‘DOE/ET-53088-64 IFSR #64

LARGE SCALE PARTICLE SIMULATIONS
IN A VIRTUAL MEMORY COMPUTER

P.C. Gray

University of Alaska .

Fairbanks, Alaska 99701

J.S5. Wagner and T. Tajima
University of Texas
Austin, Texas 78712

R. Million
University of Alaska
Fairbands, Alaska 99701

August 1982

R

- —— e ————



LARGE SCALE PARTICLE SIMULATIONS IN A VIRTUAL MEMORY COMPUTER

P. C, Gray
Geophysical Institute
University of Alaska

Fairbanks, Alaska 99701

J. S. Wagner and T. Tajima
Institute for Fusion Studies
The University of Texas at Austin
Austin, Texas 78712

R. Million
Geophysical Institute
University of Alaska

Fairbanks, Alaska 99701

Abstract

Virtual mémory computers are capable ofv executing large-scale
particle simulations even when the memory requirements exceed the
computer core size. The required address space is automatically mapped
onto slow disc mémory by the operating system. When the simulation size
is very large, frequent random accesses to slow memory occur during the
charge accumulation and particle pushing processes. Accesses to slow
memory significantly‘reduce the execution rate of the simulation. We
demonstrate in this paper that with the proper choice of sorting
algorithm, a nominal amount of sorting to keep physically adjacent

particles near particles with neighboring array indices can reduce

random access to slow memory, increase the efficiency of the I/0 system,

. and hence, reduce the required computing time. . T



I. INTRODUCTION

The computer simulation technique is wuseful in understanding
nonlinear plasma dynamics. In particular, the study of microscopic
processes in plasmas can be aided by the technique of particle
simulation.[l] 1In many plasma physics problems the interrelationship
between large spatial scale effects and microscopic processes becomes
important, as well as the interplay between long-time scale effects and
short—-time scale phenomena. Typically the relevant time scales vary
from 10712 o 1 second, while the relevant spatial scales encompass
from 1070 to } meter for laboratory plasmas. Because of computer core
size limitations, it is not possible to realistically represent plasma
by a particle simulation, even on the world’s most advanced computers.
We envision three paths that lead to more realistic simulations. One
method 1is to improve the algorithm of advancing the plasma dynamic
equations in time so that a large time-step At can be taken without
compromising relevant effects due to short time scale
phenomena.[2],[3],[4] The second approach is to increase the effective
physical length described by the spatial grid by using more advanced
interpolation‘techniques.[S] The third method is to develop techniques
that enable -us to carry out very large size simulations on computers
with limited memory sizes. This 1last problem 1is addressed in the
present paper.

Modern high—-performance scientific computers like the CRAY-1 have

fast memories that can hold 1-2 million words. 1In order to run codes

that require more memory than this, it is necessary to map a part of the
code or code-generated data onto the slower disc memory. In a

high-speed scientific computer the input/output transfer rate is much

! R



-3= e

slower than the cpu execution rate. This causes a bottleneck in an I/0
flow when mapping of memory is required. Then the extraordinary speed
of the CRAY-1 cpu cannot be efficiently utilized.

In some cases it may be more cost-effective and time—-effective to
run very large codes on computers that have operating systems optimized
for efficient transfer of information between fast memory and disc.[6]
Virtual memory computers have this potential., Virtual memory computers
such as the VAX-11/780 can handle codes larger than can the CRAY-1 with
no special modification to codes themselves.

The execution rate of a large—scale simulation on a virtual memory
machine is strongly dependent on the efficiency of data transfer between
core and peripheral memory, especially if a significant amount of memory
mustrﬁe resident on disc. Randomly accessing memory from disc i§ most
inefficient. Systematically requeéting ad jacent numbers and
transferring them in clusters has been found to be much more efficient.
The ©problem is that particle simulations normally access memory
randomly. It is possible, however, with minor modification to the
simulation code, to control the random accesses to memory and group them
into clusters having the same size as the read/write clusters controlled
by the virtual operating system. In this way the simulation code is
optimized and can be used on grids 8-16 times larger than can be run on
a CRAY-1 (without disc mapping).

The essence of a wvirtual operating system is that processes are

partitioned into "pages", which reside in peripheral memory anmd are

migrated or '"paged" into a section of the cpu allocated to the
particular process, the "working set", as they are needed for further

execution of the program. The major overhead in such a system is the



A

paging to and from the cpu and peripheral storage. A worst case
situation for the execution of a process is one in which the execution
of any instruction is likely to generate a page fault., An example of
such a situation is the random access of elements of a very large array.
It is clear that most of the paging in the execution of a particle
simulation code takes place due to those computations which associate
the particle quantities by position with the corresponding grid
quantities (éigi’ charge accumulation and particle pushing). This is
true because a particle position in the grid is random, or will tend to
be so, with sufficient number of time-steps.

The approach we have taken to reduce page faulting is to sort the
particles by position before associating them with their corresponding
grid elements. This leads to a situation where all of the particles in
a particular grid cell and the associated grid elements are present in
the cpu at the same time. Hence, when the code associates particle
quantities with grid quantities, the grid elements are accessed in more
or less the order of linear storage. We find that the time expended in
keeping the particles sorted is much less than the time gained ﬂy

reducing the number of page faults.

II. COMPUTER CONFIGURATION

Although wvarious viftual memory machines have slightly different

architectures, they have in common the important feature of wusing

peripheral disc storage to supplement main memory. The details of how
memory is mapped onto the combination of main and peripheral memory

depends on the details of the computer and its operating system. We

TS e e e e T T T T "“*‘WALL— SIS S . i A e i, i, —r——— i | S—



v , =5 o

summarize in this section a typical configuration, the VAX-11/780 in
Fig. 1.

The cpu is divided into a set of pages which are shared by all
executing jobs,‘ or processes. Each page contains 512 bytes of
information, and each process has associated with it a working set of
pages consisting of that part of the process which is executable at any
given time. The maximum size of the working set is set by the operating
system at the start-up. In general, the maximum working set size is the
cpu size (in pages) divided by the maximum number of possible processes.

In addition to the working set an executable process has associated
with it a modified page list and a free page list. The modified page
list contains those pages removed from the working set which were
modified during the execution. The free page list contains those pages
from the working set that were not modified. Pages are paged out of the
working set based on age, into either the modified page 1list if
execution has altered the contents of the page or in;o the free page
list if execution has not modified the page, and from these either back
into the working set or onto disc. For example, in a l6-user system the
maximum working set is set to 256 pages, the modified page 1list dis 44
pages, and the free page list is the remainder of memory. Processes
share the free page list space with other processes.

When a process needs a page that is on disc or in the free or

modified page 1list, it 1is paged into the working set, along with

neighboring pages that make up a page fault clustex. prfhequrking_get__r

is full, since its size is fixed, a page must be removed to make room.
The oldest page is then transferred to the modified or free page 1list.

If the modified page list is full, a cluster of pages is written back



-f—

onto disc. In a l6-user system, the write cluster is 32 pages, and only
pages 1in the modified page list need to be written back to disc, since
those pages in the free page list are unaltered.

The time required to page to and from the modified page 1list or
free page list is only a few clock'cycles and 1is negligible compared to
that for a disc page fault. The time required to page to and from disc
is equal to the average access time added to the transfer rate times the
cluster size. For the l6-user system this is roughly 51 msec. Since
this time is very slow coﬁpared to the access time in the cpu, efficient

codes must minimize the number of disc page faults.

ITI. SIMULATION TECHNIQUES

In particle simulations we attempt to model the complicated
behavior of an ionized plasma by following the motion of a modest number
of computer particles (<106) in their self-consistent electric and
magnetic fields. The computer particle, or macro—particle, is thought
of as a cloud of real particles. No computer is capable of handling a
realistic particle number (1020). The reduced number of particles can
lead to wunrealistic effects such as enhanced collisional effects.
Techniques such as the use of finite-size particles have been
introduced[7] to reduce the effects of short-range Coulomb collisions in
computer plasmas. Since it is too expensive to compute the

self-consistent motion of the plasma b

particle due to every pair, a spatial grid is introduced on which the
charge density and current density are accumulated; the electric and

magnetic fields are stored there as well, Time—-stepping in the

computing the force on each

|
E
|
|
|



-7~

simulation involves three processes; a) accumulating the charge density
and current density on the spatial grid from the particle positions and
velocities; b) solving Maxwell’s equations on the grid to find
electrical and magnetic fields E and B; c) interpolating the fields
on the grid to the particles and using the interpolated force to push
the particles in time.

Numerous algorithms are available for the charge accumulation
process, such as NGP (nearest grid point), multiple expansions[8], and
polynomial splines.[5] Maxwell’s equations can be solved with finite
differencing or Fourier techniques. Particle pushing is normally done
with the second~order accurate leap—-frog technique.

Simulations are classified according to the number of degrees of
freedom allowed by the particles. Simulations come in 1, 1.5, 2, 2.5,
and 3-—dimensional versions, where, for example, a 2.5-D code allows the
particles to move in the =x-y plane but allows three velocity
coordinates, which is wuseful, for ‘example, when there is a magnetic
field in the =x—~y plane. Electrostatic codes compute only the
electrostatic field self-consistently from Poisson’s equation.
Magnetostatic codes compute both electric and  magnetic fields
self-consistently, but radiation effects are ignored, Fully
electromagnetic simulations compute E and B self-consistently and
include radiation.

Our goal is to have the capability to simulate plasmas on nearly
 realistic temporal and spatial scales. To some extent lack of computer
capabilities prevent us from achieving our goal. Thé best algorithms
available to us today do not allow us to describe large spatial scale or

to use big enough time-steps, although there are several significant

S R

pu—

o e



-8

' ”"frequency"w”e“. “The maximum time-step dallowed is then typically

advances in furthering time-step[4] and spatial scale.[5] The reason
for the spatial problem is that the grid spacing A mnust be no larger
than the smallest spatial wavelength X we wish to describe in the
gsimulation. In conventional simulations[1l,7] the smallest phenomenon of
interest must be larger than the electron Debye length ADe » OF

LX 2 A .Z xDe =~ A
Laboratory—-scale plasmas have spatial lengths on the order of
106 Debye lengths in one dimension. Since our grid spacing (A) must
be on the order of the Debye length for a typical simulation using the
multiple expansion technique, laboratory scale Woﬁld require 106 grids
along any direction. Present day computers restrict us to grids of
size L~ 1024A in one dimension, or LXXLy ~ 128x128 in two
dimensions for electrostatic codes.

In electromagnetic simulations we are further constrained by the

collisionless skin depth

L.> A > ¢ sy JERo_ L)
~ C(.Upe wpe De~ .

In addition, we have a limit on the maximum time-step we are
allowed to use, based on the highest frequency phenomenon we are

interested in. In most cases this is the electron plasma

P

~ -1
At O.pre o

= vy ey

S ——r



=9-

This is a very severe limitation for processes which occur on the
ion time scale and slow magnetohydrodynamic phenomena. Some progress
has been made recently to increase the time—step by using the guiding
center approximation and partially implicit techniques and these codes

are very useful when they apply.

IV. SORTING TECHNIQUE - Partition Sort

There are two considerations associated with the choice of
appropriate sorting scheme. The first consideration is related to the
degree of ordering of particles at any point in the simulation. Since
the particles do not move more than a grid length for any time-step in
the simulation it seems unnecessary to completely sort the particles at
each time-step, the ordering of particles having changed little between
adjacent time-steps.

We have found two sorting algorithms which are particularly well
suited to the particle sorting problem we have just deécribed. For a
general discussion of techniques, including those used in this paper, we
refer to D. E. Knuth.[9] The two types of sorting routines we have
applied are appropriate for sorting records into bins of predetermined
size, they are the radix sort and a variant of the partition exchange
sort, or quicksort.

The first of these two algorithms, the radix sort, is similar to a

_technique used by card sorters, and can be described as follows. One
defines a set of bins, for example in a 2.5-D system a bin will contain
all of the particles with y-position between the (i) and (i+l) grid

levels. The number of particles which fall in each bin is then counted,

Y



-10-

in order to determine the needed temporary storage per grid cell.
Particle quantities are then placed in the proper bin and finally the
arrays are reordered.

The partition exchange sort is an entirely different approach than
that of the radix sort. If we think of the array to be sorted as
increasing from the 1left to the right in its proper order, we first
choose some median test value, then starting from the left, we find the
first wvalue greater than our test value but occuring before it in the
array., Then starting from the right we find the first value less than
the test value but occuring after it in the array. The two elements are
then switched, and the process is continued until the two elements we
are looking for are 1less than some optimal partition size. At this
point the array is divided into three sections, a central segment, and
both ends. We repeat the process on both end segments independently
until we are left with a set of ordered segments mno larger than the
chosen partition size. The choice of the partition size is important to
the efficiency of the sorting for the application'of this technique to
our problem, since it defines the degree of order in the particle
arrays. This implies that the amount of paging is proportional to the
degree of ordering of the particles at any time-step. If there
are N elements in a page for the particle position array, then it
would seem that at any time-step it 1is only necessary that every
particle be within N elements of its literal order by position to
reduce paging. There are
achieving this; if»oné knows the mean-time required for a particle in
the simulation to move the length of a grid is M steps, then one could

sort the particles to literal position every M time-steps.

two essentially equivalent methods for

Dt 1 A o el unRL R St Aesaenali b



-11=

above. The partition exchange sort

Alternatively, one could sort the ﬁarticles to within N elements of
their literal position every time-step. The second of these two
approaches 1is more easily implemented, since the mean time for a
particle to move the length of a grid cell is a function of the problem
being modeled in the simulation.

The second consideration 1is the trade-off between sorting the
particles and the time taken up by page faulting. To a reasonable
extent this is related to the configuration of the computer being used
and how efficiently the operating system handles paging. At a certain
size simulation the amount of paging per time-step requires more time
than would be required to sort the particles. One reaches this point
sooner the less efficient the operating system, and the more efficient
the choice of sorting routine.

For our study we have implemented the sorting of particles for 1-D
electrostatic and 2.5-D electrostatic and electromagnetic codes.[10,11]
With the 1-D system particles are to be sorted to within a page of their
final position in 1literal order before charge accumﬁlation and the
pushing of the equations of motion. The implementation is somewhat less
obvious with the 2.5-D case than with the 1D case. We note that the
linear storage of a two-—dimensional array (iiéi’ any grid quantity) is
by columns. It is, therefore, only necessary to sort particles by their
y-position to reduce paging.

There are advantages to both of the sorting techniques described
like Nlog)N , where N is the number of elements to be sorted.
However, it is inappropriate for application to "parallel" machines.

Furthermore, while we may force every element to be within a chosen

is fast, with speed going

et g T e ey i



- ]_72..

distance of the position it would occupy, if the array were sorted to
literal order by choosing that distance as the partition size, there
will not be, in general, the distinct separation between the elements in
the (i) and (i+l) grid level that the radix sort produces. As for the
radix sort, it is the appropriate choice for a parallel machine.
However, while its speed on moderately large systems matches that of the
partition sort, it 1is noticeably slower on very large systems in a
virtual memory environment. For this reason we have chosen to use the

partition sort in our numerical tests of this technique.

V. RESULTS AND DISCUSSION

A. Benchmark Timings with No Sorting

In the first part of this section we examine the relationship
between execution rate and working set size without sortings. From this
information it is possible to estimate the execution rates for a variety
of related simulations.

We have tested the sorting technique described above on a variety
of particle codes, both one and 2.5 dimensional, electrostatic and
electromagnetic. Our particular machine is configured with  four
mega-bytes of random access memory, hardware floating point operations,
and sufficient disc storage. The operating system 1is also DEC’s VMS

(2.3), the operating system parameters for the test were those suggested

by DEC for a l6-user configuration, with the exception that the virtual

page count, which designates the maximum number of pages any one process
is allowed, was increased to allow the linking of very 1large grid

systems (e.g., 128x128 and 256x256 grids). In Fig. 2 we show results



~13-

for 64x64 two-dimensional electrostatic simulation
with 128x128x2 particles. We separately timed different sections of
the code, namely charge accumulation, the Poisson solution (using the
fast Fourier transforms) and the particle push. For the largest working
set we tried, 700 pages, one time~-step took about seven seconds.
Two-thirds of this time was spent pushing the particles. The remainder
of the time was shared by the Poisson solution and charge accumulation
processes. A sharp decrease in time is observed between working sets of
100 and 60, and then slowly decreases after that for larger working
sets. This - example shows how the computer becomes I/0 bound when a
significant fraction of the code is resident on disc as the working set
size becomes small or the code size becomes large.

Figure 3 shows an even larger system, 128x128 grid and 256x256x2
particles. With a working set of 700 pages, the code requires about 30
seconds per step. The execution rate would be smaller for larger
working sets. Another example with the same grid but fewer particles is
shown in Fig. 4, These results indicate the importance of fitting as
much of the code into core as possible, particularly the grid
quantities; yet when required the computer can process codes which
exceed the allocated core space. The largest 2-D electrostatic code we
tried was a 256x256 grid, 512x512x2 particles and a working set size of
1500 pages. The Poisson solution took 12 seconds, the charge
accumulation took 13 seconds, and the particle push took 49 seconds for

one time-step.

R B _ s L L



-14~

B. Test Results with Sorting

In this second part of the section we examine the execution rates
of wvarious codes with sorting. For the following two reasons we give
our results in terms of page faults and in terms of a partition size
normalized to the effective page size, the write cluster. First, the
VMS operating system uses the unused portion of the main memory as a
"cache" for pages which are paged out of the processor’s working sets.
For this reason, the average cost of a page fault 1is very much a
function of the work load on the machine and the machine configuration,
in pérticular, the amount of main memory. Second, in order to
facilitate the transfer of pages to and from disc, one of the operating
system parameters, the "cluster factor'", is set so that more than one
page 1s moved dinto the working set when a page fault occurs; this
parameter defines what is an effective page size. The results given may
be interpreted in terms of processor time by determining the average
page fault cost for the given machine and work load.

The results from our tests are shown in Figs. 6-17. From 1-D
codes the number of particles per cell was 20 (iﬁgl, 20 ions and 20
electrons), while for the 2.5-D codes it was four. The sort partition
measures the size of one unsorted datum. The write cluster is the
cluster of words transmitted between the disc and core. (See Fig. 1).
Therefore, larger the ratio of the sort partition to the write cluster,

the less sorting is done.

Two features are evident from these figures. First, the cpu time

required for execution increases sharply as the number of page faults
increases beyond some certain value. This is due to the excessive

random access memory when the sorting is done only sparsely. The number

S



of page faults is the sum of the page faults to disc and the page faults
to the modified and free page lists. Hence, the less random—access
memory the machine has available for the modified and free page lists,
the more representative of execution time is the number of page faults.
The second noticeable feature is that there is a break-even point for
the cpu time (depending on the size of the simulation) below which it
requires more time to sort than is saved in reduction of page faults.
This effect is again strongly dependent on the machine configuration.
This break-even point is about where there 1is enough space in the
working set and the modified page list for the entire simulation. In
every case maximum benefit is gained by sorting until the sort partition
rqughly equals the cluster size.

When the sorting algorithm is actually applied in a production run
it is not necessary to sort every time-step. It need only be applied
after the number of time—-steps it takes for the particles to randomize
themselves into partitions larger than the cluster size. Hence, in
production runs the sorting time spent is much less than time gained by

running the sorted particles through a number of time-steps.

VI. CONCLUSIONS
We have examined the feasibilities of wusing 'a virtual memory
computer such as the VAX-11/780 on very large-scale particle simulation.

We have run

electrostatic codes up to 256x256 grids and 2-D electromagnetic codes up
to 128x128 grids. Larger runs are possible in principle. We find that

execution rates for very large simulation can be significantly reduced

=15-_ — e e e e

1-D electrostatic codes up to 32,000 grids, 2-D



..16..
if the particles are kept sorted so that physically adjacent particles
have neighboring array indices.

It is not necessary, however, to keep particles completely sorted.
Instead, the sort partition must be on the order of the read/write
cluster size of information that is transferred bétween slow and fast
memories. Since the particles do not have to be sorted every time-step,
the time spent sorting is small compared to the time saved by exeéuting
the code with sorted particles.

The preseﬁt technique should be also applicable to other wvirtual
memory computers. It would be particularly interesting to apply this
technique to future computers such as the CRAY-1XMP with very fast
solid~-state peripheral memory. In such én environment the present

technique may become crucial to run a very large code.

Acknowledgements

Two of the authors (J.S.W. and T.T.) thank the National Science
Foundation for its support through the grant NSF-ATM-81-10539. The
other two authors were supported by the Department of Energy grant
DE-AT06-76ER7005,

Also, the grant of the Department of Energy DE-FG05-80-ET-53088 is
apbreciated for the support of the present work.

The encouragement by Professor S. I. Akasofu and the help by Drs.

A, Macmahon and J.N. Leboeuf are appreciated.

e —— o g A g g T A



-17-

References

1.

8.

10.

11.

R. Hockney and J. W. Eastwood, Computer Simulation Using Particles,

(1981, McGraw Hill, New York).

J. Denavit, J. Comput. Phys. 42, 337 (1981).

R. Mason, J. Comput. Phys. .ﬁl’ 233 (1981).

T. Tajima and J. N. Leboeuf, Bull. Amer. Phys. Soc. 26, 986 (1981).
See also D.C. Barnes and T. Kamimura, IPPJ Report #570 (1981).

C. Z. Cheng and H. Okuda, J. Comput. Phys. z§) 33 (1977).

A VAX-11 is about two orders of magnitﬁde more inexpensive and.also

two orders of magnitude slower than CRAY-1,

C. K. Birsdall, A. B. Langdon, and H. Okuda, Methods in

Computational Physics, Vol. 9, p. 241, (1970).

W. Kruer, J. M. Dawson, and B. Rosen, J. Comput. Phys. 13, 114
(1973).

D. E. Knuth, Fundamental Algorithms, (1968, Addison-Wesley, Reading,

Mass.).
A, T. Lin, J. M. Dawson, and H. Okuda, Phys. Fluids 17, 1995 (1974).

A. B, Langdon and Lasinski, Methods EE Computational Physiecs, Vol.

16, p. 327 (1976).

D O S

T 1 oyt —



-18-

Figure Captions

Fig. 1 Schematic diagram of the VAX~11/780, showing how the paging

process transfers information between fast and slow memory.

Fig. 2 Comparison of cpu time as a function of working set size for
a 2.5-D electrostatic simulation with 64x64 grid and 128x128

particles.

Fig. 3 The cpu time as a function of working set size for a 2.5-D

electrostatic simulation with 128x128 grids and 256x256 particles.

Fig. 4 The cpu time as a function of working set size for a 2.5-D

electrostatic simultion with 128x128 grids and 128x128 particles.

Fig., 5 The execution rate for a 1-D electrostatic code as a
function of sort partition/write cluster. The time is minimum when
the sort partition equals the write cluster. The sorted code
executes in 95 sec. (sum of 234). The unsorted code executes in
480 sec, (sum of 234). The simulation had 32x103 grids with 20

particles per cell.

Fig. 6 Page faults as a function partition/cluster for the same

simulation as in Fig. 5. The number of page faults is minimized

when the sort partition equals the write cluster. This graph makes

it possible to estimate the usefulness of sorting on virtual memory

computers other than the VAX-11/780.

| Rt T e

P



-19~
Fig. 7 The cpu time as a function of sort partition/write cluster

for a 1-D simulation with 8K grids and 20 particles per cell.

Fig. 8 Page faults as functions of sort partition/write cluster for

the same simulation as in Fig. 7.

Fig. 9 The cpu time as a function of sort partition/write cluster
for a 2.5-D electrostatic simulation with 256x256 grids and 8

particles per cell.

Fig. 10 Page faults as a function of sort partition/write cluster

for the same simulation as in Fig. 9.

Fig. 11 The cpu time as a function of partition/cluster size for a
2.5-D electrostatic simulation with 128x128 grids and 8 particles

per cell.

Fig. 12 Page faults as a function of partition/cluster for the same

simulation as in Fig. 11.

Fig. 13 The cpu time as a function of partition/cluster size for a
2.5~D electromagnetic simulation with 128x128 grid and 8 particles

per cell.

Fig. 14 Page faults as a function of partition/cluster for the same

simulation as in Fig. 13.

e R

R I s i (g



-20-~
Fig. 15 The cpu time as a function of partition/cluster size for a
2.5-D electromagnetic simulation with 64x64 grids and 8 particles

per cell.

Fig. 16 Page faults as a function of partition/cluster for the same

simulation as in Fig. 15,




T "DId

"BALP XSIJ GONYH Yim (€72 SINA) WidlsAs tasn-g| palsabbns ") 3°(Q Uo paseq siaquinp

t

«
'
'
I

J9s WG =
{s320jq g¢g) X : sbed ay1 bu._mzm 10U sey )

(300]q/09s W §°) + 285 W £'BE = sey uolnoexa 41 ‘(dd) 1817 abed 8814 (g

1a38h sabed JO S131SN|D Ul OS OP YsIp : abed ay1 10 s1Us1U00 a3 paiale sey
(1e3snI3) x w01y 10 03 pasajsuely butaq sebed (g uonndexs i1 ‘(4N s abed payipoy ('L

(81e4 J3ysuenl) + (dwiy ssad0y abesany) = ,.

3Sip 01 3oeq patajsueul J8y118 01Ul 23p UO
1 SSIp w0l pue , ag psau 4N aur ul sabed Ajuo () paseq 195 Bui1op 2Y1 Jo 1no pabed aie sabey
ﬂ o1 sbed 01 paiinbat awi} Y1 01 Buibey 151517 9bed ga14 pue paipopy

{ [sessao04d juapisad m
18ylo jje 104 padinbau
Aowsw] — ['WV'Y jo1]) [
1517 abed @914 _

(sabed zg)
J91sn|D 3M

$9]0A0 300|0 M3} B ~

abed payipopy . : 1dd 10 T(dIN wiod}
{sa1Aq Z1g Mmmma 1) & (sabed y "xely) s 8bed paijipop Al“ , pue 03 864 01
a}14 abey . ”
(s66d zg) —b> (sabed ggz "xepy) 198 Bunjiopy g w paiinbay awi |
Msiq 191sniD 1jne abey ndo ;

«Buibed 08//LL XVA W



-22-"

*DIda
(SFOVC) 3ZIS L3S ONIMYHOM
09 OO0l mm_ | QG| m.\.. _. OON. 00L
(X P
X s > 2|
N /|
. /]
N
\ .
N
N
4

SAWIL NdD 40 NOSIMVAWNOD

...........
...........
............
............
............
----------

NNOOV
A9YVHO

RRSEIEERRKE
LLERRIRRELS
LRRELREEIEKL

N10S
NOSSIOd

HSNd



(SFOVd) JZIS L3S ONIMHOM £ o

-23-

] SSENOOONR SOONOODBNESL O
09
o
V)
< -
B R seee
1= INNDOV
O™ 39uvho
)
o m
S
. Nos
w NOSSIOd
08l
1 HSNd
obe

SINIL NdD 40 NOSIMVAINOD



(SFOV) 3ZIS L3S ONIMHOM v oL
ole] oGl 002 00¢ 00S 00.

-4~

d94VHO

OOAAIIOOOE DOOOOCSEONT SOEONNN B SSUSEONENS
RO Letatat s, 5 X i
SIS |
CRIIIRKLKS o
KXRIBRKKIELES _
|
m
|
i
| O
0¢ %3
, _ -
] —
Og m
FAY -4 : —
w
m
O
S

Ov 103
NOSSI0d

HSNd

SANIL NdO 40 NOSIHVANOD



CPU SECOND

103

U | ll]

I

O
N

-25-

32K ELECTROSTATIC (D)

{=Total CPU
2=Charge Accumulation
3=Calculation of E |
4=Particle Push

5=Sort Time

llllllll | llllllll 1 llll!l!l | llllllll /] llllllll

3

b ) lllllll

101l
1073

~_SORT PARTITION/WRITE CLUSTER

102 10°' 100 4of

FIG. 5

102

103




106

O
@)

PAGE FAULTS

@)
N

109

1 1 IIIIII‘ j 1 l[lllll

TIIITH’

W

i

-26-
52K ELECTROSTATIC (D)
1=Total Page Faults

2=Charge Accumulation 1
5=Calculation of E

4=Particle Push
5=Sort Page Faults

/

| lllIJHl ] llllllll | llllllll 1 llllllll | llJllUI | llllllll

10°° 1072 107" 109 10t 102 403

SORT PARTITION/WRITE CLUSTER o

FIG. 6




-27-

8K ELECTROSTATIC (D)

{=Total CPU

2=Charge Accumulation

53=Calculation of E
102 4=Particle Push
5=Sort Time

llllll

|

CPU SECOND
S

lll1f]

!

,100 | lllllllll ] lllllll] | lll!llll 1 llllllll | l!lllllJ

403 402 0t 409 40t 102

SORT PARTITION/WRITE CLUSTER

FIG. 7




~28-

8K ELECTROSTATIC (D)

1=Total Page Faults
105 2=Charge Accumulation

E— 3=Calculation of E

i 4=Particle Push

- 5=5ort Page Faults
» 104 5 ;
.l___l L /
= [ >
L N /
L _
G
<
O- 1031

- \3

;102 1 1 lllllll } llllilll ] ] llllll| 1 | lll“ll 1 ] lllllll

103 1072 10! 400 40! 102
. SORT PARTITION/WRITE CLUSTER |

FIG. 8




CPU SECOND

7 SORT PARTITION/WRITE CLUSTER

-29- \

256x256 ELECTROSTATIC (2.5D)

{=Total CPU
104 2=Charge Accumulation

3 3=Calculation of E
N 4=Particle Push
i 5=Sort Time
103 =
402;—
404 { llllllll 1 lillllll 1 llll!lll 1 llllllll ] 41111u]
107 102 40t 00 10t 102

FIG. 9




PAGE FAULTS

-30-

256x256 ELECTROSTATIC (2.5D)
1=Total Page Faults

107 2=Charge Accumulation
3 3=Calculation of E
- 4=Particle Push
- 5=Sort Page Faults 1
4
106 -
- A
L \
10° S
10% |
1103 ! l!lllll! | llllllll | lllllll[ ! llllll]l | lllHLlJ
10°° 1072 107t 109 40! 102

_SORT PARTITION/WRITE CLUSTER |

FIG. 10




CPU SECOND

~-31-

128x128 ELECTROSTATIC (2.5D)

. 1=Total CPU
102 2=Charge Accumulation

- 3=Calculation of E
i 4=Particle Push
u 5=Sort Time
— Vi
102} | //4
-2
1104 1 ll],llllr ) lllllllJl { IIIIIHJI 1 lllllLll 1 lllllll]
1075 102  40°'  10° 10" 102

" SORT PARTITION/WRITE CLUSTER

FIG. 11




-32-

128x128 ELECTROSTATIC (2.5D)
1=Total Page Faults

106 — 2=Charge Accumulation
- 3=Calculation of E
B 4=Particle Push
- 5=Sort Page Faulis

@)
o

lllll[]'

T

PAGE FAULTS

O
D

llfllil]

I

103 } 1 l-lllUl ] { lllllll 1 i lllllll 1 | llllll[ ll ] llllJJJ
1009 10 10t 100 10 102

- SORT PARTITION/WRITE CLUSTER |

FIG. 12




CPU SECOND

-33-
128x128 ELECTROMAGNETIC (2.5D)
{=Total CPU

1O4r 2=Charge Accumulation
- 3=Calculation of E and B
N 4=Particle Push
i 5=Sort Time
103 |-
102 - o
101 1 1 lllllll ) 1 lllllll 1 | llll!l[ | I ]l-lllll 1 1 llllll'
10 102 10t 40O 101 102

SORT PARTITION/WRITE CLUSTER

FIG. 13




PAGE FAULTS

-34-

128x128 ELECTROMAGNETIC (2.5D)
{=Total Page Faults

'107_~ 2=Charge Accumulation
' - 3=Calculation of E and B
N 4=Particle Push
- 5=Sort Page Faults
106 L
105;
) 5
107 /Jé/
1()3 - R Lol ol Ll b
1003 102 4ot 10© ToX 102

~— SORT-PARTITION/WRITE CLUSTER -

FIG. 14




CPU SECOND

~35-

c4x64 ELECTROMAGNETIC (2.5D)

1=Total CPU
102 2=Charge Accumulation
3=Calculation of E and B
4=Particle Push
5=Sort Time

Illlli

¥

I

O

ill§ll

I

100 el Lot 1] ] 1 lll 5 o]
1073 1072 1071 109 10

. SORT PARTITION/WRITE CLUSTER

. FIG. 15




PAGE FAULTS

-36-

64x64 ELECTROMAGNETIC (2.5D)
{=Total Page Faults

109 2=Charge Accumulation
- 3=Calculation of E and B
B 4=Particle Push
i 5=Sort Page Faults
i I
—3
104 =
31 5
10 : N
402 N EEE Cooee il ool Cooe el
ToR 1072 Tomk 100 Tol

~ SORT PARTITION/WRITE CLUSTER

FIG. 16




