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I. CLASSIFICATION OF PLASMA INSTABILITIES

The bulk of this paper, concerning the trapped-ion modes in tandem
mirror machines is an elaboration of work done by T. M. Antonsen,
D. E. Baldwin, H. L., Berk, M. N. Rosenbluth, and H. V. Wongl submitted
for publication to the Leontovich Memorial issue of the Soviet Journal
of Plasma Physics. Before proceeding to this technical discussion, I
would like to briefly describe the present understanding of
instabilities relevant to fusion plasma confinement. Table I is a crude
attempt to schematize the different types of low-frequency plasma
instabilities, although, of course, there are intermediate cases for
which problems arise. All these modes are energetically driven, either
by the unfavorable curvature of the confining field, or, in the case of
tearing and kink modes, by the magnetic energy associated with parallel
plasma currents.

The simplest of these modes are described by ideal

magnetohydrodynamic ~(MHD) “theory. = Here ~the constraint of frozen—in =~

allows the use of a powerful variational expression, 6W , for thé
determination of the stability of static equilibria. The importance of
positive &W is clearly seen in the violent behavior of some pinches
and axisymmetric mirrors. With the aid of large computers a very

accurate estimate may be made of the stability of axisymmetric systems

+ like tokamaks, and at least some understanding is emerging for more

complex geometries 1like stellarators. From a practical point of view,
the highest stable MHD B8 permitted by various confinement schemes is

of great importance.

field-linesprovides—great simplification as well as stabilization, and
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Perhaps the greatest  theoretical interest lies in kinetic
modifications of the MHD modes, the simplest of which are finite
gyroradius effects which greatly improve stability at short wavelengths.
An area of great recent activity has been the MHD stability of plasmas
containing a high—energy component which may be decoupled from the fluid
motion. Examples of such systems are the stable field-reversed hot
electron rings of Fleischmann at Cornell and the stable Elmo Bumpy Torus
(EBT) at Oak Ridge and Nagoya with its relativistic electron layer. An
interesting theoretical picture has been developed showing that MHD
stability is achieved due to the negative compressibility of field lines
in the presence of such high-energy components.2 The predicted, but
not yet tested, Lee~Van Dam breakdown of this stabilization could be
crucial for such systems.

The simplest modification of the MHD equations results from the

consideration of £fluid resistivity. This permits reconnection at

“rational ~surfaces (q = m/n in tokamak parlance).  The past decade has ~

—seen—a-rather-spectacular-growth—of—understanding —of~—the—mnon=Iinear——"—————""7]

behavior of such modes, e.g., non-linear energetics, the effects of
stochastic fields arising from island overlap, etc., such that theory,
computer simulation, and experiments all seem in agreement in
descriptions of disruptions in tokamaks. Not yet investigated is the
behavior of Coppi’s second stability region in tokamaks, which has such
favorable ideal MHD behavior at high B . Another  class of
instabilities, the resistive g-modes, and its relatives, resistive
ballooning and the kinetic trapped-particle modes, have not yet been

firmly identified experimentally but are crucial in determining the
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quality of confinement not only for tokamaks, but even more importantly
for reverse~field pinches and compact torii.

When we pass to the microinstabilities, those exceedingly complex
motions not susceptible of a fluid description but depending wupon
microscopic plasma quantities like gyroradii and requiring consideration
of diverse particle trajectories, much less is understood. Volumes have
been written, and large computers strained to the limit, in the detailed
calculation of the linear theory of such modes under simplifying
assumptions. They have been identified in simple laboratory experiments
such as Q-machines and Sen’s recent collisional trapped-particle mode
experiment at Columbia, but their existence is mostly inferred from the
low-frequency, short-wavelength turbulence seen in all tokamaks. The
range of frequencies and wavelengths is what is to be expected, but
positive identification is difficult since what is seen is always the

saturated non-linear state.

The mnon-linear theory is now the principal frontier in stability

research—and has made great—advances in the past few years, although it
is far from having predictive capability. Of particular interest are
Direct Interaction Approximation (DIA) modé-coupling calculations and
introduction of "clump effects" which go a long way toward explaining
the broad-frequency spectra which are seen experimentally. Perhaps the
biggest question mark as to whether our qualitative understanding is at
all correct is the recent stellarator experiments on Wendelstein, which
showed that, at least in that geometry, drift waves were closely
associated with plasma currents. This is in complete contrast to all
the 1linear theory predictions which have; however, only been made for

tokamaks.
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The most dangerous of these predicted microinstabilities, at least

in the collisionless 1limit, is the trapped-particle mode of Kadomtsev
and Pogutse3, driven by unfavorable curvature. In this paper we point
out that in some proposed tandem mirror schemes these microinstabilities
become very similar in their properties to macroscopic MHD flute modes,
thereby providing a 1link between the two classes of instabilities. A

yet-to—be developed collisional theory could modify the discussion.

IT. A PHYSICAL PICIURE OF TRAPPED-PARTICLE MODES IN TANDEM MIRRORS
Magnetic mirrors have traditionally been considered as
minimum B geometries, immune to such low-frequency modes. However
recently, in an effort to obtain improved high-frequency
microinstability and enhanced classical confinement, the concept of

tandem mirrors has evolved, consisting of a long central-cell

axisymmetric™ mirror, MHD-stabilized by quadrupole énd plugs. It has =

been—assumedthat—their macroscopic stability would be governed by ideal
MHD, Standard MHD stability criteria for ballooning and interchange
modes indeed permits favorable high—B confinement (up to 50 per cent).
Further reduction of end losses is obtained by erecting "thermal
barriers'" which are electrostatic pqtentials produced by high—energy
populations of ECRH relativistic electrons and "pumped" sloshing ion
beams. See Fig. 1 for a schematic plot of magnetic fields and
potentials. The existence of these large potentials makes the situation

essentially different from tokamak confinement.
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An important feature of these systems dis that because of the
insulation, only a relatively small number of particles actually
traverse both the central and transition regions with their wunfavorable
curvature, and the stabilizing end plugs. Hence, in the transition
regions, only a few particles are affected by the development of
electrostatic sheaths with parallel electric field E" # 0 . This can
lead to the breakdown of validity of the MHD equations and, hence, to
development of trapped-particle modes. It will appear from our
calculations that extreme thermal barriers, in which there are very few
transiting particles (<10—l of the central density), can suffer
trapped—-particle instabilities with growth rates comparable to those of
unstable MHD interchange modes. At the same time, the electrostatic
equilibrium potentials imply a difference between ion and electron
orbits which gives rise to a stabilizing perturbed-charge separation
similar to, but larger than, conventional finite Larmor radius effects

which can lead  ‘to 'stabilization ‘at higher transiting density.

Discussion of these matters is the principal content of this paper.

Recent methods wused in the  development of collisionless
drift-kinetic theory make it possible to discuss this complicated
situation quantitatively.

Before presenting this quantitative calculation, it is useful to
give a simple discussion for a purely electrostatic trapped-particle
mode applicable at very low B . Figure 2 shows a cross—section in the
central cell. Particles in the equilibrium are drifting azimuthally
with their curvature drift vo © vth(p/R) with »p = mvth/qu the
gyroradius and R the appropriate orbit-averaged field~line curvature

radius. We consider a simple model in which the particles are of two
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types——-those trapped in the central cell, denoted by subscript 0 , and
a small number which transit the entire system, denoted Dby
subscript t .

The equilibrium is perturbed by an  azimuthally-varying
electrostatic potential ¢ ~ exp[i(mt - m6)] as indicated by the dashed
lines. It also will be taken to vary along the field line, having the
constant value ¢O in the central cell and zero outside it. The
potential induces a radial EXE/BZ velocity. We may determine the

perturbed density of the jth trapped species by

snl  vO[onl) an?
PG ] it ) IS S
at r \d6 - J ar
0
on: .
0 _ 1 J
) _Vj<3?>
1.0 0
J w-w_ .t 0] 8r °
CJ nj

with Wey = mvg/r .

For the trapped species, vé = im¢0/rB . However, the transiting
particles are only moving in the perturbing field for a fraction, £ , of
their orbit. Defining the average potential fo, = 3', we have for the
transiting particles v% = iﬁEYrB . Furthermore, the above discussion
only accounts for the transverse motion of the transiting particles. In
addition, they will order themselves along the field line with density

similar to exp(-q¢/T) . An additional density of transiting particles

in the " central cell will thus arise equaling ng[-q(¢o - —j/Tt] . For
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simplicity, we assume that l/no(dno/dr) and temperature are the same for

all species. Using w > wcj , we then have for the charge density

)
) .qd . 2
- Sap} - > mon3  @eidif1 an\ _ o, _ [q___‘lli(lf)?}l‘
P 2,433 7 rB g w2 \n or nt((bo 9| T  wrB\n/orY

Here we neglect the small correction proportional to ntwc . Defining,

in the usual way, wy = (mTdn/dr)/(rqBn) , we have

0 2

0.2 Wl | n.q . w*v -
o = i;nq/ ) - t {l-f](l—-——t>("¢o .
T\ g2/ T w7

We obtain the dispersion relation from €m2¢/r2 =p , with € the plasma
dielectric constant € = nomi/Bz(l - m*i/w)'; the latter term including
the conventional finite gyroradius modification of the ion response.

Thus, we obtain the dispersion relation

2 n
w(w - w*i) EE p% + E%{l - flo(w - w*i) tww, = 0 . ()
r

with ny the total ion density in the central cell. Thus, we see that
the growth rate of the trapped-particle mode goes to the wusual MHD
growth rate (Yz = v%hi/rR) in the unfavorable curvature of the central
cell as nt/no + 0 . We also note that the transiting particles have two

effects: To modify the dielectric constant and also produce a charge

separation linear in w .
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While this simple picture reproduces the essential features of the
situation, it dis deficient in a number of ways—-it does not show how
charge neutrality obtains along all regions of the field line and is ﬁot

directly applicable to finite B .

ITI. THE DRIFT-KINETIC EQUATION AND VARIATIONAL PRINCIPLE

In this section we summarize the drift~kinetic equation as
developed by Antonsen EE_EL°4

We may characterize our equilibrium in terms of ion and electron
distributions, fO » as functions of energy € = mv2/2 + q®0 s, magnetic
moment u = mvf[ZBo » and guiding center coordinates. For  short
wavelength  perturbations, we may use an elkonal representation,
supposing all quantities to vary slowly along the magnetic field and to

vary as exp(iS) across it. Here, EL = VS is large compared to the

equilibrium variation.

The—perturbed—fields —are described —iw terms  of a scalar
potential ¢ and a vector potential A= ﬁa = iobxVS , with b a unit
vector along the unperturbed field. The perturbed distribution function

satisfies

of of v of
240 1 0 1 0
= —— e fome—} +
f1 q¢( 93¢ B o ) q¢( ) B ( ou ) g exp(il)

with L = yxB-VS/Q , and g(x’, €, u) is to be determined where x’ is

the guiding center position. In turn,

e A e e e
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of v |VS] ~ A ~ Vv IVS] vy IVS],
1 0| LIZ ) L2 Ll
g = h - ET]J_ [JO (T) (q¢ - V" qll)] + qo g Jl( 5) )])

and h satisfies the collisionless drift=kinetic equation

—i(w - wd + iV"b’Z)h

of BnxVSe V£ v, |VS| N - N v IVS]
= i 0 ~0"~"" 704 LT - P LA
- lw‘\( 3¢ - BOmS'Zw ) 1[J0<—Q_—’.>' X (q¢ Vi qIP) + qUIZSIV_LJl (—-—Q— £

Here, the guiding center drift,

o = 7S+ Box (mvybVh + u¥By + a¥2q)
d mB Q2 ’

We will work in the limit of high-bounce frequency where the

term v,V is dominant on the left-hand side of Eq. (1). This

1 e

approximation d1s appropriate in all cases for Thigh—temperature

electrons, but may be marginal for ions in some applications. In this

limit, the drift—kinetic equation may be solved for 'h in terms of
bounce~averaged potentials.

Having solved for f 1in terms of the potentials, we may write down
integro-differential equations for the potentials using the
quasi—neutrality condition and the components of Ampere’s Law in the
directions of §0 and ByxVS . Rather than writing these down, it is
simpler to use a variational expression derived from Y8W = fj'§d§ , from
which they may be deduced. This variational expression is useful in
making further simplifications and assumptions. In the eikonal limit,
the variational expression reduces to an integral along a field 1line.

For completeness we will present the general wvariational form, an
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extension including finite gyroradius effects of that given previously
by Antonsen gg.gl.4 (The reader is advised not to study the details,

but more the general structure.)

Sw =

2 % 2 -
VS| %" (beVyx) EE 9fy (w = wy) .

B | w2 ~ 8g (0w - ab)

(2)

The Z is a sum. over particle species.
Here, the new potential variables (x, ¥, Q) are given by (keeping

only first-order terms in lZSlzv%/Qz) s

A i
= Lo .V
v (2 1)x
~ . (3p/3B) [~ 2 . X :
= + 2P0 f51vs 4 + X VSeBxV
Y ¢ YD) o]VS| B~ BxVBj.
ST N
- 1 - — =0 ({1 = 2)s; + 8,°}
X { w (8p/39) A Sa1
*
~ 0B v
Q= 017817 + x-S Y8+ bx (1B - —> beTb)
wBO T*

'YSIZVE{ *
G = qp (1~ i) +uQ+qxd ,
4Q

and

B
,dBY - _0 [dedu
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1
wg = 5 ¥8-bxVeg
0
A l 2 %
mc = qT(mV" -+ H BO)ZSOQXP'Y”}‘)' .
0
The summation is over particle species, and

o = (fdka/lvul)/de/lv"] denotes the bounce-averaged value of o .,

Equation (2) is very complicated, particularly in that it involves
three unknown functions; ¥, essentially the electrostatic potential, X ,
related to the MHD displacement, and Q , the change in |B| . However,
we might expect on physical grounds that if B = 2p/B2 <<'1 that the
perturbed magnetic field parallel to BO would be small. In&eed, we may
proceed by assuming Q to be small, solving for it in terms
of x and V¥ , and substituting back into Eq. (2). We find upon doing
this a great simplification. The primary effect is simply to subtract
from the drift wy that portion arising from the diamagnetic well so
that wy reduces to the sum of the equilibrium ExE/Bz and curvature
drifts.

Equation (2), however, remains complicated because of the
denominators (w - Eb)—l which  occur. To see what further
simplifications are possible we rewrite Eq. (2) in the conventional
limit ® > Wy > wp « While the diamagnetic drift w, is indeed large
compared to the curvature drifts, it may not be large compared to the
radial electric field-induced drifts which exist in tandem mirrors. We

will return to examine this point later.

R e s I T | e —
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IV. THE TRAPPED~PARTICLE MODE AND MHD
However, with these simplifications Eq. (2) becomes a variational

expression for the growth rate Y :

o2 -

[ an/B){fa3y[wgw, ()2 (34/0e)] + (1781%/9%) (beTx)?)

[ag/B)[ a3y (3£/3e) (W292)+ (3€/3e) + 1/B(3£/0)][vE(¥8)2/20%] (x> 2+2x9) )

(3)

Here, W, is the usual magnetic curvature drift,
w, = (mv% + uBO)ZS-EX(h-Z)g/qBO , and wy has already been defined as
the conventional diamagnetic drift. Barred quantities are bounce

averaged.

The denominator, for distribution functions satisfying Bfo/aa <0,

afo/ae + (1/Bp)3fy/3u <. 0 , is negative definite. . This . variational

principle shows neatly the relationship between MHD and trapped—particle
mode. We wish to maximize YZ . Since the first term din the
denominator is not proportional to the gyroradius, the obvious thing to

do is to let ¢y = 0 . Recalling the definition of ¢ , this is

equivalent to the MHD assumption Ell = 0 . Equation (2) then becomes

2 f(dk/B){fd3gw*wcx2(afo/ae) + |Y‘S|-2/q-2[~(hoz)x]2}, -
2 - '
fa3v[ (ae/){[0£/8e + 1/B(8£/8u)](1vs12vE/202) x4

SR
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If a trial function ¥ can be found which makes the numerator
positive, the system will be unstable with growth rate
YﬁHD z w*mc/kfp% = v%h/rR with R the effective radius of curvature.

We are interested, however, in the opposite case when the
line-averaged curvature is favorable and B is low enough so that no
line bending can be tolerated, Eﬁéﬁ B < Borit * In this case, the
numerator of Eq. (4) is mnegative definite. We conclude that to

2

maximize Y we must choose x <K ¥ and that indeed a good approximation

is to set it equal to zero. This is the trapped-particle limit:

fas/B fdsv(af /9 ) w4 $2
~L 250 c (5)

far/s [a3v{agy/oe(v2-92)+[05q/8e + 1/B(85y/0u)](1951%vF/222)v?%)

The second term in the denominator is ordinarily small. Since we
have assumed flute-mode stability, i.e., the numerator to be negative
for constant ¢ , we conclude that ¢ must be peaked in the central

cell and an order of magnitude estimate for the growth rate is

2 222
Ye = w0k, = KipiYymp

j:g,, very small compared to MHD growth rates. This estimate would
apply to tokamaks, for example.

At this point, however, the particular features of the tandem
mirror become of importance—-namely that it consists of a central cell

with unfavorable curvature, and end anchor with favorable curvature, and

a transition region with relatively few connecting particles (see

R i o mrt & (et L e LU PSS PP S FUP P —
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Fig. 1). Thus, 1if we imagine as a trial function ¥ = 1 in the central
cell, and ¥ = 0 outside the central cell, only the transiting particles

will have ¥ # E'q We may thus estimate the growth rate to be:

2 m*wc
Yo = 77
(nt/no) +k._|_p

Clearly, in this case growth rates may approach MHD levels for
nt/no <1 . Without going through the analysis it is easy to see what
the consequences of low~bounce freqﬁency would be. Solving the

drift-kinetic equation in terms of bounce harmonies

) far /vy (h)exp(inwgfde /v,)

Vn fﬁl/v“ ’

we find that the first term in the denominator of Eq. (5).

W = D o,
n*l

is replaced by

19,1 200l

n Y2 + nzmg

With this substitution, Eq. (5) may be rewritten as a new variational

principle for a parameter A(Y)

e
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[an/Bfa3y(a£y/3e w g 92

Yzfdfi,/iéU;iBX{afO/Bez,:nzw%tprzl/(Yzmzm%)]+|ZS|ZVJZ_/ZQZ[BfO/Se + 1/B(3£/3u)]v?})

(6)

If A is maximized with respect to ¢ at a fixed Y , the
eigenvalue equation for ¢ is identical to the desired equation if
AMAX =1, It is clear from the above discussion that this will happen
at a larger value of 4Y than that given by Eq. (5). Wé hencé conclude
that taking dinto account the finite bounce frequency of particles
increases the growth rate over that obtained in the large bounce
frequency limit. It is, of course, reasonable that if the connecting

particles have dinsufficient velocity to pass from unfavorable to

favorable regions in a growth time that connection with the ends is

effectively lost, and MHD growth rates ensue.

Let us now abandon the approximation w >> wy , wp and study the
effects of charge separation stabilization with w ~ Wy « Having seen
that the perturbed parallel magnetic field Q may be neglected except
for removal of the diamagnetic drift velocity, and that the perturbed
parallel vector potential, X, , must be set equal to zero for B less

than the ballooning limit, then Eq. (2) in this limit, with x = Q = 0

becomes:
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(7)

where Gb = Eﬁ + E; « We ﬁish to study the solutions of the eigenvalue
equations derivable from Eq. (6). This is made complicated by the
denominators which appear. Two approximations suggest themselves. We
fidy go to a frame rotating with the gx’1§/132 drift velocity of the central
cell. If there is small axial variation of W this would leave only
the curvature drift which is indeed small compared to ®w or wy .

Thus, the primary case of interest is w ~ wy 5wd , in which case
the denominator may be expanded in the usual way. Using the equilibrium

charge neutrality condition

—f 2 3%y

Eq. (8) becomes

i

ds 3 2 _ =24\9f Ox ), L =2 9f [9*D.
W = iad 22 - = -—N + =
| B ."d 4 ‘(w ¥ )ae (1 w )’ v € ( 2 /

J w

2.2 e
|IVS|“v of Wy \ _EaN (..
T wz[ 0 -(1 - _*)f, +l(_0) . (9)
292 ‘3¢ 0w ByBu' .

where we have treated the finite gyroradius terms as small.

U

e e e e ey e s



-19=

Equation (8) is a variational, but non-minimal quadratic equation

for w . Hence, quantitative results would demand solution of the
integro—~differential equation. For a qualitative discussion, however,
we may again expect that the stationary function would be flute—like in
the central cell and fall rapidly to zero outside it, so that ¢ = E.only

for the small number n_ of transiting particles. If these are

t
primarily of one of the plasma species, the term Xw*/w(wz - EQ) will not
vanish.

The approximate eigenvalue equation is thus Eq. (1) which we

rewrite here.

2(Mt L 2.2 2.2, Pt Yt
w (-ITO- + klpl )- ww*i(klpi + -I-IE _0)_*— + w*mc 0 .
1

The physical origin of the linear in ®w stabilizing terms is the charge
separation arising from the particular orbits of the  transiting
particles, and from the ion FLR, which is out of phase with the charge
drive by curvature drifts. Note that if the transiting particles are
primarily ioms, the stabilizing terms add. If they are primarily
electrons, the term will vanish at some critical wavenumber. Note also,
that while the dion FLR terms similar to k_%p2 are known to wvanish for

m=1, i.e., kl ~ 1/r , there is no reason the new charge separation

terms should do so. Choosing m = 1, we find a stability criterion

(10)

where R is the average unfavorable radius of curvature. For the
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presently designed MFTFB system at Livermore it would appear that the
geometric factors are such that nt/no > 5-10% is required for stability.
In the case where the transiting particles are dions with low bounce
frequency, the stabilizing effect is decreased, the effective n./nj
being reduced as before.

It should be noted that the resulting real-frequency waves may be
negative  energy waves, subject to collisional or resonance
destabilization. For example, we have looked at collisional effects for
the case where the transiting particles are electrons. The dominant
effect is collisional trapping and detrapping of transiting electrons.
Assuming the electrons to be trapped by the electrostatic potential of
the thermal barrier, we may treat collisional effects by introducing a
bounce-averaged energy-scattering operator into the electron
drift-kinetic equation. The calculation has only been done crudely, and

we will not present the details here, but indicate the results for the

T res iduaifgl’.'OWthfrat’efl’nmt"e rms of 77’Y’07 Ty thé*gT'OWt}T'Té te Teg. T éét’iﬁ"g cha’r’g”e
separation, and Vv the effective collision rate for diffusing energy by

order of Te « We find

Y = Yo [— if v <
0 T’ Yo
Y6 ey s
Yy = YRl it v Yo -

Generally, the second case would apply and the growth rates would be
greatly reduced. We have not yet dinvestigated 1ion collisions or

resonant destabilization.
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We return now to Eq. (7), and note that in the presence of large
axially-varying electric fields a new type of instability may occur.

For this discussion we consider kfp%

as the small parameter and also

neglect curvature drifts in order to focus on the rotational drive.

While we are now not permitted to expand the denominators in Eq. (7), we

may mnote, again wusing the charge neutrality condition, that a flute

displacement ¢ = 1 - wE/m leads to exact cancellation of the terms
2 2 2 2

independent of klp . Hence, terms proportional to kjp” determine the

dispersion relation for a flute mode:

B

’ 2 Mafls ) ~ 1

with

~ 1_(-¥8xb,
Wk o e/ A A0V TE S

Again, we have a quadratic equation for ® and may conclude that
if the density-weighted variation of wg 1s large compared to wy , a
flute instability can occur. For radial potentials of order kT we
have wp ™ wy so that a more detailed knowledge of equilibrium than
presently exists would be required to assess the importance of these
modes. However, 1in cases Where density is high only in the central
cell, it would appear likely that the flute modes are in fact stable.
Other solutions of Eq. (7), including the curvature terms, are

responsible for the trapped-particle modes previously discussed.
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V. SUMMARY

Our principal conclusion, then, is that, from a theorist’s point of
view, the tandem mirror experiment may provide an ideal means of
assessing the reality of microinstability theory. By adjusting the
configuration and the height of the potential barriers, the density of
particles which link the good and bad curvature regions may be varied.
For extremely high barriers when connection is severed, MHD would
predict unstable flutes in the central cell.

When the density is finite but very low, MHD modes with E" =0 are
stabilized, but the trapped—-particle modes‘ grow at essentiélly MHD
growth rates and at arbitrary wavelength. While only linear theory has
been done, it seems clear that the non-linear growthlwill proceed
essentially as for MHD flutes, until massive detrapping occurs and the

condition in Eq. (10) is satisfied. This will happen when the perturbed

potentials reach q¢ ~ T . Using V=¢"/B < ¢/rB ~ Yympt [vth//(rR) g

“we  “estimate a limiting'"non—linear'”displacement'”€'="pi/§7; with

consequent radial diffusion D = DBohm(pi/r)/ﬁjzi’ probably too large to
be tolerated. In addition we would expect end loss enhancement.

As the equilibrium is adjusted to allow the density of connecting
particles to increase to satisfy the stability condition nt/no > 4r/R ,
the trapped-particle mode 1is stabilized by charge separation and
negative energy modes exist. In this regime its behavior approximates
that of drift waves in tokamaks and, din the absence of a detailed
underétanding of non~linear behavior, we can only guess that some small

level of radial diffusion will result.
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