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Abstract

Analytical properties of the linear Vlasov response function
for guiding center particle motion in low frequency flute modes
are investigated for a two temperature Maxwell-Boltzmann plasma.

Algorithms are given for evaluating the family of analytic

_functions Gy n(w) along with the sofware implementing the methods
3 .

and user documentation on MFE files.
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I. Plasma Physics Origin of Guiding Center Dispersion Function

In this work we develop the properties of the family of
special analytic functions that measure the linear response of the
strongly magnetized, non-uniform collisionless plasma. The
special functions occur in the conductivity tensor and charge
density susceptibility required in theories of plasma waves,

instabilities and transport.

The typical problem in which the special functions occur is
to find the response E(g,y,t) in the particle distribution
function to the electromagnetic perturbations §(§)exp(-iwt) and
E(g)exp(—iwt) given the background equilibrium distribution

function F(g,g). The equation for the response f(§,g)exp(~iwt) is

)= - 3 (

~ ~

(-iOH"VoV—]- 4 vXxB(x) e
~ me ~ ~ '~

where q and m are the mass and charge of the particles in the

distribution. F(x,v).--The first.order linear-partial differential--—- -
equation for E(§,g) is solved by integrating the source term on

the right-hand side over the unperturbed particle trajectories

% = Vv and é = yxg(§) where @ = qg/mc. The particle trajectories
are the well-known helical cyclotron orbits with radius p = Vi/Q

and frequency Q about the guiding-center drift velocity Vpe

In general, the trajectories are

N

~ V ~ ~
x(t) = X, + (v"b + YD)t +-?; [—elsin(;—Qt)+e2cos(;—9t)]
v(t) = v"b+yD+vl[g1cos(;-Qt)+ézsin(;-ﬂt)]

et I hank | (ARt B M Pt



wave-particle propagator

-5=

where the drift velocity is given by

vIbxVanB(x)  vabx(beV)b
~ 29 Q

with b(x) = B(x)/B(x) and B(x) = IB(x) I

The complete theory of the inversion of the convective
derivative for E(§,g) using the trajectories requires a
complicated analysis whose details depend on the type of waves
(high frequency w>>Q or low frequency w<<R) and the geometry
(tokamak, mirror or bumpy torus) of the system. The analysis, for
example, is given in Ref. 1 for high frequency electrostatic modes

and in Ref. 2 for low frequency electromagnetic modes.

1. Guiding Center Propagator

For a particle of velocity v interacting with a fluctuation

— kw the linear response.of the Vlasov equation-is determined by the -

gk (V) = lim_|. 1 f
=070 e0T wnlekyvyk eypHie

where the limit e+0" arises from the condition of causality in the
response to the perturbation varying as exp(-iwt). The average
response ka of the system to a velocity distribution of particles

F(v) is given by

Riy = [ dv F(¥) Biew(D) = <Bry(D>,

where f dv F(v) = 1.
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The special function measuring the response for k"vT >> kvp

is the well-known Fried-Conte3 plasma dispersion function

F-C 1 1 w
R =— > = - Z
kyw
I wk v 10+ M Ikylvp  “kyvp
where vq = (2T/m)1/2 is  the  thermal velocity of the

Maxwell-Boltzman velocity distribution.

In general, for strongly magnetized plasmas, the most
important perturbations for waves and instabilities have
kiVD>>kuVT' Such perturbations and waves are called flute modes
(k"=0) and flute-like modes (kHVT<<kiVD) and are of special
importance in the dynamics of plasmas. This fact leads to thé

definition of the guiding-center response function®

RGCDE ¢ 1
1 ok vyiot M

_.and_the homogeneousmfunction,G(w),;,kaI"wwmwhosewwproperties,ware,
b

developed in Secs. II and III.

2. Two-Temperature Maxwell~-Boltzmann Average

Recent studies of plasmas containing hot electron components
such as the bumpy torus and tandem mirror end cell plasmas require
the guiding-center dispersion for highly énisotropic velocity
distributions.5 To take into account the anisotropy the

dimensionless drift frequencies w, and w, are defined by

g
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mvi mv%
Wn = W + —
D™ 7T T T,
where
cT n
o =k e 1 bxVB
g ~ eB B
cT" ~ - -
w = k. . b X b'V bo
e= k=5 (bev)
where Tl = <% mv%} and Ty = <mv%>. The simple response function

for the two-temperature Maxwell-Boltzman velocity distribution

- Fy(vy, vy) is then

e XY

RGC = 1 (® 4y (2 ay v-1/2

for Im(w) > 0.

Taking dinto account the Finite-Larmor Radius (FLR) effects‘

gives the generalized response function

2\ m- 2\ n-
 (mvi m-1 mvy n-1 2 kv
2T, 2T, 0\ e

(mv%) (mv%)

w - w —— ] - w —
C

& \2T) VT

Fy(vy,vy) dy

**'"*”“w~wéx=2wéy”*””“*ﬂ*A**"“ i e o



g

xm—lyn_ng(kfig)

w-ng—ZwCy

=1 fw « ~-1/2
= dx [ dy v exp(-x-y)
/2 0 0

where k = ki(Tl/m)l/z/Q. The further generalizations required for
the electromagnetic 3x3 dispersion relation are given in

Sec. II(7).

For m=n=1 the primary FLR response function is defined by

2 (k/2x)

w-ax~by'

o o —
cFLR(y,a,b,k) = Y [ax [dy y 1/2 exp(-x-y)
+1/2 0 0

For small k the FLR velocity space moments may be expanded in
powers of (kzx)z and expressed in terms of Gm+£ n(w), defined
b

below.

the Maxwell-Boltzmann averaged propagator by

w w37 Zexp(-x-y)
0 w—ng—chy

_ e ) © dy exp(-v2/2> w
é udu exp(-u®/2) Im (2172 1 2 2

= Gl’l(m,wg,ch) = G(w,wg,zwc).

_ The primary response function G(w,a,b) = G; | is related to

i B | | e Wy Ran Ml S S an i T I



The generalized dispersion function is related to the

Maxwell - Boltzmann average by

® o — m-1 n-1
[Cudu exp(-u2/2) [ dv exp(~v</2) w (u2/2) v2/2) |
0 ~oo (2.”)1/2 e l ® u2—w v
2 8 c |
|
’F
s"
=Dm,n Gm,n(w,mggzwc) for Im(w) > 0 [

I
l
where |
|
|
f

T'(m)T(n- %)

1
r <§)
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II. Mathematical Properties of the Guiding Center

Dispersion Function

1. Definitions and Properties

1.1 Definition

The generalized guiding center dispersion function

Gm,n(w,a,b) is defined for real a,b, integer m,n, and complex w by

-iw fm dt exp[imt](1+iat)—m(1+ibt)'n+1/2 (1.1.1)
0

Gm,n(w’a,b)

for Im(w) > O, and the analytic continuation for other w. The
determination of (1-}-ibt)l/2 is choéen such that its real part is
positive. The function Gm’n(w,a,b) has a branch point at w=0 with

the branch line taken from w=0 to =i,

1.2 Primary Response Function

The fundamental gﬁidingﬂ center respoﬁgé' function Gtm;é;b)

G(w,a,b) = 61 ;(u,a,b). (1.2.1)

1.3 Alternate Integral Formula

L - ag.—M bs.—n+1/2
Gm’n(w,a,lb) = g ds e (1 - T) (1 - —a—) (103-1)

for Tm(w) > 0 and Re (1 - bs/u.))l/2 > 0.
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l.4 Homogeneity, Symmetry and Large w Limit
Homogeneity:

If r is real and positive, r>0, then

Gm’n(rw,ra,rb) = Gm,n(w,a,b). : (1.4.1)
|
Symmetry: |
|
For all w {
|
* .
G’m,n(-w*,—a""b) = Gm’n(w,a,b)- (1.4-2) g
|
!
[
!

Limit for Large |w]:

.a and b fixed and [w]| + =

Gm,n(w,a,b)+1 , if arg w # —-g (mod 2w) . (1.4.3) |

2. Recursion Relations and Differential Properties

]
a Gm’n(waa’b) =

= <% -1) Gy, n(w,a,0)+G, ) ,(w,a,b) ERCEY

. e, o i s e e e e bbb
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b M(m’a’b) = (P_ -1
oW w
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) Gm’n(w,a’b)+cm’n_1(w;a,b)

(a—b)Gm’n(m,a,b) = aGm,n_l(w,a,b)—bG _l’n(w,a,b)
G =1+2¢ +(n-1/2) 2 ¢
m,n w mt+l,n w m,ntl
~ a (a-b)
Gpn = 1+ (whn - 1/2) % Cotl,n ~ (n - 1/2) o Cmtl,n+l
_ b m(a-b)
Co,n = 1+ (i = 1/2) = Gy npy + === Cpt1,nt1
Gy (w,a,b) = 1 = = Gy {(&,a,b)
0’0 P g ] 20 0’1 1y
3Gy m
_7;§_jw,a,b) - E-Gm’n(w,a,b) +-§-Gm+1’n(w,a,b)
1 1
3G, n- — n- —
m,n 2 2
_—ab (w’a’b) = - 5 Gm’n(m,a,b) + b Gm,n+l(w’a’b)

(2.2)

(2.3)

(2.4)

(2.5)

(2.8)

(2.9)

(
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Gy, n(®,a,b) = fc
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3G d d
a oMon(w,a,b) 4 g, Pmen(u,a,b)  , Pominca,a,b) | g (2.10)
3a b oW ‘

3. Analytic Continuation for Im(w)<0
G, n(w,a,b) is analytic for Im(w)>0, but when extended into
3
Im(w)<0 it is necessary to introduce the branch cut from w=0. The
cut can be arbitrarily placed in the Im(w)<0\plane. Unless
otherwise specified we define the cut by wy = =it with O<t<e.

3.1 Analytic Continuation from Integral Representation

For integral representation (1.3.1) the analytic continuation

-is given by the contour integral

N R

with C going, if necessary, below the singular point sy = w/a and

branch point s, = w/b from s=0 to s= +® as shown in Fig. 1.
3.2 Analytic Continuation from Differential Equation

The differential relations (2.1, 2.2 and 2.7) are a closed
set of differential equations of the Fuchsian type with w=0 a

regular singular point.

Analytic continuation and computations are made using the
o Wwith Im(w,)>0 and
integrating (2.1, 2.2 and 2.7) to w with Im(w)<0, along path P

definition (1.3.1) for dnitial data w

shown in Fig. 2.

ds 78 (1- fifm (1- =2 2 (3.1.1)
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For example, the value of G(w,a,b) is found from

yl = G]_,]_(U-"a’b) (3.2.1)
yz = GO’]_(w’a,b) (3-2.2)
dv; 1 1 1
dys 11 1

with dinitial data w, =

definition.

4. Integral Solutions of

wtioc evaluated using the integral (1.3.1)

Differential Equations

4.1 Definitions of K,(a,b) and Ky(a,b)

For a # 0, b ¥ 0 and complex w (with positive or negative

imaginary parts) the solutions of (3.2.3) and (3.2.4) are

T TS S U S
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2
7 (w) = 25 exp(- &) gldt exp[o(t)]-1

ab o(t)
+ 2K1-9 wl/2 exp(- &) élexp[Cg —-Q)tz] dt (4.1.1)
a a a b
w
+ -2
wKy exp( a)
_ 2w wy ¢l w, 2 1/2 w
where
-0 _ w0 2 ‘ 4.1.3
o(t) = i + = t ( )

~and (e%-1)/0 is analytic in t. The constants K; and K, are

--determined -by identifying the asymptotiec-  behavior —of—ryl(w) and-

yz(m) with the integral representation of Gl,l and GO,l , for w»0:

y1(w) ~ Ky w : (4elad)

va(w) " Ky wl/Z (4.1.5)

Ty T T e
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The values of K; and K, are given for the regions I, II, III,
Iv, V, and VI of the a-b plane defined in Fig. 3.

Definition of K(a,b):

b>0, Regions I, II, III

1/2
Ky = -1 (%) (4.1.6)
b<0 Regions IV, V, VI
1/2
— Tr . L]
K = CTET) , (4.1.7)

- Definition of Ky(a,b):

1> b/a >0, Regions I, IV

X, = 1 on 1=(1-b/a)y1/2 (4.1.8)

a(1-b/a)l/2 " 14(1-b/a)l/2

b/a>1 Regions II, V

_ 2 arctan (b/a—l)l/2

4.1.9
a(b/a—l)l/2 ( ‘

K2=




b/a<o0, Regions III, VI

1 .
Ky = - - |1
2 (tr1p/ant/2 [

Kz = —2/&

4.2 Small Argument Limit

For |w|] <K lal, [b] t

differential equations give the small argument expansions.

w? | w3

s e G(0,a,b) T Ry(ayb) fum Sk b ] e e

2a2

+ ¥y (a,b) [2 032 -

3
2 2

+ £ wt - 2 1L
ab ¢ ab (3b )

+ 0(w’/2)

Go,l((’-"asb) - Kl(a,b) [wllz

m (1+|b/a|)1/2

lal  a (l+[b/a|)1/2 +1

he integral solutions

5/2
a(b+ 2y eer]

3+ s e 0

—lw3/2+__l_._w5/2+ .-o]

2b2

2 3
dlo-bol 8w
b 3,2 153

} (4.1.10)

(4.1;11)

the

(4.2.1)

(4.2.2)
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4.3 Imaginary Part of G(w,a,b) For Real w

Assume real, positive w. For real w<0 use the symmetry
G(-w,a,b) = G (w,=a,~b), Eqe (1ske2).

2 2

- +o0

ImG(w,a,b) = - = (2m)~1/2 [ av exp(-v2/2) fw u du exp(-u?/2) §(1 - %%;.— %;;9
-00 0

(4.3.1)

The ImG(w,a,b) occurs from the resonance on the ellipse or

hyperbola in the u,v plane.

ImG(w,a,b) = -(2w)1/2._9_ exp(_.ﬂ)
la] a

© " 2 ’
x [“dv exp(-v2(a-b)/2a) H¢9_25_13> (4.3.2)
0
where H(x) is the Heaviside step function. . .
a>0, b>0; Regions I, II
1/2 ) w 2w 1/2 1 w(b-a) 2
ImG(w,a,b) = —(2w) 3 exp(- E) (7;) é dt eXpE—fEB_f t )
(4.3.3)
a>0, b<0; Region VI
w. w a 1/2
ImG(w,a,b) = -m (Z) EXP("E) C;ITET) (4.3.4)

o oy e e b s e r, e m
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a<0, b>0; Region III
1/2
ImG(w,a,b) = --(27r)1/2 Y exp-2) (—22 [ at exp (- w(lal+b) £2
la| la] b 1 lalb
(4.3.5)
a<0, b<0; Region IV, V
IﬁlG(m,a,b) = O . . (4-3-6)
1/2 W 1/2 w
a=0, b>0;  InG(w,a,b) = -r/2() " exp(- & (4.3.7)
b=0, a>0; ImG(w,a,b) = -2w.§ exp(—-g) (4.3.8)

5. Relations Between the Function Values in the Upper and Lower

~ w Half-plane

If  Im(w)>0 and w=re'® with 0<e<r, so that w*=re™1® and
'¢1/2=r1/2 éie/z,ﬁtheh from the solutions of the 'éqﬁations we

——thain: T T T

| Rek; if 0>
—2w1/2 exp(-.%) X (5.1)

e *
Go’l(w ’a,b) - Go,l(wsa’b> "

% % .
Gl,l(m ,a,b)—Gl’l(w,a,b) = -2iw exp(-.g) x ImK, (5.2)

X . ReK; if e>§
,*4‘2 wl/2 exp(- .g) g dt exp[(g —-%) tz] x
i InK, if e<g

with the values of Kl(a,b) and Kz(a,b) given in Sec. 4.1.

)
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6. Asymptotic Behavior

For the Fluid Limit |w]| >> |al|, |b], and arg(w) # —-g .

o - . j .
G (wa,b) 7 AL T (E®,) (T2 (a)iA(-p)d
B0 jZO wi g20 7% %

-1 +.% [ma + (n- %)b]

2 rm(m+l) 2 1 1 1 1..2
4+ 2 (BN ) alim(n- Dab + = (o~ =) (n+ )b

= [ 3 a%+m(n 2)a 5 (n 2)(n 2) ]
+'..

© J )
6y ((wa,p) = § AL T (T2 alhp)?

j=0 wd 2=0
- 1 1 2 2. 1 3.2
1+ = (a+ = b) + = + —-ab +=b oo
m (a 3 ) 5 (a 5 a 5 )+

w

BENRTCTEN Nt R L Gt T L
’ j=0 wJ

- b 3
1+ —+=-—+4 ...
2w 4 -

b2
w2

where (?) is the usual binomial coefficient.

(6.1)

(6+2)

(6.3)

-

A o I
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7. Integral Representation of the FLR Dispersion Functions

The integral representation for the FLR Dispersion Function

GFLR(w,a,b,k) defined in Sec. I(2),

2

2 wJA(ku)
oo 00 -
'GFLR(m,a,b,k) = f u du exp(—u2/2) f dv exp(~v</2) 0
-0 —-® (21r)1/2 w—-l au2— l-bv2
2 2
(7.1)
where k=kl(Tl/m)l/2/Q, is
(ut) oSy
dt exp(iwt T0~—————
GFLR(w,a,b,k) = ~iw f l+iat (7.2)
0  (1+iat)(l+ibt)l/2
2 .
- k
© Sro(l—as/m)
7=7f ds 1/2 (7.3)
C
(1- 2% 1- 28
R ~W. I / & T _

where Po(z) = e'zIO(z) = g1 f“de exp[—z(l—cose)] and C is the

contour defined in Fig. 1. Note that PO has

singularity at s = w/a.

an essential

A set of finite ZLarmor radius dispersion functions are

defined as follows

w-ax~by

IR (w,a,b,k) = 1/% (f)mdx éwdy y~1/2 exp(=x-y) F;(x,7,k)  (7.4)

where we take
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(7-5)

— . -
J2(k i=]
O( CI) » 1
J2(kq) i=2
1 q s 1
% Jo(kq)Jl(kq) »1=3
Fi(x,7,k) = | (x4y) J3(kq) ,i=4
(xty) J3(kq) ,1=5
(x4y) 3 Jo(ka) Jy(ka) ,1=6
with q = (2x)l/2. The first function, GFLR, is the GFLR ip Eq.
. 1
(7.1). The dintegral representations for GELR are obtained from
Eq. (7.3). For example, the representation for GgLR is obtained
from (7.3) by replacing Po(z) by Pl(z) = e_zll(z), where Il(z) is
the modified Bessel function. \
From Eq. (7.5) we see that
. FLR_ _ 1 3 _FIR g ey
€37 = -5 w @ (7.6)
and
FLR _ _ 1 3 .FIR
G - ﬁ' ﬁ G4 o’ ‘ (707)

With Eq. (7.6) we immediately obtain the integral representation

e S T 1 b il et NI
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ds e %[Ty(z) - I(2z)]

_ 8s3y2¢, _ bsy1/2
(1 T) (1 w)

GELR - [

with z = kz/(l—as/w).

For GELR, if we write (x+y) in Eq. (7.5) as
\

Xty = [w - (w-ax-by) + (a—b)y]/a ,

then the integral separates into three terms,

FLR _ W [oFLR 2
Gyt = = [61™" - To(k )]

exp(—x-y)J%(k/ZX)

azbh w ® 1/2
* a VY g dx é dy y w-ax-by
. ‘ , . ds e~ % T'n(2)
2 22 € (1 - 38y - bsy3/2

again with z = kz/(l—as/w). Similarly, we have

N a-b é ds e”8 ri(z)
2a _ as _ bsy3/2
(1 - 281 - b8

(7.8)

(7.9)

, (7.10)

(7.11)
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We obtain the representation of the sixth FLR dispersion

function from Eq. (7.7),
FILR _ W FLR 2 2
GgtR = = [65MR - rp(k?) + Ty (kD) ]

acp . s e75[Io(2) - Ti(2)]

+ . (7.12)

2a _ asy2r, _ bsy3/2
(1 T) (1 T)

When Im(w) > 0, the integration contour for these functions
can be taken along the real axis from zero to infinity. If w is
in the lower half-plane, the contour must be deformed to remain

below the singularities,

Alternatively, these functions may'be generated by expanding
Ty and Fl(kz/(l—as/m)). This yields a power series in k2 with
coefficients related to the non~FLR guiding center functions Gp.1
b
and Gm,2' Thus,

©

T 923 2,23
FLR _ 2 2 .
GIot = 1 (k%) ey Gpyq1,1 _jzo (k%) © "dy Gyyyp .1 (7.13)

3=0

FLR _ ®  FIR 2
Gy = — [6]™ = Tok™) ]

a=b 1 v 2423 > 523+
+E22 1 7 (&H) el 6 - ¥ (k%)
PR N 3 %2341,2 7 L

where

2 1

c. = (7.15)

J iZO K1(11)2(25-21)1

dy Gpi4p,2](7414)

ST T T ST S S e, e T e s
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]

d5= 1 — L | (7.16)
i=0 41(i1)2(23-21+1)!
The Gm,n may be obtained using the algorithm described in Section

III(1) and the recursion relations (2.3-2.6). With w, a, and b of
order wunity, and k < 1.5, the sums (7.13-7.14) converge to a part
in lO4 after 30 or fewer terms (j < 14). With larger k, one is

limited by the loss of precision in G, pn for large m.
>
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III. Numerical Algorithms for the Guiding Center

Dispersion Function

1. Evaluation of G, (w,a,b) from Integral and
3

Differential Representations

A TFORTRAN function subprogram, GCDF, has been written to
generate the first nine guiding center dispersion functions,
Gm’n(w,a,b), for m and n running from 0 to 2. The functions are
evaluated either from the integral formula, Eq. (1.3.1), or from
the differential representation, Egs. (2.1,‘2.2, 2.7). The choice
depends on the complex frequency ws First, for « nonzero, the
parameters w, a, and b are transformed using the ﬁomogeneity

property (l.4.1),

(w,a,b) » (w/r, a/r, b/r)

r = Abs(w)

' so that w lies on the unit circle. In the followiﬁgi &iséussion,

--wy,-a, and b-refer to these-rescaled-values.--

It should be noted that if a, b, and (a-b) are nonzero then

all the Gm,n’

Gy 1 using the recursion relations (2.3 - 2.7). However, these
b

for arbitrary m and n, can be obtained from Gp. 1 and
b

relations include terms such as (Gm+1,n - Gm,n)/a. When paraméter

l,n ~ Gm,n is linear in

a/w, and serious numerical errors will result from the finite

a 1s near zero the dominant part of Gt

precision arithmetic. Various small-a expansions can be derived
for such cases, but these are not satisfactory if w happens to be
near the negative dimaginary axis. There, low-order expansions
cannot reproduce the term exp(-w/a) in Eq. (4.1.1). Similar
errors occur when b or (a-b) are near zero. For these reasons the

recursion relations have been avoided in the GCDF subprogram; all

U
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the G , (except GO,O) are obtained by integrating Eq. (1.3.1) or
3
EqSo (2-1 - 202)0

There are singularities in the integrand of Eq. (l1.3.1) at
s; = w/a and s, = w/b. If the real parts of both s; and s, are
negative then this integral correctly gives the guiding center
functions for any Imag(w). If either §1 Or sy has positive real
part then Eq. (l.3.1) applies only if Imag(w) is positive. In the
latter case the program uses this integral representation only
when Imag(w) > 0.4. This pushes the singular points away from the
real axis making it easier to obtain a numerical solution. The
set of subroutines, GCINIT, GCSIMP, and GINTGR, perform the
integrations by the Simpson method on all the Gm,n simultaneously.
GCINIT divides the range of integration into six subintervals. If
parameter a or b is large, one of the singularities. will be close
to the origin. The widths of the first two subintervals then are
taken inversely proportional to |a| or |b|] to cover the region

where the integrand varies fastest.

In all other cases, Imag(w) <€ 0.4 and Real(sl) or Real(sz)
~positive, the system of differential equations (2.1, 2.2, 2.7)

must be solved. The initial conditions are established at the

point wy = (Real(w), 0.5), calling GCINIT to evaluate the

Gm,n((ﬂo) .

The differential system is approximated by the implicit

finite difference equations

\
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and similar expressions for the other Gy ne Rearranging terms
b

yields

(1 + dm) + dw

0,1 b + dw 20 b + dw

(i+1)
G171

i) a dw i+1) dw
Gi’l a + dw L+ 7;)_+ G6’1 a + dw

The dintegration contour is taken to be the straight line from wg
to w so that dw is purely imaginary. Then the factors a/(at+dw)
and b/(b+dw) have magnitude less than one for all real a and b.
With this choice the algorithm is stable if dw/w is small

everywhere on the contour. This'requires Jdw] << |Real(w)].

It can be shown that if a and b approach zero with dw held
fixed, the above expressions go to the correct asymptotic limits
as given 1in Sec. 11(6). Thus, the step size can be chosen
independently of a and b as long as |Real(w)| is not too small (w

- not too near the branch cut).
" 2. Software Documentation

The FORTRAN code for the guiding center dispersion function
is available on the MFE network. It may be copied from FILEM,
user number 014545, file GCDFIFS. This file contains the complex
function GCDF and dits subroutines GCINIT, GCSIMP and GINTGR.

Documentation and an example also are included.
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Figure Captions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

fig.r6i

Fig. 7

- w; = -1. The discontinuity at w

Integration contour C (section II.(3.1)).

Path P (section II(3.2)).

Regions in the (a,b) parameter space (section II(4.1)).

Graph of the real and imaginary parts of G(w,a,b) as a
function of w,. = Real(w) for a=b=1 and wj = Imag(w) = 0.,
0.5, and 1.0.

Graph of the real and imaginary parts of G(w,a,b) as a
function of w,. = Real(w) for a=1 and b=-1 with wj = 0., 0.5,

and 1.0.

Graph of the real and imaginary parts of G(w, a=1, b=1) for

i
line shown in Fig. 2.

r

Graph of the real and imaginary parts of G(w, a=1, b=-1) for

w; = -1. The discontinuity at w, = 0 arises from the branch

line shown in Fig. 2.

"= 0 arises from the branch
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