of their
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theories and thus their formalisms are different, a common nonlinear feature exists, as both
theories have the quadratically nonlinear 6B dependence of 7.

Although the collisional resistivity 7o of the disk is small to allow the instability, the
enhanced (anomalous) resistivity 7 due to magnetic fluctuations becomes large enough to
saturate the instability when the turbulence sets in. Thus, the strength of magnetic fluctu-
ations is determined near or at the marginal stability dictated by this anomalous resistivity
when the unstable hydromagnetic modes are robust. The concept of the marginal stability
has been invoked to fusion plasma problems (e.g., Manheimer & Boris 1977; Tajima et al.
1994) and magnetic diffusion problems during the star formation (Norman & Heyvaerts
1985). When the governing instability is (magneto)hydrodynamic and encompasses many
mode surfaces, the system can reach a quasisteady state by making it close to but slightly
above the marginal stability (To be precise, the small deviation away from the marginal
is determined by the input rate of energy to the disk such as the binary star mass injec-
tion etc.). Otherwise, large scale “vortices” exerting strong modulating influence on the
background shear profile can be quickly transported away (intermittent burst and returns
to a quasi-steady state). In this way the level of magnetic fluctuations is self-consistently

determined once the global conditions of the disk are given.

3.1 Anomalous Resistivity Model 1

First, we adopt the resistivity expression by Ichimaru (1975),

1= 5= (3) T =/ i (Pl ). (28

41
where o is the electrical conductivity, m the mass of ions, n the number density of electrons,
(|6?|(k,w)) is the spectral intensity of the magnetic fluctuations, and ky is the component
of wave vector parallel to the mean electric current. This expression has been used to

model the magnetic turbulence in accretion disks by Ichimaru (1977) and Kato (1984). The
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three-dimensional computation of Hawley et al. (1994) and ours in Sec. 4 indicate numerous
x-point like structures in the nonlinear stage of the magnetic shearing instability. When the
plasma is fully ionized (n = n.), we set p = n.m. As we have shown in Sec. 2.3, the magnetic
fluctuations generated by the magnetic shearing instability are highly anisotropic such that
kZ < k2 ~ k2. The mean electric current is predominantly in the z-z plane because we find
the toroidal component of magnetic fields dominate over the poloidal component once the
instability sets in.

By assuming that the magnetic fluctuations have a spectrum peaked around Kmax, and

by denoting
(6B%) / e (5% (Kuma, ) ) (29)

we obtain
-\ 1/2 2
1=(3) / Wlmc'; (%) _ (6B%), (30)
where (k2 /k3)max is evaluated at k = kppax.

Since magnetic fields induced by the magnetic shearing instability eventually dominate
over seed magnetic fields, we equate B2 to (6B?%) to evaluate the saturation level. The
saturation level of magnetic fluctuations can be determined by equating the growth rate 7
of the instability with the anomalous resistivity damping nk?. By using Eq. (23) for v and
Eq. (30) for 7, we obtain

nenty = () (k;f) ( )f< ) (3)

where X, = n¢/n is the ionization rate. The factor k /K k2 is unity for purely poloidal field.
For cases with a purely toroidal field kf/kZ = ¢. In the marginally stable state ki t/k2 is
between g and 1 because the magnetic fields are already perturbed.

As the disk plasma is close to the marginality, the magnetic viscosity parameter ap =

—(6B,6By) / (4%,0082) may be approximately written by using the linearized momentum
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equation (Eq. (9)) and linearized induction equation (Eq. (10)) with n =v =0 as

_ (6B?%) ~ <% 32
OB = e dnemCE [ (98,2 5B, ) ’ (32)
O ((@@)) + ((B)) +1
where
% . _29')’ + ('}'2 + w,%l — 4AQ) (ky/km) (33)
6B./ 7+ wh + 20y (ky/ k=) ’
and , |
@ _ _q1/2 (v? + wi) (ke /Ky + by /e +24/7) (34)
6B, 72+ wh + 2Qy(ky/ k=) '

When deriving these equations, we replaced d/dz by ik,. This local approximation is accu-
rate to the extent we showed in Sec. 2.5. The notations (§B,6B,) etc. denote the spatial
average.

The instability-induced velocity fields also contribute to the radial angular mementum
transport. The viscosity parameter corresponding to the Reynolds stress p (vyvy) due to this

instability is expressed as

o= 3t = oo (3 oy 2
where ' _
<:—Z> — <g§z> + 2—74. (36)

Since ky < kg, we can evaluate as

<5By>N —2Qy N—2f(q)1/2 <Q)
§B.]  P+uwi  F@+1 \wa/’

and

6B.\ ke

0B, k,
When f(q) ~ 1, ky ~ kz, wa ~ Q, and X, = 1, the magnetic viscosity ap is a third of the
magnetic fluctuation (§B?) /(4nrn.mC?), and a, ~ (24/Q — 1)ap.
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In Table 1, we show the dependence of ap and «, on the shear parameter A based on
this Model 1. When the poloidal field is dominant (k{/kZ ~ 1), the magnetic fluctuation
(Eq. (81)) is maximized when ¢ = 0. The functional value f(g) is approximately given by
Eq. (24) as f(q = 0) = A/(Q— A). The magnetic fluctuation level is determined by assuming
that k% ~ k2 ~ k% and X, = 1. The maximum growth rate v = A and the corresponding
wa [wi = A(Q + Qp)] are substituted into Egs. (33), (34), and (36) to determine ap and
0n. When the toroidal field is dominant (kf/k7 ~ g), the magnetic fluctuation level is low
when ¢ < 1. By eigenmode analysis, we find that for a wide range of the shear parameter
A, the function ¢f(q) is maximized when ¢ = guax ~ 0.01. We show gmax and gmaxf (¢max)
in the second and third column of Table 1(b). The magnetic fluctuation level for initially
toroidal field case is determined by assuming k% ~ k2 ~ k2 ~ k?/2 and X, = 1. The
maximum growth rate of the purely growing eigenmode and corresponding w4 are used to
determine ap and a,. The ratio of the wavenumbers k,/k, is determined from the width of
unstable eigenfunction as k, ~ 2w Ak,/wa. When both the toroidal and the poloidal fields
exist (¢ < kf/k2 < 1), the magnetic viscosity will be between the values listed in Table 1(a)
and Table 1(b).

3.2 Anomalous Resistivity Model 2

Next, we adopt the resistivity expression by Horton, Tajima, & Galvao (1984). They con-

sidered turbulent electron (and fluid) motions, which gave rise to electron diffusion as

2k, (6B?)

—_—— 37
pogp (37)

For the representative mode which contributes most to the right-hand side of Eq. (37), we

obtain

14 Jl SR B E (38)

2.7

When the growth rate «y is proportional to B according to Eq. (23), nk? is proportional
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to (532)1/ ?. By equating y and nk? the saturation level of magnetic fluctuations remains
undetermined. This indicates that the magnetic fluctuations can grow up to ws ~ Q (if wa

exceeds (2, it is stable). The value of the viscosity parameter ap will be then

(6B:6B,) _ (6B b _ 1

BT T ampc? S 4mpCz T BCE S (HR (39)

When the poloidal field is dominant, since kH > 7 , the magnetic viscosity is ap ~ O(0.1).
When the toroidal field is dominant, (kH)? = ¢(k,H)? ~ n2r%q where n, is the number
of nodes in z-direction. Except for n, < 3, the right-hand side of Eq. (39) is less than
unity when g ~ 0.01. When only long wavelength modes in z-direction dominate the system
(n, < 3), other effects are likely to compete with what we consider here.

In a more complete treatment other independent variables (i.e., the pressure and thus
the thickness of the disk and the flow shear) with the control parameters such as the energy
input rate should be simultaneously solved along with (§B2) to determine the steady or
(quasisteady) limiting cycle state. Such equations are generally similar to the prey-predictor
system (Tout & Pringle 1992). Such relaxation oscillations (or bursts) might be related to
observational high state — low state transitions and quasi-periodic luminosity variations

believed to come from accretion disks around a neutron star or a black hole.

4 THREE DIMENSIONAL SIMULATION

We carried out fully nonlinear three-dimensional MHD simulation of accretion disks in the
corotation frame of reference. The basic equations are the momentum Eq. (1) with v = 0,

induction Eq. (2) and additionally the equation of continuity

Op _
5 T V) =0, (40)
equation of energy
O 1+ V(oev) +pVy =1, (41)
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where J is the current density

VxB
and the equation of state
P = pe(ya — 1), (43)

where v, is the adiabatic index. We use 7, = 5/3 in this paper.
We adopt the shearing box model (Hawley et al. 1994) and impose the following boundary
condition on the plane £ = 0 and = L, where L, is the size of the simulation box in 2-

direction

f(@,y,2) = f(x + Ls,y — 2AL,t, 2). (44)

This boundary condition was implemented by Wisdom & Tremaine (1988) to simulate the
planetary rings, and later used by Hawley & Balbus (1992) and Hawley et al. (1994). The
boundaries at y = 0, y = Ly, z =0 and 2 = L, are periodic boundaries.

The initial condition is the same as the equilibrium model we adopted in Sec. 2. In
the following, we use the units C; = Q = py = 1 where po is the initial density. The
unit of the length equals to the scale height H of the disk. To initiate the simulation, we
imposed random perturbations for v, and P at ¢t = 0. The amplitudes of perturbations are
vy = 1073C,, and 6P = 10~3poC2.

The simulation code is based on the modified Lax-Wendroff method (Rubin & Burstein
1967) with artificial viscosity (Richtmyer & Morton 1967). The three-dimensional version of
this code has been applied to the Parker instability in accretion disks (Matsumoto & Shibata
1992) and the emergence of magnetic flux in the solar atmosphere (Matsumoto et al. 1993,
1994). We dropped the artificial diffusion term from the induction equation and s'et n=20
except the region where the current density is larger than a critical value J, = 100pé/ 2Q). The
effective magnetic Reynolds number by numerical resistivity is the order of 10°. The magnetic

Reymnolds number is artificially reduced to O(102) in the current sheet where |J| > JL.
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In the following, we show the numerical results for a typical model (model T) starting
with B, alone with the Keplerian velocity shear (A = 3/4(2). The initial magnetic field is
assumed to be uniform and purely toroidal. The initial plasma 8 (= 8w F,/BZ) is 100. For
these parameters, the radial extent of the most unstable eigenmode is theoretically expected
to be Az = v4/A ~ 0.2H (see Sec. 2). Thus we choose the size of the simulation box and
the number of grid points such that we can numerically resolve the eigenmode. The size of
the simulation box is (L, Ly, L;) = (0.5H,2H,0.5H). The number of grid points for this
run is (N, Ny, N,) = (41,41,41). '

Figure 4 shows isocontours of the azimuthal velocity perturbation évy = vy +2Az in the
z = 0.25H plane. After waves with very short radial wavelength appear (¢t = 8.4/Q), the
mode whose radial wavelength is about 0.2H grows exponentially (f = 11.2 — 16.4/2). The
preferential growth of the perturbation with A, = 0.2H is also seen in figure 5 in isocontours
of 6uy in the z-z plane. The azimuthal wavelength of the exponentially growing mode is
nearly the box size (A, = 2H), while the vertical wavelength is A, ~ 0.3H. These results are
consistent with the linear stability analysis in Sec. 2. Figure 6 shows the time variation of
B, along the line y = H and z = 0.25H. The growth of the Iﬁode around z = —0.1H can be
seen. Thus we conclude from both linear and nonlinear investigations that radially confined
unstabl‘e eigenmode becomes dominant in the growth of the magnetic shearing instability
in accretion disks. It should be noted that since we are using the shearing box periodic
boundary condition, and allowable mode numbers do not restrict the mode rational surface
(the center of the eigenmode z-position), there is no unique surface position z. Thus such
eigenmodes excited at various z’s will overlap each other. This is in fact seen in figure 4.

In the later stage (¢ > 20/2), the growth of the eigenmode nearly saturates and the
system shows more complex behavior. Figure 7 shows the magnetic field lines. Magnetic
field lines are highly tangled up. This justified our physical picture of turbulent and chaotic

magnetic field lines anticipated from linear theory in Sec. 2 and adopted for nonlinear theory
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in Sec. 3. This feature was invoked to evaluate the saturation by enhanced resistivity.

Figure 8 shows the time history of ap = — (ByBy) /(47 R), o = po (vzvy) /Fo, and
((B?)—B?) /(87 P). These quantities increase exponentially during the growth of eigenmodes
(t = 8—20/12). Experimentally obtained growth rate in this stage is 0.23Q. This growth rate
is close to the maximum growth rate ymax = 0.22Q for ¢ = 0.01 obtained from eigenmode
analysis (see figure 2). The magnetic viscosity ap increases up to 0.020 while the kinematic
viscosity a, is about 0.005. These are within the range of the values we obtained in Sec. 3.
We have also carried out simulation runs starting with B, alone. Figure 9 shows the time
history of ag, a,, and ((B2?)—B2)/(87F,) for a typical B, model (model V) with A/Q = 3/4,
B, =B, =0, B, # 0 and 8 = 1000. The size of the simulation box and the number of grid
points are the same as model T. The obtained « values for B, models are generally greater
than B, models and now between 0.1 and 1. A tendency similar to this has been noted in
computation by Hawley et al. (1994). As they already report, we need not put too many
figures in the present paper. |

Through three-dimensional MHD simulation, we have demonstrated that unstable eigen- -
modes appear in magnetized differentially rotating disks and that turbulent and chaotic
magnetic field structures are created by the instability. Here we compare our theory with
the results of three-dimensional MHD simulations by Hawley et al. (1994). Using the shear-
ing box model, they simulated both the initially uniform vertical field models and uniform
toroidal field models.

In vertical field models, the radial wavelength of growing modes increases with time and
nearly axisymmetric two channel flow with large radial extent appears. This behavior is
what we expect from our linear analysis. As we noticed in Sec. 2.3, when the vertical field is
dominant, the width of the unstable eigenfunction depends on q as Az = (va/A)g~Y/2. Since
the growth rate increases by decreasing ¢, modes with longer wavelength both in z- and y-

direction become dominant. When the instability-induced toroidal field becomes dominant,

23




however, the radial extent of the unstable mode shrinks to Az ~ vs4/A. Thus the two
channel flow breaks up and forms structures with size ~ §~/2H. When the plasma £ is
already decreased to B ~ 10 by the instability when this breakup occurs, the preferential
radial size of growing modes will be ~ 0.5H. These theoretical expectations are consistent
with the numerical results by Hawley et al. (1994).

In toroidal field models, since the radial width of the unstable eigenfunctions is inde-
pendent of ¢, the radial size of growing modes is fixed to Az ~ v4/A, while more rapidly
growing modes with smaller ¢ are excited and become dominant. When § = 100, the ra-
dial size is Az ~ 0.2H. This size is consistent with that of growing cells in model Y1
(8 = 100) reported by Hawley et al. (1994). In a later stage, the radial sizes of unstable
eigenmodes increase because vy4 increases. Although the shapes of growing modes are highly
elongated in y-direction, the system does not approach the axisymmetric state even'in: the
later stage. This behavior is theoretically expected because the most rapidly growing mode
satisfies kyH ~ QH/v4 = Cy/v4. Even if the vertical magnetic fields are generated by the
instability, k. alone cannot satisfy this criterion when v4 approaches C,. Thus the growing
mode inevitably has nonzero k.

The numerical results by Hawley et al. (1994) show saturation of the growth of magnetic
fluctuations but they offered no physical mechanism of saturation. As we have shown in
Sec. 3, the enhanced resistivity by tangled magnetic fields can provide such a mechanism

that is consistent with the various observed characteristics.

5 SUMMARY AND DISCUSSION

We have shown that in the presence of nonzero electric resistivity, there is a threshold
magnetic field strength below which the magnetic shearing instability is stabilized. By using
the magnetic fluctuation dependent resistivity and applying the marginal stability theory in a

self-consistent fashion, we have found that the magnetic viscosity parameter of a fully ionized

24




accretion disk is ag ~ 0.001 — 1 , depending on magnetic configurations and to an extent
on models of anomalous resistivity. It remains, however, to be important to investigate the
detailed behavior of anomalous resistivity.

One of important implications of the present theory is that ap depends on the tempera-
ture of accretion disks. Our theory indicates that in the innermost region of accretion disks
around stellar mass black holes or neutron stars where T' ~ 107K, the magnetic viscosity
parameter is ag = 0(0.1) where the disk is fully ionized. In lower temperature (I' < 10*K)
disks whose ionization level is low, we expect that the saturation level of magnetic fluc-
tuations is lower because the electron density is proportional to X.. Since ap determined
from Eq. (32) is proportional to X., the magnetic viscosity drastically decreases when the
hydrogen recombination occurs.

The quasiperiodic activity in dwarf novae is theoretically attributed to the thermal limit
cycle behavior in accretion disks which appears when the hydrogen recombination accompa-
nies in the disk (e.g., Meyer & Meyer-Hofmeister 1981; Cannizzo, Ghosh, & Wheeler 1982;
Mineshige & Osaki 1983). In such theories, it is assumed that a ~ 0.1 in the bursting phase
and o ~ 0.02 in the quiescent phase in order to fit the theoretical duration of the quiescent
and bursting phases with the observation. According to our theory, the smaller o in the
quiescent phase may be explained by the switch off of the magnetic viscosity due to the
hydrogen recombination and thus a lower ap (Eq. (32)).

Next, let us discuss in star forming regions whether large resistivity can stabilize the mag-
netic shearing instability. Since the temperature of protostellar disks is so low (T ~ 100K)
that even the original collisional resistivity is substantial. We assume that the thickness
of the protostellar disk is H ~ 10 c¢cm and the number density is n ~ 10°cm™3. Using
the resistivity expression in a partially ionized medium (e.g., Norman & Heyvaerts 1985),
we obtain 7 ~ 3 x 107°HC,. By applying Eq. (27), we find the critical field strength

for poloidal magnetic shearing instability is B, ~ 1078G, which is much smaller than the
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strength of large-scale poloidal magnetic field in protostellar disks. Thus, the magnetic
shearing instability can grow even in protostellar disks. The saturation level of the insta-
bility, however, will be low due to the low ionization level. The observational constraint
on the value of o in protostellar disks comes from the excess infrared spectra around T
Tauri stars (Adams, Lada, & Shu 1987), which suggests the presence of a viscous disk. The
infrared excess vanishes on timescales of several 10° yr (Strom, Edwards, & Strom 1989).
Since the viscous evolution time scale when T' = 100K, R = 10%®cm, and H/R = 0.1 is
ty ~ (@Cs) "} (R?/H) ~ (3/a) x 10° yr, the viscosity parameter « is the order of 107%. Such
a smaller value of « is consistent with the above discussion that the magnetic viscosity is
turned off in protostellar disks.

The amplification of a seed magnetic field by the magnetic shearing instability also occurs
in spiral galaxies. In the region where the rotation speed decreases with radius (4/Q > 0.5),
the magnetic field can be amplified up to 1/8 > 0.01 by this mechanism. The resulting
predominantly toroidal magnetic field (¢ = k2/k2 ~ 0.01) is consistent with observations of
magnetic fields in spiral galaxies (e.g., Sofue et al. 1986; Tajima & Gilden 1987). The strength
of magnetic fields (8 ~ 1) in spiral galaxies, however, suggests that other amplification
mechanisms such as the resonance with the spiral arm (Chiba & Tosa 1990) are important,
or the saturation level of the instability is higher.

When the magnetic shearing instability grows in spiral galaxies, the interstellar gas will
fall toward the center by magnetic viscosity. The time scale of infall is roughly ¢, ~
10°(1/a)(R/10kpc)(Cs/10kms™1)~1(H/R)~* yr. This time scale is longer than the age of
universe in the outer part where the rotation curve is flat (4/Q ~ 0.5). In the middle part
(R = 1—-3kpc in our galaxy) where A/Q > 0.5, it is possible that viscous infall occurs within
10% yr. The accretion rate M ~ 102a(R/10kpc)(Cs/10kms™1)(n/lem=2)(H/R)?Mg /yr can
exceed 0.1Mg /yr, required to explain the activity of Seyfert galaxies.

In this paper, we have neglected the effect of gravity in vertical direction. When the
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vertical gravity is included, strongly generated toroidal magnetic fields will escape from the
disk into the corona by the Parker instability (Parker 1966; Horiuchi et al. 1988; Matsumoto
et al. 1988,1990). The time scale of magnetic flux escape is 2 — 3H/v4 (Horiuchi et al. 1988;
Matsumoto et al. 1988). In Keplerian disks whose magnetic field strength is determined by
the marginal stability (8 ~ 10), this time scale is 2-3 times longer than the growth time of
the magnetic shearing instability. When the saturation level of the magnetic fields strength is
higher either by stronger differential rotation, or by smaller anomalous resistivity, the growth
rate of the magnetic shearing instability will be comparable to that of the Parker instability.
In such cases, the Parker instability becomes important to determine the saturation level
of magnetic fluctuations and the magnetic viscosity. The effect of the Parker instability
on the magnetic viscosity has been taken into account phenomenologically in the model of
hydromagnetic turbulence in accretion disks (Kato & Horiuchi 1985, 1986; Horiuchi & Kato
1990; Kato & Yoshizawa 1993), and in the model equations of the evolution of magnetic
fields in accretion disks (Tout & Pringle 1992). It is recalled that when the magnetic field
is sufficiently strong (8 < 10), even the Parker instability is stabilized (Shibata, Tajima &
Matsumoto 1990). The observed value of ap in the simulation of Kaisig, Tajima & Lovelace
(1992), in which the destabilized modes are generically similar to the one under consideration,
is not inconsistent with our theoretical value. More quantitative study using 3D MHD code
is in progress, and will be reported in our future paper (Kaisig, Tajima & Matsumoto 1994).

The authors thank M. Kaisig, S. Kato, W. Kley, S. Mineshige, K. Shibata, and F. Wael-
broeck for discussions. We also thank M. LeBrun and G. Furnish for supplying us the
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Table 1

Magnetic viscosity determined by marginal stability theory with Model 1
(a) with B, start

A/Q f(g=0)6B?/(4mpC?%) wa/Qap a, Comment

0.85 5.7 36 0.99 1.8 1.33

0.75 3.0 1.9 0.97 0.950.57 Kepler disk

0.50 1.0 0.64 0.87 0.500.17 Constant rotation speed
0.25 0.33 0.21 0.66 0.100.015

(b) with B, start

A/Q Qmax | Qmaxf(Qmax) 532/(47rp032) CUA/Q ap Oy

0.85 0.015 0.009 0.011 0.6 0.00300.0017
0.75 0.01  0.005 0.0065 0.5 0.0018 0.0008
0.50 0.01 0.002 0.0025 0.5 0.0008 0.0002
0.25 0.0075 0.0007  0.0009 0.5 0.0004 0.00004

33




FIGURE CAPTIONS

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Examples of the eigenfunctions of the nonaxisymmetric magnetic shearing instability
in a disk with the Keplerian velocity shear (A/Q = 3/4). Solid curve shows the real
part and the dashed curve shows the imaginary part of the eigenfunction. The model
parameters are wy = kjva = 0.1Q and ¢ = k2/k2 = 0.01. (a) Fundamental mode
(eigenvalue is w = 0.0692Q4). (b) Next nodal mode (eigenvalue is w = 0.0357€2%).

The eigenfunctions are localized between & = 24k,x/wa = £1.

The wy = kjvs and ¢ = k2/kZ dependences of eigenvalues of the nonaxisymmetric
magnetic shearing instability in the Keplerian disk. Solid curves and dashed curves

show the growth rate v = Im(w) and Re(w), respectively.

Resistive stabilization of the magnetic shearing instability. Numerical solutions of
the local dispersion relation for 7 = 0 (thin curves) and n = 1074C,H (thick curves)
are displayed. The radial wavenumber k, is assumed to be k, = 2mA/vs. The

abscissa is the Alfvén frequency wy = kjva.

Result of the three-dimensional MHD simulation of the disk with the Keplerian
velocity shear (model T). The unperturbed magnetic field is uniform and purely
toroidal. The initial plasma @ is 100. The isocontours of the azimuthal velocity
perturbation v, in z = 0.25H plane are shown. The contour step width is 0.5 in
logarithmic scale. Solid curves and dashed curves répresent the positive velocity, and

the negative velocity, respectively.
The same as figure 4 but for §vy in the z-z-plane (y = H).

The time variation of B, along the line y = H and z = 0.25H for model T. The
modes with wavelength Az ~ 0.2H preferentially grow. Exponential growth of an

eigenmode is seen around z = —0.1H during t = 11.2/w — 16.4/w.
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Fig. 7. Magnetic field lines for model T in the eigenmode growth stage (t = 8.4/w —16.4/w)
and the nearly saturation stage (¢ = 20.9/w — 25.0/w).

Fig. 8. The time history of (a) ap = — (B:B,) /(47 R), (b) po (vyvy) /P, and (c) the mag-
netic fluctuation ((B2%) — B2)/(8nP,) for toroidal field model (model T).

Fig. 9. The time history of (a) ap = — (B.B,) /(47F) , (b) po (vzvy) /P, and (c) the
magnetic fluctuation ({B2?) — B2)/(8n F,) for vertical field model (model V).
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