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I. Introduction

Linear electron Landau damping of ion—acoustic solitons was first
studied by Ott and Sudan.1 They derived a Korteweg~ de Vries
(KdV) equation with a source term that models the lowest order effects of
resonant electrons. Their equation contains the lowest order nonlinear
terms in addition to terms that correspond to the linear dispersion
relation for ion-acoustic waves. The derivation is justified by a formal

procedure whereby these terms in the equation are of the same order.

Van Dam and Taniuti2 pointed out that Ott and Sudan neglected trapped
particle effects, which are of the same order as the linear Landau damping
terms included in the treatment of Ref. 1. The situation is analogous to
that of nonlinear Landau damping of a large amplitude plasma wave.> For
times longer than the electron bounce time, wgé = (me/ek2<I>)l/2 , the }inear
-1/2

s

theory breaks down; thus if the Landau time, Y£1= [kznmeTe/(Sm%)] is

longer than mgé nonlinear effects are important.

For the ion acoustic soliton Yy << wy, provided the amplitude 1is
mildly large: e<I>/Te >> (me/mi)z. It will be shown that for the soliton, as
for the'plasma wave, phase mixing of electron orbits effectively stops the

damping after a few bounce periods.

This time dependent damping problem has not been previously treated.
Schamel4 assumes a stationary trapped electron distribution, showing that
trapped particles can modify the relationship between soliton speed,
amplitude and width. Karpman5 and Lotko6 note that for time t << wgé the
theory of Ott and Sudan is valid and then treat the effects of ion Landau
damping for t >> wg% « They are forced to assume an unperturbed KdV
_ soliton as _an initial condition, mnoting that within a time t ~ @gi the

electrons will have phase mixed.

Our calculation is valid before the ion orbit effects become important
(i.e. for t < wg%) and thus yields the appropriate initial condition for

studies of ion effects. These differ from electron effects because an
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ion~acoustic soliton is a localized pulse with & > 0. The soliton reflects
ions and thus continually exchanges momentum with ions arriving at the

pulse from infinity.6

The derivation presented here begins with the coupled
Vlasov-Poisson-ion fluid equations. Utilizing the standard ordering scheme
of Gardner and Morikawa7 we obtain in Sec. II a reduced system: the

coupled Vliasov-KdV equations. Instead of artificially separating resonant

8

and nonresonant contributions, we use a subtraction procedure” to isolate

the nonadiabatic portion of the electron response.

In Sec. III the Vliasov equation is solved by integrating along the
electron orbits in a soliton with frozen amplitude, following O'Neil.3 This
approximation requires the amplitude change to be small; yet e@/Te >>
(me/mi)z' Several authors have extended the 0’Neil analysis to larger
YL/wb (in an attempt to approach self-consistency) by treating the
adiabatic modification of the particle orbits in the damping wzalve.g'"ll This
procedure is not applicable to the soliton since untrapped particles do not
have periodic orbits. We leave the self-consistent treatment of the

Vlasov-KdV system to future work.

The damping of the soliton is treated by the method of perturbed
conservation laws in Sec. IV.lz’13 We obtain an equation for the solitomn
speed as a function time. As the soliton damps and oscillates at the
bounce frequency, its speed, width and amplitude remain related as in the
unperturbed case. More rigorous perturbation theories“”15 show the
approximate validity of this method. Our final result, Fig. 4, is the
asymptotic speed of the soliton as a function of initial condition. Figure
4 shows that e<I>/Te ~ (me/mi)2 is an effective threshold for existence of
the soliton: for amplitudes larger than this electron Landau damping is a

small effect. . o

For an experimental measurement of this effect several criteria must
be met. First, linear ion Landau damping must be weak compared to that due

to electrons. This implies Te/Ti > 16, As shown by Van Dam and Taniuti2

T 1T
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collisions are relatively unimportant; however, the transverse dimension of
the soliton must be large enough so that wall collisions can be neglected:
L > A De (Te/eé)l/z. We mention that trapped electrons have been

experimentally observed in an ion acoustic soliton by Tran and Means.16

IT. Kinetic Electron KdV Equation

In this section the ion-acoustic KdV equation with corrections due to
kinetic electron effects 1is obtained. Preparing for this derivation we
write the electron Vlasov, ion fluid and Poisson equations in terms of the

following dimensionless variables, which are appropriate for ion-acoustic

waves:
wpit' = t, kpex’ = x, vilvg = v
e®’/T, =9, v f'/n, = £, n’/n, = n, u/eg =u (1)

Here the primed quantities are the unscaled variables; f£f(x,v) is the
electron distribution function; n and u are respectively the ion fluid
density and velocity; and ¢ is the electrostatic potential. The scaling

parameters are the ion—-acoustic speed

cg = Te/mi; the wunperturbed density n,; the electron thermal speed vg =
Te/me; the ion plasma frequency; and the electron Debye wave number kDe'
In terms of these variables the equations contain the mass ratio § =
me/mi as a small parameter. The scaled equations are
1/2 9f of , 00 ofF

8 —_—t v =4+ =_—=0 2

5t ' Bz 3% v (2)
du du 00
—_t g —_—= - 3
5t | 3% 5% (3)

Tt
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— 4+ — =0 4

TR T (4)
2

E—E-= ff dv - n . (5)

8X2

7, we assume that the

Following the standard derivation of the KdV equation
perturbed potential is small, ® ~ €, and introduce stretched time and space
coordinates. It is assumed that the characteristic scale length of the
perturbation is kS ~ 81/2. This implies for ion—acoustic oscillations that

l/2. In addition to this time

typical frequencies will be Wy = ksco ~ €
scale, a slow soliton time scale is introduced: wg o~ 83/2. These time
scales are sufficient when the electron response is adiabatic. However, in
the present case several additional time- scales must be considered. The
first, the electron plasma frequency, wévneglect‘— simply assuming plasma
waves are not present. The second is the electron bounce frequency, W1,
(here and henceforth we drop the subscript e). Finally the nonadiabatic
electron motion gives rise to Landau damping at the rate Y1, The scaled

values (in terms of wpi) of these frequencies are

o «=1/2
wpe §

wy ~ e87L/2 | (6)
vy ~ (e8)1/2

The relative values of the five time scales:are plotted as a function of €

in Fig. 1.

In the seminal work of Ott and Sudan it was assumed that € ~ 61/2. As

seen in Fig. 1 this 1is the point where Yy ~ wg and hence where Landau

damping is the same order as the terms of the usual KdV equation. Ott and.

Sudan? assert that when Yy >> wg linear Landau damping causes the wave to
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damp away before nonlinear evolution occurs. In the opposite 1limit the
soliton effectively does not damp at all.

1/2

However, at the point where € ~ § the electron bounce frequency is

0(1) and thus the analysis of Ott and Sudan, which neglects this motion, is
invalid. These authors justify their use of straight line orbits by the ad
hoc introduction of a small amount of noise. In the absence of noise one

1 the theory of Ott and Sudan is valid; however,

2,5,6

can show that for t <K wg
during this time negligible Landau damping occurs. In Appendix A we
show that our result, Eq. (29), reduces to that of Ref. 1 in the limit

wbt > 0.

Thus we are led to assume that the bounce time scale enters. In Sec.
IIT, as in Ref. 3, we solve the Vlasov equation with the bounce time
dependence of & suppressed. Note from Fig. 1 that for all values of € of
interest (e < 6-1) we have wy >> wg; furthermore, when e > §2 we have Wy, >
Yy We will see, however, that it is consistent to neglect changes in the
quantities n, @ and u on the bounce time scale. The primary reason for
this is that the coupling between the ion fluid quantities and the
nonadiabatic Vportion of the electron motion occurs only at the final order
in our expansion [0(62)].

Proceeding to the fluid equations we introduce the usual variables7

allz(x-t)

oy
[}

3/2

T =¢% , (7)

where £ takes into account w_., variations and T varies on the scale ®_.

o
Expanding,
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n(x,t) =1+ enl(g,r) + oeee
u(x,t) = euj(E,t) + ... (8)
o(x,t) =€ed;(E,7T) + ... ,

and substituting Egs. (7) and (8) into Egs. (3) - (5) we obtain the

desired equation. For convenience we define the adiabatic electron density
1
n, = 1+ edy + €2 [@2 +-§(®1)2] + 0(83) . (9)

This density results from assuming ffdv = ¢ and expanding using Eq. (8).

To obtain the correct result it is necesary to assume

[tav - n, <e? . (10)

This will be verified in Sec. 1IV.

Carrying out the expansion to second order yields

2, (11)

R
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The right hand side 1is the kinetic correction to the KdV equation.

Equation (11) is equivalent to that derived by Karpman5 and Van Dam and
Taniuti2 except that instead of splitting off the adiabatic portion of the
electron response, they remove the non-resonant response. This

necessitates defining the electron density by an integral over the
non-resonant portion of phase space, which is not a well defined procedure
when the orbits are mnonlinear. Furthermore with their procedure the
non-resonant electron density is assumed to be independent of the position
of the phase space boundary separating the resonant and non-resonant
regions. This is difficult to justify. In contrast our procedure is
analogous to the subtraction procedure of Morales and O'Neilszthey split

off the linear response in their study of large amplitude plasma waves.
ITI. Electron Vlasov Equation

In this section we solve the Vlasov equation with an ion-acoustic
soliton potential. We allow £ to depend on the bounce time scale, ty =
e&‘l/zt. This time scale will appear [as in Ref. (3)] in the generalized
damping coefficient obtained in Sec. IV. The characteristic velocity
width in phase space over which orbits differ significantly from free

particle orbits (i.e., the trapping velocity) is Vp ~ Vo ~ Ve . If we

rescale the velocity of Eq. (2) in terms of Vs V /E.W, then to lowest

order the Vlasov equation becomes

30
Sy g L (12)

Observe that all terms of Eq. (12) are O(¢). We solve this equation by
integrating along the electron orbits in a soliton with frozen ampli;ude.
In the waveframe ®; depends 6n T But does ndt depend on t5 [e>>62 c.f.
Fig. (1)].

Thus, as potential we take the solution to the KdV equation in the

absence of kinetic effects (S=0)

L (b B | (s T AP
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bg(E,T) = 3 ¢ sech? [Vel2 (E~ct)] , (13)
where c represents the speed of the soliton in excess of the sound speed.
Noting that the electron density must satisfy Poisson’s equation (5)

at t=0, using the fact that @S(X,O) satisfies the unperturbed KdV equation
(11), and finally using the expansions of Eq. (8) yields

If(g »v,0)dv = na(g ,0) - (14)

where n, is given by Eq. (9). We further assume that the initial velocity

distribution is Maxwellian in the lab frame, and hence in the soliton frame

‘is
5 (€ 50) 2

£(E,v,0) = & 7 exp[ - = (vis1/2)7] | (15)
v 2 2

where the 61/2 term 1is the 1ion sound speed in units of vé. For the
purposes of our analysis we require only the lowest order source term for
the KdV equation; hence, it is sufficient to take n (£,0) = 1 + 0(¢) in Eq.
(15).

Thus far we have made assumptions equivalent to those of O0’Neil.

There are two small parameters
g~ wb/wpe § = my/my

and the ordering 1 >> & >> 62 is equivalent to 0’Neil’s mpe >> Wy >> Yi,e

Equation (12) is integrated along orbits to obtain
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f(g)W)t‘b) = f(gO(E ’W’tb), WO(E sw,t‘b), 0 ) [ (16)

where (£(,wy) 1is the initial phase point, which evolves to (§,w) at time

tye The characteristics of Eq. (12) are

.
2= =y (17)
dw _ 71 _ 9 2 1775

N T 3c 5--E--sec:h [Vel2 g ] . (18)

Equations (17) and (18) are easily solved for the particle position using

energy conservation,

1 2

E=7W_¢l’

yielding - ¥2/e sinh_l{ sinh(no)cosh(Kth) +

‘E(gO’WO,t‘b) = <

V2/c sinh-l{sinh(no)cos(Kvtb)+

We have defined

sgn(w) (l/K2+cosh2(n0))l/zsinh(Kvtb)} 0<k < (19a)

sgn(w) (l/kz—coshz(no)s)l/zsin(Kvtb)} 0<k<sechng (19b)

YT YT T T

A 1 T

1T
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Y =}/§C > T]O =l/C/2 go . (20)
Note vty = wyt where wy, 1is the bounce frequency at the bottom of the
soliton well. (Recall wy is scaled with wpi).

Equation (19a) represents an untrapped orbit with energy E = 3cK2

while Eq. (19b) represents a trapped particle orbit with energy E= -3cK2.

Substitution of Eqs. (19) into Eq. (15) constitutes a solution of the
Vlasov equation.

IV, Conservation Laws and Generalized Damping

It is well-known that Eq. (11) with the source term set to zero

17

possesses an infinite sequence of conservation laws. Since the source

term is of the form 3S/9%, the lowest conservation law is maintained; i.e.,
dIy/dt = 0 for

Ip = [o,d8 . (21)

Physically this corresponds to mass conservation. The next two

conservation laws in the sequence are the momentum,

= [Le2 4 (22)
I =501 &,
and the energy,

a&E . I (23)

The addition of the source term results in the following:

et e e e e
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dII 3@1 A
— = - — S d 2
dt j 13 g (24)
and
dI L)

2 1
—_— =2 28 4d . 25
dt f 9T 2 (25)

The method of perturbed conservation laws, mentioned in the Introduction,
amounts to the substitution of the solution to the KdV Eq. (13) into a
conservation law [e.g. Eq. (24) or (25)] and allowing ¢ to vary on the
slow soliton time scale, T. This variation allows for and is determined by

the source term.

Let us begin with conservation of momentum (Subsequently we will
discuss mass and energy). Using Eqs. (15), (16) and the form of the

source term in Eq. (25), yields

1
&t 32 [ e[ aw o f[EgGE,w,ty), wolE,w,tp), 0]

0%

To obtain Eq. (26) we have used the fact that the motion is area
preserving and so the Jacobian 93 (£,w)/d(Eq,wy) = 1.

The electron orbits, Eqs. (19), have velocity excursions of at most
vp o~ 0(51/2). This is also the width of the integrand 3@1/85 about wy = 0
when ty, > 0(1). Thus to lowest order in e we expand f about wg = 0,

keeping the first non-vanishing term. Furthermore, according to the

ke e e
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discussion following Eq. (15), the lowest order contribution from f 1is

independent of £

304

"oy [ d — Vs . 27
=0 Lo 50&0 wgo W 3% [E(Eo W tb)] (27)

dt 2€3/2 aWO

ar; 1 af |

Substitution of the soliton form, Eq. (13), and the orbits, Eq. (19) into
Eq. (27) gives

dI;  §1/2 55

2
+ 28
& - 7m ¢ GutID (28a)

where

““““ ‘”""éééﬁq}""""" - """‘Sinh((b_Kth)'“ T

J = fde K3(1+K2) fm d¢
T = [(1+K2)C08h2¢-1]1/2 [(1+K2)cosh2(¢4kmbt)4l]3/2

(28b)

- “Sin(d)-K'(.UBt) R

1 N - P TTTREREIEE
Jp = [Tde «2(1%) [ a¢
T 9 - [1;(1_K2)c052¢]1/2 [14(14K2)cosz(¢4wat)]3/2

(28c)

The integrals J, and Jp represent = the untrapped and ‘trapped particle

contributions, respectively.

Inserting the soliton form, Eq. (13), into the left hand side of Eq.
(27) results in the following equation for the variation of ¢ on the slow

soliton time scale:

PR DU

B e R .
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de _ 3/2
E%‘“ - c / Y(tb) ’ (29)

where the generalized damping rate is given by

~251/2
Y(tb) = —/“—8— (Ju + JT) . (30)

Observe that if we rewrite Eq. (29) in terms of the variable t, we obtain

g%-= - 83/2 c3/2 Y(wbt). (31)

If & ~ 0(61/2) then we are within the valid region of our ordering (c.f.
Fig. 1); Eq. (31) verifies consistency in that our assumption that c
varies on the T time scale is borne out. In the next section we

investigate the solution of this equatiom.

In concluding this section we remark on the conservation laws I, and
Iy It is an interesting fact that both conservation laws, I; and I,,
yvield exactly Eq. (29) when the soliton form Eq. (13) is assumed; this
lends confidence to our analysis. Physically this arisés because, within
our ordering, soliton energy is lost at a rate that is proportional to the

product of the sound speed and the momentum loss.

More rigorous perturbation theories (Keener and McLaughlinls, Karpman
and MaslovlS, Watanabelg) show that in addition to the slow modulation , a
tail is typicéllyr‘produced behind the éoliton. Thesé theories, howevéf,
lead to an equation that is identical to the result obtained by
substituting Eq. (13) into either Eq. (24) or (25). As Watanabe shows,
an estimate for the size of the tail generated may be obtained Ffrom the

conservation law

T
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dI =
0 d

_— = 0.,d¢ =

dt dt f 1 ¢

I
O

by assuming ®; = &g + 8¢ = 0 and using Eq. (25) to describe the evolution
of 5. This shows that if the soliton damps, a positive amplitude tail

must form.
V. Results

Unlike the O0’Neil calculation, the dependence of ¢ on the slow time
scale T results in the variation of the soliton width and speed, as well as
its amplitude. We will see that asymptotically this variation tends to

ZEer0.

In Fig. 2 we plot numerical computations of the time variation of

Y(wbt) and~—separateiy——its—contributions—from—ﬂa—and—ﬂTT—*Observe—that J7
quickly tends to zero, while J, oscillates and does so more slowly. This
variation arises because the initial condition, Eq. (15), is not a BGK
equilibrium. If the wave form is frozen then untrapped particles that are
uniformly fed dinto the system at |x| = o will require a characteristic
transit time before temporal variation monotonically tends to zero, due to
the uniformity of particle phase space density wupon an untrapped
trajectory. This explains the time dependence of Ju. The damped
oscillatory behavior of Jq can be explained by the usual phase space
smearing effect of particles in a potential well. In Appendix B we show by

integration by parts that

JTN —-—g:-"——sin wbt +h-0-to °

(wbt)z

This asymptotic behavior 1is indicated by the dotted curve of Fig. 2.

Apparently one expects c to approach a finite saturated state.

e e

Yy -
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In Fig. 3 the results obtained by numerically integrating Eq. (29)
are presented. To lowest order it is consistent to suppress the ¢
dependence of Y; therefore, we set wy to its value at t=0:

W= /§b(0)s/51/2 . Observe that as in the 0‘Neil calculation, c oscillates
on roughly the bounce time scale as it approaches its asymptotic state. As
mentioned, physically this arises because of phase mixing of electrons
inside the soliton trough. Unlike the O0‘Neil calculation there is no
oscillation due to untrapped particles. The graph is plotted as a function
of wyt; hence, since wy depends upon c(0), the initial soliton speed, the

scales for the various cases are different.

The asymptotic values shown in Fig. 3 can be explicitly obtained from

Eq. (29). Integrating, we obtain

c(@) = 1 €0) I (32)
(1 + TS0 )2
|
where |
TET, +rpz = () j:(Ju + Jpdt . (33) |
Consider T : 3
|
e = (7FJ é dt % dk f dox“(1+c“) G(p,«x“) G (¢-wat,K ) (34) |
|
where 3
G(¢,K2) - coshg , (35)

((1+K2)cosh2¢—l)l/2

B | S .
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and the prime is used to indicate differentiation with respect to the first

argument. If we replace G(¢,k2) by

1

o 2\ 2y _
G(¢,K )—G(¢,K ) (—1——};—2)—1/_2,

(36)

then the wvalue of I', is unchanged. This is true since G’ = G’ is odd in

its first argument. Performing the time integration of Eq. (34) yields

zp ,e3,1/2

Ty = = (=4

= (= éde é”d¢ «2(102) [GGo kD)2 . (37)
b

The remaining integrations of Eq. (37) are of standard form; we obtain

ro= o T geyl/2 (38)

IT (5eyl/2 (39)

The asymptotic values seen in Fig. 3 are predicted by the formula

172 —2

SN
c@) = e [1+ (L) ] . - (40)

12ec(0)

In Fig. 4 we plot c(®)/c(0) as a function of c(0). The horizontal axis is

ac(O)/G2 where €c¢(0) is physically the dimensionless soliton speed in

excess of the ion sound speed. Observe that for small ec(0), c(w)/c(O).

deviates significantly from wunity. Values of e€c(0) < §2% are beyond the

g e
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region of validity of our theory, since Wy < Y1 in this region. In this
case it is not sufficient to assume the soliton amplitude is constant when
solving the Vlasov equation, and one expects linear damping to dominate the

saturation due to phase mixing.
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Appendix A Linear Limit

As pointed out in the text, the theory of Ott and Sudan is wvalid for
times t <K mgl « If one takes the limit wyt + O while keeping kwpt finite,
then the electron orbits as described by Eq. (19) reduce to uniform
motion. We will show, in this limit, that the right-hand-side of Eq.
(28a) reduces to the appropriate expression for linear electron Landau

damping of the ion acoustic soliton.

Recall that Jp arises from the integration over the region of phase
space that corresponds to trapped electrons. Since in our 1limit no such

particles exist, evidently

lim JT = 0 °
wbt+0

Consider now the contribution due to untrapped particles.

2

I =[x [ Itf

.
F(;E, ¢ ykwy t)ds (A-1)

where

I Y S
_— sinh(¢—ruwy cosh¢ (a=2)

[(1+1/K2)cosh2¢-l/K2]1/2[(l+1/K2)cosh2(¢4wat)4l/K2]3/2.

Expanding F in a Taylor series in its first argument yields

1 oF

J. =] d [ a4 [KF(O,¢,Kmbt) +-%-F(O,¢,Kmbt) o ——_— (0,¢,Kmbt) + h.o.t. ]

K 3(1/k2)

(A-3)

e —p
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The first two terms in the integrand of Eq. (A-3) can be shown to vanish.

The only nonvanishing contribution from the third term is

® @ - - sinh(g—kwyt)dé - -
J = f dk f 3 z + h.o.t. (A-4)
0 = 2 cosh“d cosh”(¢—xuwyt)

Continuing this procedure, the next non-vanishing contribution is O(wbt).
Substituting ¢’ = ¢-«wt and making use of the parity of the integrand

yields the following equivalent form for Jut

« 2
-1 ® ® sech®™ 23 2, ., ’ _
i f_w Lo ek Ty sech“p’ d¢dp’ + O(wyt) . | (A-5)

u

Here P is used to mean principle part. In this limit Eq. (28a) produces

the result of Ref. 1.

To conclude this Appendix we point out that upon Fourier transforming

sechz¢ and making use of the identity

P f eXP(1K4>) d$ = im sgn k exp(ix¢”’)

one obtains for the integral of Eq. (A-5)

" 2
P f / sech ¢ ~37-sech2¢' apdp’ = 22 (3) = 2.92 ’

where ¢ is the Riemann 2zeta function.20

SRt I el § v R



-21-

Appendix B Fourier Representation
In this appendix the Fourier representation of the integréls of Eq.
(20) analogous to those obtained in Ref. 3 are presented. This form is

used to obtain the long time asymptotic limit of vy.

Consider JT:

Jp = - fldK [Me1?) 6g,0) 3¢ (p=xwyt,x )dp (B-1)
0 - 3¢ .

where

G(¢,k) = _cosd .

[1=(1-k%)cos?p] 172

Expanding G(¢,k) in a Fourier series,

-]

G(o,x) = ] g (k) exp(~ing) , (B-2)

n=-®

results in the following form

b 1
pechr ]oaf 312 15, ()12 sinlacuyt) dc . (8-3)
n=

The Fourier coefficients are given by

g = g‘fﬂ/Z cospcosnd d¢
n ™0 [1_(1‘K2)C082¢]1/2

n=1,3,5.oo Py V (B—4)

while for even n the coefficients vanish. The integral of Eq. (B-4) can

be evaluated by Taylor expanding the integrand in powers of 1—K2. The
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integrals of the resulting series are of standard form, and wupon

integration the series can be identified as the following:

1
Tt ) ) .2
. 1 2 1 3 2 I oM
= e e = F(mt =, mt+ =, 2m+2;1- B-5
Bont1(K) = g Ty Ot g k1) (), (B=5)

where T(x) is the usual gamma function and F is the hypergeometric

function.20 Insertion of Eq. (B-5) into Eq. (B-3) yields

1
, « T'(mt+ =) 2
(2m+1) 1 3, 9 2mtl 2 1 3 2
Jm = = K7(1=k %) — F(mt+ =, m+ =, 2m+2;1-k“)
X sin [(2m+1)wat}dK . (B-6)

Similarily, the Fourier. integral representation for the untrapped

particle contribution can be shown to be

3 . , . . [ 2
®pdp (® K ip ip ip ip 1
J =-[2 r(l+ =2 r(1- 22y p(1+ 22 1- 2B 2,
u {)u {)(lﬂz)z (I 5 I 2" ( 2° 27 7 z)

14

x sin(pkwypt) dp (B-7)

As mentioned in the text the dominant contribution to the time
asymptotic behavior of y(t) comes from Jp [see Fig. (2)]. This behavior
can be extracted by the integration by parts procedure.21 Writing Jq in the

form

Jp = Y lem(K) sin[(2m+1)wat]dK s (B-8)
m=0 O

e Ry e . g e - S <t
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where Fm(K) is defined by comparing Eqs. (B-8) and (B~6).

parts twice yields

Iy - ®  Fr(Dsin] Cmtlaet] bo[—L .
w=0  (2m+D)Z(oye)? (wy,t)3

Since Fé(l) vanishes unless m=0, we obtain

Jp = —+ 0 [ 5 -
((Ubt) (wbt)

Integrating by

(B-9)

(B-10)

s N thn et

— g e
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Figure Captions

1.
2.

Plot of relevant characteristic frequencies vs. € = e@/Te.

Plots of trapped, Jp and untrapped, J, contributions to the
generalized damping coefficient, yv. Ju + Jp is indicated by dash
dot. Dashed curve indicates the asymptotic behavior of Ju.

Plots of c(t)/c(0) vs. time.  (a) YL/wb = ,057 (b) YL/wb = ,183
(e) yy/wy = .57 . Note that wy, depends on c(0).

Asymptotic soliton amplitude vs. dinitial amplitude.
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