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The 6f Algorithm is a low noise particle code algorithm. The perturbation of the distribution
function (6f) away from a large equilibrium is evolved rather than the total distribution function.
“Particles” in the code are actually Lagrangian markers at which the value of the distribution func-
tion is known. The magnitude of the numerical noise is characteristic of the size of the perturbation
rather than the equilibrium, and scales roughly as the inverse of the number of particles. In this
paper, the algorithm is described, and conserved energies are derived for linear and nonlinear-sets
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and space and adequacy of the number of simulation particles. A semi-implicit time step method is
described which allows violation of the Courant condition. Low noise capabilities of a linear code
using the algorithm are demonstrated.
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INTRODUCTION

Transport in controlled thermonuclear devices is thought to be caused by small scale
turbulence from microinstabilities. Most of these low frequency microinstabilities can be
described by the ion gyrokinetic equation [1,2]. For this reason, a number of gyrokinetic par-
ticle codes have been constructed in order to simulate this turbulence [3,4]. However, noise
problems inherent in conventional particle codes make simulations of fusion plasmas with re-
alistic parameters impractical. Low noise algorithms have been developed [5,6,7,8]. We have
devised an algorithm which greatly reduces the noise (and thus the particle requirements)
for gyrokinetic simulations if the turbulent density fluctuations are much smaller than the
background density, which is the case throughout most of the plasma volume in confine-
ment devices. Using this algorithm, Kotschenreuther et al. employed particle simulations
for realistic experimental parameters for the first time for low frequency microinstabilities
thought to be responsible for tokamak transport [9] Additional similar nonlinear algorithm
developments are proceeding [10]. In addition to low noise, this algorithm has the advan-
tages of an extremely simple set of equations, simplified energy conservation relations, and
a semi-implicit method which can relax time step restrictions such as the Courant condition
for the electrons (At <1/ (k“v”e». We have named this algorithm the 6§f Algorithm and
we will describe its implementation in an electrostatic lowest order gyrokinetic initial value
particle co&e below.

In a conventional particle code, the density of plasma is related to the density of sim-
ulation particles. In the §f Algorithm, however, each “particle” is a marker at which the
vaiue of the distribution function is known. The § f code is in this sense similar to a Vlasov
fluid code with a Lagrangian grid. The value of the distribution function for each marker
1s evolved using the method of characteristics. The position of each marker is the tip of a

characteristic of the distribution function, that is, the latest position of one of the natural
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paths for the solution of the equations. The markers are like particles in that they move in
space with the same equations of motion. However. rather than representing single particles,
they represent evolving values of the distribution function.

In the 6f Algorithm, the total distribution function f is decomposed into two parts, a
background distribution f°, and the remaining component, § f. The essential feature of the
6f Algorithm is that only éf is represented by markers. Typically, f° will be represented
by an analytical formula (such as a Maxwellian with density and temperature gradients as
is used in this paper). If the density fluctuation 6p (= [dv éf) is smaller than the back-
ground density p° (fdv f°), then the statistical noise for a 6f simulation with N markers
will be significantly lower than that of a conventional particle code using the same number
of particles. This is because in a conventional particle simulation, there is numerical noise
associated with the representation of f° by particles; and when 6p < p°, most of the-noise
comes from fo. In the 6 f Algorithm, the numerical noise comes only from the representation
of the smaller §f by the markers.

The algorithm has much in common with linear Vlasov codes [9] in that only a small
part of the distribution function is evolved; however, in the éf Algorithm the equations may
be nonlinear. As long as §p is less than p°, the method will be advantageous even when the
plasma is nonlinearly saturated. In tokamak experiments, § p/p° is typically of the order of
1072 in most of the confinement volume [10]. Thus for realistic parameters, the § f Algorithm
will have a tremendous advantage over conventional techniques.

We will apply the §f Algorithm to the electrostatic gyrokinetic equations. These equa-
tions are derived from the Vlasov equation for the case of a plasma in a strong magnetic
field by averaging over the gyromotion of the particle orbits and maintaining only the lowest
order terms in the expansion parameter p;/L,, where p; is the ion gyroradius and L, is
the equilibrium density scale length. We will present the nonlinear equations and then the

linearized equations. The results in this paper will be from a linearized code; results from




a nonlinear code will be presented elsewhere. The most efficient way to write a linear code
would be to use particles which have the shape of a Fourier mode in the symmetry direction,
effectively eliminating this dimension from the problem. In the linear code described here,
we maintain the symmetry direction in order to replicate the numerical noise properties of
a two dimensional code.

In practice, conventional particle code turbulence simulations use unrealistically large
background gradients to drive strongly unstable modes so that the saturation amplitude
is above the noise. For example, simulations of 7; turbulence usually use large values of n;
(7i = Ln/ L, where Lr, is the ion temperature scale length) and strong equilibrium gradients
(pi/ Ln ~ 1/40), whereas realistic 7; values are usually not very far from marginal stability
and p;/L, ~ 1073, Also, in conventional simulations the equilibrium temperature can vary
significantly over the mode width, introducing physical effects not present for experimental
device parameters. The results of such simulations are instructive, but the practice of using
parameters which are unrealistic for fusion conditions reduces their relevance for description
of fusion plasmas or prediction of future plasma conditions. However, using the § f Algorithm,
it is possible to simulate turbulent states of fusion plasmas in three-dimensional geometry

using realistic parameters.

1. EQUATIONS AND DESCRIPTION OF THE ALGORITHM

The electrostatic gyrokinetic equation is derived from the Vlasov equation by expanding
in p;/Ln, averaging over the gyro-orbits, and keeping only the lowest order terms. The
derivation assumes pi/L, ~ w/Q ~ 8f/f° ~ ed/T;:, where w is the amplitude of the
complex frequency of the mode; Q., = %B;% is the ion cyclotron frequency; e is the electron
charge; By is the large ambient magnetic field; m; is the ionic mass; ¢ is the speed of light; ¢

is the electrostatic scalar potential; and T; is the temperature of the background Maxwellian




of the ions. With these assumptions, one obtains to lowest order in slab geometry

%it"- +VEe - Vit V) fa+ n% <Eu>a gzj:i =0, (1.1)
where
(E)e ==V {f)a ,
and
Vg, = c(E;o;x z _

Here, fy is the gyrophase averaged distribution function for the « species, where a = i/e
for ions/electrons. The distribution function f, is related to the gyrophase averaged nona-
diabatic distribution function, Ay, by fy = he — qi%“ M where fM is a Maxwellian.. Like
has fo is a gyroaveraged quantity and is a function of the guiding center coordinates. The
component of the « species particle velocity in the direction of the magnetic field is v, while
Vi, is the magnitude of the perpendicular velocity; my is the mass of a particle of the «
species; E is the electric field; the parallel component of E is B = 5-E; b is a unit vector
in the direction of the total magnetic field B while 7 is the direction of the lérge component
By; and vg, is the E x B drift velocity.

In Eq. (1), (@), indicates that the quantity Q is gyroaveraged. In Fourier space, with

Qr=/[ %e“'k'rQ(r), where r is the gyrocenter position, the gyroaverage is easily evaluated

(Qu)o = Jo (;’; kl) Qx (1:2)

Ca
where Jp is the zeroth order cylindrical Bessel function and &, is the component of the wave
vector k perpendicular to B. The a subscript on the gyroaverage brackets ( ), indicates
that the gyroaveraged quantity is viewed differently by the ions and electrons.

We will be using two-dimensional sheared slab geometry in which all plasma quantities

are independent of z. The Z-direction will be the direction of the equilibrium inhomogeneities
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in density and temperature. There is a large ambient magnetic field By in the 3-direction. A
sheared component varies in the Z-direction with scale length L, but points in the §-direction
so that the total magnetic field B = B, (E + L%;ij) The sheared component of B enters the
problem only in the evaluation of V= 5-V= f:aa—y.

We note that these equations are easily generalized to three dimensions. In that case it
is cheaper computationally to evaluate the gyroaverage by averaging over several points in
real space [3].

We now divide f, into two parts, the background distribution f$ and the remaining

component 6 f, so that f, = f2 + 6f,. We use a Maxwellian distribution for 12

1 2
f2 — fi\l — e(~mavz/(2Ta)) , (1.3)
71.3/2@?}{3

where T, and vy, = (2T,/ ma)l/ 2 are the temperature and thermal velocity of the « species.
We assume that f varies with scale lengths L, and Lz, but that L, and Ly, are large

compared to the simulation region so that the Z-direction variation appears only in the

representation of 0/0x where 8/9z acts on f°. Thus

af° 1 v 3
< — i1 Mo — — = 0)
Oz ﬁLn [ T (vfha 2 «

+v}, and ng = L,/Lz,. We stress again this key point of the § f Algorithm:

2 _ 2
@~ Ya

where v
since we are representing f2 by an analytical formula, there will be no noise associated with
this large part of the distribution function.

We now introduce the normalized quantities, X, Y, Vier Vi, F9, 6Fs, ®, and 7. The
corresponding unnormalized quantities, x, y, Var Vler foy Ofay &, and t are related to
these in the following way: = = (p;)X, y = (kzjol) Y, v, = (Vihe) Vija> Via = (Vthe) Via,
o= (vt"hi) F2 6f, = (I’f—;v@i) 6Fy, ¢ = (I’f—;%) ®, and t = (w;‘,l) 7. The ion gyroradius

pi = Vs, /Q; ky, is the component of k in the symmetry direction ¥ corresponding to the




longest wavelength in the system; and the ion drift frequency

_ cky Ty
A= eBoLn ‘

In addition, we define a normalized gyrocenter position, R = XX + YV, a normalized
gradient

= =0 o0

V=Xx T
and a normalized wavevector K = (p;) k, X + (k;}) k,Y. (Note that these three vector quan-
tities are normalized differently in the X- and ?-directions.) Then with the § f decomposition

and using these normalized quantities, we get

?E(SFO, =5, (1.4)
with
d 0 = 0
= -8—7_+z>< V(@)Q-V-i-V“akaXW
and
A 0(®),
Sa = Foz ([n]a—Ta‘ll kcxd‘*) Y
and where
1 2
0_ %
F, 7
We have introduced the following quantities: T* = 1 for ions, but = —T;/T, for electrons;

the shear parameter k, = QTLSE for ions and = (vir./ven,) ZIII’—: for electrons and [p], = 1 +
N (Vaz - %) The quantity K, is defined so that |k| = (p,-" 1) K, and K, =
(Teme/ (Timi))l/ ?K1;. With this definition of K L. the gyroaverage is evaluated with

(QK)e = Jo (Vi K1,)Qxk . (L.5)

If we take the mass ratio, m;/m,, to be realistic. then the remaining parameters are 7,

and kg, OT 7o, k; and T;/T,. Since these parameters are all roughly of order unity, the final
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nonlinear saturated state in a nonlinear run will have § F, roughly of order unity. We note
also that the nonlinear parallel acceleration term, gq (E),- 8—6\;6 fo is one order higher in p;/ L,
(as can be seen from the normalization constants for §F, and F2). Since p; /Ly, ~ 1073 in the
cases of interest to us, this term is utterly negligible. Nonlinear effects which are associated
with this term in a Vlasov plasma, such as detrapping of particles, occur through the E x B
motion rather than through parallel acceleration.

Instead of using the fluid form of Eq. (4) to solve for the evolution of §F,, we will
solve for the evolution of §F, along a number of paths in phase space using the method of
characteristics. Our “particles” are actually markers at the tip of the characteristics; they
are the phase space positions at which we know the value of §F,. Note that d/dr in Eq. (4)
represents motion in space but no acceleration. The parallel acceleration term acting on F?,
¢u (E), - ZFY is of the same order as the other terms and is included in the source term
Sq in Eq. (4), however this term represents the combination of a high order (and thus very
small) acceleration and the very large F. The lowest order characteristics have no variation
in \}elocity space.

Thus we will initialize X;, ¥;, W,» Vi, FY, and 6F; for a set of markers with index 7
and evolve them according to the following equations. The index J includes the information
about the species index a (so ¢, which appears in these equations, is implicitly a function of
the marker index j) in order that we can later sum over ions and electrons in a single sum

over j. We give the nonlinear version first

dX; 0(9®).
&=y (1.6)
&y; 9(d),
@ = ax T kX
V|; = constant , V1; = constant
and
d
- 0F; = 5;




with

9(®);
S; = F? (Inl; - TV ke X;) -7 -
The linearized (in 6F; ~ @ ~ p;/L,) equations are
X; = constant (1.7)
dY;
2 = VikeX;
V||; = constant , V1, = constant
and
d
with
().
*
Sj = F}O ([7]]] bt To: thka.Xj) W‘i .

Here, (®), is the gyroaveraged ® evaluated at the jth position as seen by the a(7) species.
Also [n]; =1+, (VJ2 - %) |

Now, with Eqgs. (6) or (7) we can explicitly evolve the distribution function along the
characteristics. We then use the quasineutrality relation to solve for ®. |

It can be shown that the nonadiabatic part of the non-gyroaveraged distribution function,
h = f+(¢.®/Ts) f™, is gyrophase independent to lowest order in the gyrokinetic expansion
(this is not true of f). In that case, the Fourier component of the normalized real space

particle density, 5P°‘K (6P, is 6p normalized), can be found from
6Pos = T30k + [ AV Jo (Vi KL,) SHuy - (1.8)

In Eq. (8), 5PD,K is a non-gyroaveraged quantity. The J, factor is present in order to trans-
form the gyroaveraged quantity, 6 H, = §F, 4 T (@), FM, back to real (non-gyroaveraged)

space.




Quasineutrality is then

6Py = 6P.y . (1.9)

Using Eq. (8) in Eq. (9) and converting § H, back to §F,, we get
Dx®x = / dViJy (Vi K1) §Fyy / AV oJo (Vi KL,) 6 F.y, (1.10)

where
Dy = / dViF? (1 - J2 (Vi KL,)) + % / dV.F? (1- R (Vi KL.)) -

In practice, we will use a discrete set of velocities and markers. The parallel velocities
are chosen by picking a maximum value for = and dividing the range between — (.
and +V|7** into a large number of equal divisions (for the electrons, one might do better
by choosing unequal divisions favoring small values). The values of £, = V? and their
weights w are chosen according to Gaussian integration rules [11] (the values of E, , are the
zeros of the Laguerre polynomials) in order to optimize the evaluation of the E, integrals.
This is an optimal choice since £, is a time-independent parameter in these equations, and
Gaussian ihtegration rules give better accuracy than other rules for integration over E,. In
our nonlinear code, we accumulate particles to discrete X and ¥ positions in order to use
an FFT. In the linear code, the markers are stationary in X.

In the discrete form, the integrals over velocity and the integrals over velocity and space
(the integral over space is needed to compute the Fourier transform) in Eq. (10) need to be
converted to sums. The procedure for evaluating these sums is greatly simplified by the fact
that the equations of motion for the markers in Eqs. (6) or (7) are phase space conserving.
Thus each marker has a constant weighting factor which is proportional to the initial phase
s;;a;ce volume occupied by that marker. The phase space conserving property yields another
significant benefit. If we load markers in all the important regions of phase space (neglecting
large values of £, and Vjj, for which the §F,’s will be insignificant), these regions of phase

space will continue to be occupied by the same phase space density of markers, and thus we
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will never lose information about the value of the distribution function in any phase space
region.

The velocity integral of a quantity Q, in discrete form becomes

Z/dVaQa (Vna ; ELQ) =71y AV, weQe =D WyQs . (1.11)
o b b

In the integral, dVq = 27Vy,dV),dVj, = 7dE,, dVj,. The b index represents symbolically
a triple index for a value of the parallel velocity Wis> @ value of the perpendicular particle
energy E£,, = Vfb, and the o index (as was the case with the j index, « is an implicit
function of b when it appears in a sum over b). In addition, AV, is the range of Vj, (2 ”I:a")

divided by the number of discrete V»'s- The weighting factors for the Gaussian integration
of [dE1Q (EL) are wy (these only depend on E,,). Asimplied in Eq. (11), Wy = AV, mws.

We note that alternative accumulation rules to Eq. (11) have been implemented: which
attempt to correct for random fluctuations in the number of markers per cell and thus further
reduce noise. However, these have all encountered severe numerical stability or long time
accuracy problems [12].

An integral over velocity and space (one species) becomes

1 ) i AXAY AVjur |
{27T2X0/dv/dXdYQ(v“’EL’A’Y)}Q T X, ; wiQ;

(one a)

= Y We;. (1.12)

(one )

Here j is the particle index and AXAY is the spatial volume (area) occupied by each marker,

which is equal to 272Xo/ ((number of particles), /(number of beams),). Thus

(number of beams),

W, = AV“Q (1.13)

(number of particles), = °

If the V||, values are loaded nonuniformly (in order to improve resolution for some velocities,

for example), one need only make AV} a function of the marker J (that is, a function of the
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precise marker index value, and not just of the species a) in Eq. (13). (Actually, AV), would
in that case be a function of Vj; only.)

In order to integrate over the velocities and compute the Fourier transform, we use
[avax = S we KR, (1.14)
J
With these relations, we can express Eq. (10) in discrete form
D@k =) saWio (Vi,K1,) e ®Ri6F; (1.15)
i

where

Dy = L |TX| W, (1- 72 (Vi K1) P
b

where we have used s, = 1/~ 1 for ions/electrons. The sums in Eq. (15) should be taken over
both ions and electrons. Note that Dy is found from a sum over beams (discrete velocities)
rather than over particles, thus only the right hand side of Eq. (15) depends explicitly on
the particles.

Although written compactly as a one step operation, the evaluation of the sum over the
marker index j in Eq. (15) requires a careful procedure. In our linear code, we sum over
the different V)’s and ¥ positions simultaneously, adding the 6 F; values to calculate the real
and imaginary parts of eV §F at the individual £, and X values. Then in the second step,
we use an FFT to sum over the X positions at each E; and calculate the Kx components.
Then, knowing the K values (and thu.s K, which is needed within the Jj factor), we finish
the operation by summing over the E, ’s.

In the Y-direction, we have periodic boundary conditions (the box extends from ¥ = 0
to 2r). We use a boundary condition at the box edge X = +X5 of ® =0 and §F = 0.

If the assumption is made that the electrons are adiabatic, then we need only sum over
the ion values of the indices in Eq. (13). In that case, 6Py, becomes (T;/T.) ® and we need
therefore to add T;/T. to the right-hand side of the definition of Dk in Eq. (15).
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Using Eqs. (6) or (7) and then Eq. (15), we can explicitly advance the gyrokinetic equa-
tions. With a predictor-corrector scheme, we can do this with second order accuracy in time.
However, we are able to improve the numerical stability of the algorithm by introducing a
semi-implicit scheme for the calculation of ®. Such a scheme is possible because of the ana-
lytical nature of the source function S; with which we evolve 6 F}. For a linear code, we can
make the calculation of & totally implicit. In order to demonstrate how to do this, we start

with the equation for the evolution of the linear §F; in Egs. (7), which is
9(®);"

J

oy

d
68 =8;=F} (In); - TaVikeX;)

After advancing §F; one time step A7, we have

ntl _ n 0 8<¢>:+1 n+1/2\ ok n+1 n+1Y n+1 m
SF™ = 8Ff + I} ¢ Arlnly—3— (%) — 1 (@07 (v7+) — (@)7+ (v7))

(2);*

L (Y,”+1/2) - T:‘ (<I>)’f+1 (Y;n-i-l) (1 _ e—mfv"].kaxj)} ,

= 517;17. + FJO {AT[U]J BY J J

J J

where Y™ in ()7 (¥7) or 22 (¥77) is the ¥; value at which (8)*" or 8 (8)* /0Y is
evaluated. The superscripts n and n+1 indicate the nth and n+1 th timesteps, respectively,
while n41/2 indicates a centered value. We have placed the n -1 superscript above the (®)
quantities to indicate that we are going to evaluate the terms implicitly. In order to obtain
stability, we have found it important to time difference the second term of S; in Eq. (7) in
an unusual manner. We have used the fact that the linear mode varies as e’ and that the
convection velocity of the marker gyrocenters is ¥; = Vi ke X7 (Y; is a constant for each
marker in the linear case). We use the notation X ? to indicate the constant unchanging X
values of the elements in the linear code (to distinguish this from a later use).

The resulting expression for § F; must be inserted into the quasineutrality relation [Eq. (15)]
at the n+1th time step in order to evaluate "+, In order to obtain a tractable expression

for @™, we approximate the sum over the markers by an integral. That is, we sum over the
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discrete V|’s for the sum over §F;’s while integrating analytically over the parallel velocity
for the evaluation of the source term S;. This integration over V|| in the source term is thus
calculated as if we had an infinite set of Vi;’s- At the same time, we expand the second term

on the right-hand side of the equation in a sin series in K.

n+1 _E (@)TH'I
AV) D 6FH = AV S SFP + —{ Tl —so—

vi’s vi's
—T* Z S5t Jo (Vi K1, ) 2sin (K1X) (1 — ™ X%) } :

We have defined a = A7%k%2/4 and [n]} = 1 + 7, [EL, — 1. Now we sum over E,;, take the

Fourier transform, and transform to non-gyroaveraged real space.

3 5aWido (Vi Ky, ) e SRS FI = S s Wiy (Vi K, ) e KRig
J J

—Ag®E — > B 0%, (1.16)
K
where
=2 saWye 0I5 (Vi, K1) [~ Arlnlyi + T]
b
and

Bx k= — 3 Wy [T B2 Jo (V, K1) Jo (Vi K1)
b

X o= / dX e= KX [e=X*g5in (K1 X)) .
0

We note that Bk x/ is a tensor coupling the K’ components of & to the K, component.
Also, s, = 1/ — 1 for ions/electrons has been inserted on both sides of the equation (using
soT¥ = IT: ‘)

Now we can use the result of Eq. (16) to modify Eq. (15) for the calculation of .

Z Dy k03! = Z saW;Jo (Vi, Ko, ) e K RigFp (1.17)
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where

Dk = [E 7| Wy (1= J2 (Vi KL,)) FO + AKJ Sk K + BRK: -
b

The quantity éx x is 1 for K = K’ and 0 otherwise.

After using Eq. (17) to advance ®, it will be necessary to advance the § F ;’s using Eq. (7)

with the new ®. By evaluating half of the evolution of 0 F; explicitly with the old @ using

Eq. (7) and half implicitly using the result of Eq. (17), the scheme can be time-centered

and thus second order accurate in 7. We have found this to be as stable numerically as

the fully implicit algorithm. All the results from our code presented in this paper use this

time-centered partially implicit scheme. In a nonlinear code, we can use the semi-implicit

method, explicitly advancing the §F;’s nonlinearly, but subtracting the explicit linear terms

while adding these linear terms implicitly.

Introducing the quantity 6H; = 6H, + X;F?[n]; = 6F; + T (®); F? + X; FJ[n];, we can

use the Egs. (6) or (7) and Eq. (15) to derive an energy relation. We present the relation

first for the nonlinear equations

gtot =& + gstat

where
E=E5 + &
with
r Ok
Es = Z |Ta ‘ Z 7
o K
1 §H;
B ;W [ |T*| 2F?
and
gsm_ZW/dt —saFPnl; XV, X; + |TX| FP (0

+ZW |T*[F°— —Z ZW [T*l Ok ja (Vi K1) F? .

15

saFn); (@), X5

(1.18)




Here, Xj = —8(®),/0Y and is the X component of the marker’s gyrocenter velocity; Y”j =
V;kaX; and is that part of the marker’s gyrocenter velocity in the ¥-direction which is due
to the parallel velocity.

In Egs. (18), in the limit of an infinite number of particles, £ is the energy which can be
derived directly from the kinetic equations, Eq. (4). It is equivalent to the physical Vlasov
energy [ dX dY (fdV f(mV?/2) + E?/(87)) in the quasineutral gyrokinetic limit (this is not
obvious). It is therefore what we consider to be the physical energy. However, in discrete
form, the genuinely conserved quantity is ot = € + Extas.

The energy relation is slightly more complicated for the linear equations. Although the
X positions can be considered to be constant for the purpose of calculating the evolution of
0F; and @ (to the order of our equations), the linearly changing X position is needed for
the energy relation. Thus we distinguish two different X values in the linear case: First,
there is X7, which is the initial X position of the marker and is used for the calculation
of ¥; = VjikaX3. Secondly, we have X;, which is the linearly changing (to high order)
position of a particle. In order to check for energy conservation, X ; must be evolved using
dX;/dr = X; = —@L. In order to derive the linear energy relation, we use 6H; defined
using X;; that is, §H; = 6H; + X;F[n); = 6F; + T* (®); FY + X;F?[n);. Using these
definitions, we find

Stot =& + gsta.t (119)

where

with
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and

Euae = S W; [ dt [|TH| FP (8); ¥,X; - saFPnl; (@), X)]
J

2
7 2k 2 Vi, K. )F? . 1.20
o 2 0 b

2
syw | s s,
J K b
We note that the first term in the nonlinear &, is a part of £ in the linear case. The
difference comes about because of the distinction between the simple coordinate X ; for the
nonlinear calculation and the linearly changing X;.

As previously stated, £ is the physical energy. If £ is conserved, we believe that we are
reproducing the correct physics in our simulation. &,; is an extra term which vanishes in
the limit of an infinite number of markers. (In the limit of infinite particles, the sum becomes
an integral which vanishes.) The term &, arises due to the fact that we will be using a
discrete set of particles. The sum of the two, &y, should be conserved if we are accurately
solving the differential equations, even for a very small set of particles. These two quantities,
&t and & serve as diagnostics for different types of numerical inaccuracy. Inaccuracy due
to time or space finite differencing errors is manifested in nonconservation of Eiot. If Eioy 1s
well conserved but € is not, thié signifies that there is an insufficient number of markers for
the simulation to well represent the limit of a continuous distribution function. Therefore,
we will assume that if £, is not conserved, we need to increase accuracy by decreasing time
or space step sizes. If £ is conserved, but £ is not, we need to increase the number of

particles.

2. NUMERICAL RESULTS

We now present data from simulation runs using the linear §f code. In Fig. 1, we
plot time dependent traces of w, and « for a simulation of the n; mode using n; = 4.0,
ki(=2L,/L,) = 0.5, kyp; = 0.71, T;/T. = 1.0, and X, = 5.0 with adiabatic electrons

assumed. (Note that p;/L, is arbitrary; it has been assumed to be small and is scaled out
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of the 6 f equations.) For our §f particle code run, we used 32768 markers, with 64 equally
spaced X values, and with 4 Gaussian £ ’s and 16 values of the parallel velocity represented.
The time step A for the run plotted in Fig. 1 was 0.1. The values of w, and v plotted at time
7 in the traces are time averaged over one preceding growth time Aty = 1/4% ~ 6.99 w;{l
using values which are based on the variation of the fundamental Fourier harmonic ér(f)
over Aty (using exp ((~iwr(7) + ¥(7))7) = ok (7)/¢x (T — Ary)). The data is displayed over
a total time equal to 14 growth times after an initial transient.

We now define the following quantities: @, and ¥ are the average values of w, and v
over the time of the run; Aw, and A¥ are the differences of these quantities from the values
given by a linear gyrokinetic dispersion code w? and 7% and A&, and A are the maximum
deviations of w, and v from @, and 7 (A&, is roughly the maximum value of |w, — @,| over
the length of the run — when interpreting the meaning of Ad, and A%, it is important
to remember that w, and v have themselves been averaged over one growth time). Our
linear dispersion code solves the full integral gyrokinetic equations; with it, we find the real
frequency and growth rate of the linear mode to be wd = 0.411 wy; and ¢ = 0.143 wx,. The
horizontal dashed lines in Fig. 1 are plotted at a vertical position corresponding to these
values. In Table I we list the values of @,, AD, Jwi, AG, Jwl, 3, AF /4%, and AT /~? for the
run previously described (with A7 = 0.1) in the first Tow of Table 1. Since the errors are _
small (the largest being /4% = 0.14), we conclude that the § f code represents the linear
mode well with 32768 particles.

The profile of ® in the X-direction at a late time is displayed in Fig. 2a. The solid and
dotted lines are the real and imaginary components of ®(X), respectively
(@(X, Y)=Re [(@re(X)_ + z'@im(X))eiy]). The profile for the same case generated by the
linear dispersion code is displayed in Fig. 2b. There is good agreement between the two.

We have shown that we can accurately simulate an n; mode with a small number of

markers. This is because there is no noise associated with the equilibrium part of the
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distribution. There is in the §f Algorithm a level of noise, but that noise is associated with
the representation of 6 Fj, not F. Further evidence of the low level of inherent noise in the
algorithm is provided in Fig. 3, where the energy term &s is plotted versus time for a one
dimensional simulation of a Landau-damped shearless drift wave. Without shear, we have
ky — k; rather than k;X. The value of &; for this run is 1.0. In addition, n; = 0.0 (drift wave
only), T;/Te = 1.0, Xo = 10* and k,p; = 0 (drift kinetics). (Again we assume adiabatic
electrons.) We use 32768 ion markers with 4 Gaussian E,’s and 4096 values of the parallel
velocity represented. (A large number of parallel velocities is needed to accurately represent
the resonance effects.) In Fig. 3 we see that £ decreases by four orders of magnitude (&
decreases by two orders of magnitude) down to the noise level. The frequency and growth
rate produced by the §f particle code over the first 30 w;il is on average @, = —1.83 wx,
and ¥ = —.16 wsx,, which are close to the dispersion code values for these parameters,
wi = —1.85 wy, and v¢ = —0.192 wx;. If more markers and values of parallel velocity are
used, £ will damp to a lower level. In runs with a sheared magnetic field, £ was similarly
damped, but only two orders of magnitude using the same number of markers and values of
parallel velocity.

The above results for the §f code are typical. The éf algorithm is capable of accurately
describing microinstabilities of interest in fusion with far fewer particles than a standard
code. However, it is also important in any numerical scheme to have diagnostics to verify
the accuracy of the run. We have found, for example, that the accuracy of the § f code very
rapidly deteriorates when the number of particles is insufficient. If the results of a run were
erroneous because of an inadequate number of particles, it may not be obvious from the field
or particle density plots. Thus, we turn our attention to the quantities &.; and € and their
use as diagnostics to detect inaccuracy.

Table I lists data for runs with large timesteps. As A7 is increased from 0.1 to 0.8, the

errors in the mean values @, and ¥ change very little. However, as At is further increased
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to 3.2, the errors become a significant fraction of the mean (~ 20%), and at Ar = 12.8,
the errors in @, and 7 are larger than the correct values. (That the accuracy decreases at
such large values of A7 is not surprising considering that the growth time of the mode is
1/9% = 6.99 wi!.) |

This deterioration is paralleled by an increase in the quantity |A&ot/ AEs|. As described
in the last section, £ is the sum of the physical energy £ and a statistics-dependent term
Estat (which vanishes as the number of markers becomes infinite). The change in & over
the total length of the run is A&, while A&y serves as a convenient reference for the
size of A&y (€ = Ep + &, and there is no reason why €s should be conserved; in fact,
Es o ®?). Nonconservation of &y, as indicated by an appreciable value of |A&;;/AEs|,
indicates that the differential equations are not being accurately solved and thus indicates
a lack of resolution in time or space. Indeed, as the timestep, A7, is increased from the
converged value 0.8 to 3.2, at which the error has increased, |A&;q/Es| increases from 0.023
to 0.76. Our energy relation in the discrete form indicates that &, rather than & should be
exactly conserved; thus, we cannot expect that £ will be conserved if £, is not, and indeed,
the éuantity |AE/AEs| which is also tabulated in Table I increases along with |AE ot/ As|
as A7 is increased. .

The effect of varying the number of markers is demonstrated in Table 2, where data is
presented for runs with the number of ion markers V; equal to 64K, 16K, 8 K, and 2K. In
all of these cases, the electrons are again assumed to be adiabatic, and A7 = 0.1. As N;
is decreased from 65536 to 2048, the accuracy in @, and # deteriorates. In addition (unlike
the case when AT was increased), the level of fluctuations increases. For 16 K markers,
AF/4% = 0.25, and the other error indicators, Aw, /w?, A, /wl, and AT/~ are all no larger
than six percent. When N; is decreased from 16384 to 8192, all the error indicators increase
quite significantly; and with IV; = 2048, all are order unity.

Looking at the variation in the relative fluctuation levels AG, Jw? and A /4% over the
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entire range of particle numbers, it appears that the fluctuations (and therefore the noise)
scale roughly like the inverse of the number of particles, ;. (For instance A¥/~% decreases
by a factor of 37 for the increase in particles of a factor of 32.) Thus not only is the noise
greatly reduced using the § f Algorithm, but the scaling is more favorable (the noise decreases
at a faster rate as the particle number is increased) since the usual scaling for noise is Nz-—l/ 2,

In all of the cases represented in Table II, £, is conserved (|A&;/ A&s| being at most
0.064 for the N; = 2048 case). The physical energy, &, however, is certainly not conserved
in the 2048 marker case, for which |AE/A&s| = 0.41. When &, is conserved, indicating
that the differential equations are being solved correctly, conservation of £ further indi-
cates that there are enough markers to represent the continuous limit of an infinite num-
ber of markers. As we can see from Table II, £ is well conserved for N; down to 16384
(|AE/AE| = 7.0 x 1072), but |AE/AEs| = 0.12 for 8192 markers and 0.41 for 2048 mark-
ers. Thus, as expected from the analysis, when &,.; is conserved but £ is not, this is indicative
that the number of particles is not adequate. Conservation of &, and & indicates that both
the time and space resolution and the number of particles are adequate for accurate simula-
tion of the problem.

So far, all the results we have presentqd have assumed an adiabatic electron response.
The 6f code can be run with kinetic electrons by including electron as well as ion markers
using the formalism we developed in the last section. The use of kinetic electrons is expensive
in standard codes because the Courant stability condition K||V.AT < 1 mandates small time
steps. Using the semi-implicit scheme presented in Sec. I, however, we can violate the
Courant condition with large Ar chosen to resolve the phenomena of interest. But before
we proceed with a description of the code results using electron as well as ion markers, we
would like to note that when electron markers were included, the performance of the code
was found to be degraded in four ways: (1) The fluctuations in w, and v were larger; (2) the

energy was not as precisely conserved; (3) more markers were required for accuracy and to
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avoid numerical instability; and (4) some cases with parameters for which the modes should
be stable or damped are numerically unstable having a small but finite . To illustrate this
last point, for n; = n, =0, T;/T. = 1.0, k; = 0.2, X, = 6.0, and kyp; = 0.8 (with a realistic
mass ratio), the gyrokinetic dispersion code yields w? = —0.482 wx; and 74 = —0.108 wy,;
but the §f particle code using 32768 markers for each species is unstable with v ~ 0.01 wx,,.
This instability can be eliminated with a larger number of particles (131,072 for this case).
Despite the problems, we have been able to show that the linear §f particle code with
kinetic electrons can produce results in agreement with the dispersion code for parameters
for which the real frequency and growth rate are substantially different from those that
result when the electron distribution is assumed to be adiabatic [13]. We now present data
for runs with kinetic electrons. The parameters are: 7; = 2.0, n, = 1.0, kyp; = 0.75, k; = 0.2
(that is, L,/Ln = 10.0), and T;/T. = 1.0. The dispersion code yields w? = 0.0893 ws, and
7 = 0.0353 we, with full electron dynamics; with adiabatic electrons, w, = 0.0721 wx, and
7 = 0.0504 wx;, respectively. Thus there is a substantial change brought about from the
inclusion of kinetic electron dynamics. (There is not such a large difference for 7. = 7;.)
We use an especially large box with X, = 16.0 (the mode only extends to about X = 4.0)
in order to demonstrate the sufficiency of the semi-implicit method for three-dimensional
nonlinear runs for which we would use a large box with a number of rational surfaces. We
make three runs, using 131,072, 65,536, and 32,768 markers per particle species, with 256 X
values, and with 4 Gaussian E, ’s, and 4096 V||’s represented. The time step is 0.5. The value
of Kj at the edge of the box Xj is K| = Xoke = Xokiy/mi/m, = (42.8)(0.2)(16.0) = 137., so
the Courant condition for the electrons, Ar < 1/(K)Vj.) = 0.5 < 1/((137.)(1.0)) is strongly
violated. Since the mode width is about one fourth the box size, the effective number of
markers (within the region of the mode) is about 32,768, 8192, and 4096, respectively. The
values of w, and v (averaged over one growth time 1/v¢ = 28.3 wy. ) for the case of the run

with 131,072 markers per particle species are displayed in Fig. 4 over a length of time equal
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to 14 growth times. In Table III, we list the values of @,, Aw, /wd, Ad, /¢, 7, AF/v%, and
A% /~4? for all three runs (with different numbers of particles). The simulation yields values
of w, and 7 which agree with the dispersion code values to about 10% except for the case
with 32,768 markers. For this small a number of markers, the code was numerically unstable
as indicated by the error in w, and + and the poor energy conservation. The profile of ® in
the X-direction at a late time is displayed in Fig. 5a for the run with 131,072 markers per
particles species, while the eigenfunction found from the dispersion code is shown in F 1g. 5b.
The value of @ is plotted only between zp; equal to —7 and +7 although the simulation box

extended from —16 to +16.

3. CONCLUSIONS

A particle code using the §f Algorithm produces accurate results with much less noise
than a conventional particle code. Not only is the noise reduced, but the scaling of the
noise, roughly N, is more favorable. (On the other hand, though the number of particles
required is fewer, one must be sure to have enough particles, for when the number of particles
is reduced below the required number, the noise will increase very rapidly.)

The noise from the background distribution is absent in the 6 f algorithm. This is particu-
larly important for parameters arising in fusion confinement devices, where 6/ fo ~ pi/ Ly ~
102 ~1073. For such parameters, it is sufficient to use the lowest order gyrokinetic equation,
which is valid in the limit p;/L, — 0. Then p;/L, appears only as a scaling parameter, and
has no effect on the accuracy or expense of the simulation. With conventional particle code
methods, however, decreasing p;/L, decreases the signal to noise ratio. Thus it is difficult
to use a value of p;/L, (or strength of the equilibrium gradients) which is small enough to
well approximate the p;/L, — 0 limit, without using exorbitant numbers of particles. This

is true even for parameters such that there is a strongly unstable mode. For parameters

approaching marginal stability (which are typical of actual experiments and planned reac-
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tors, e.g. 7 ~ 2), conventional codes are wholly prohibitive. Thus in this most interesting
case in which the plasma is close to marginal stability, the § f Algorithm has a tremendous
advantage over ;:onventiona,l techniques. We note that the low noise advantages of the 6 f
Algorithm are also present in nonlinear simulation [9]. We have also shown that it is possible
to monitor the accuracy of the simulation using the energy terms &o; and €. Conservation
of &0t indicates that there is adequate space and time resolution, while conservation of &€
further indicates that there is an adequate number of markers to represent the continuous
limit.

When the linear §f code is run using electron markers as well as ion markers, there is
increased noise and less exact energy conservation. Nevertheless, the code produces results
in agreement with a gyrokinetic dispersion code; it allows one to simulate cases in which the
linear behavior is substantially different from that which results from the adiabatic approxi-
mation. A more serious problem is that weak numerical instabilities have been found in runs
using parameters which should produce a stable or damped mode. These instabilities can
be eliminated by using a large number of markers. It is not known whether such numerical
instabilities would be a problem in a nonlinear simulation.

The semi-implicit method we have developed for the evolution of ® allows us to use a
timestep A7 larger than that which violates the Courant Condition. Thus, the timestep can
be chosen just small enough to resolve the modes of interest.

The advantages of the 6 f Algorithm, the afbility to run with a relatively small number of
particles with low noise, and the unrestricted time step, should make it possible to simulate
turbulent plasmas in three-dimensional geometry using realistic parameters, (at least with

kinetic ions, and perhaps with electrons as well).
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Figure Captions

1. Time dependent traces of (a) w,/wx, and (b) v/wsx, for a simulation of the 7; mode
using 7; = 4.0, ki (= 2Ln/L,) = 0.5, kyp; = 0.71, T}/T, = 1.0, and X, = 5.0 with
adiabatic electrons assumed. The horizontal dashed lines are plotted at a vertical

position corresponding to the gyrokinetic dispersion code values (a) wf/wx, = 0.411,

and (b) v¢/wx, = 0.143.

2. Profile of @ (arbitrary units) versus X = zp;* for the parameters of Fig. 1. In (a)
the result from the éf particle code at a late time, and in (b) the result from the

gyrokinetic dispersion code.

3. The energy term &g is plotted versus time for a Landau-damped shearless drift wave.
The value of k; for this run is 1.0. In addition, n; = 0.0 (drift wave only), T;/T, = 1.0,

Xo = 10* and kyp; = 0 (drift kinetics). We assume adiabatic electrons.

4. Time dependent traces of (a) w,/wx, and (b) v/wx, for a simulation of the 7; mode
using kinetic (particle) electrons. The parameters are: 7; = 2.0, 7, = 1.0, kyp; = 0.75,
ki = 0.2 (that is, L,/L, = 10.0), and T;/T. = 1.0. The horizontal dashed lines are
plotted at a vertical position corresponding to the gyrokinetic dispersion code values

(a) w?/wx, = 0.0721, and (b) 7¢/wk, = 0.0504.

5. Profile of ® (arbitrary units) versus X = zp;' for the parameters of Fig. 4. In (a)
the result from the ¢f particle code at a late time, and in (b) the result from the

gyrokinetic dispersion code.




N, [ ook | DB [ |G, o oy B 1| 17| B Ao [ AE A
131072(0.096 [0.075 10.22 0.036 {0.020 |0.23 0.091 0.34
65536 [0.085 |[-0.048 [0.19 0.04010.13 |0.28 1.2 1.1
32768 |-1.5 -18. 3.4 0.06 (0.7 0.6 2.9 2.8

Table III
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AT [, [ [ A8 [T A, |27 [ AT 7 5] 17||AEron] AEal[|AE] Ao

0.1] 0.405|—0.015 | 0.049 |0.129 -—0.099' 0.14 | 3.6 x 10~* [0.074

0.8| 0.402/—0.022 | 0.068 [0.128 |—0.10 | 0.13 0.023 0.048

3.2| 0.338{—0.18 0.049 10.127 |-0.11 | 0.17 0.76 0.80
12.8|-0.05 |—1.1 0.04 |-0.72 | 0.24 1.9 1.5

Table I

N; (@ fws,| AT, [l AG, [l ws, | AT ]+4* ATV || Ao [AES|[[AE ] As|
65536|0.387 |—0.058 |0.024 0.135|—0.056/0.098 | 1.9 x 10~2 |1.4 x 102
16384|0.43 0.046 10.060 0.135 [—0.056/0.25 9.5 x 107* |7.0 x 103
8192 (0.25 ]—0.39 (0.12 0.11 |—-0.23 |0.49 0.015 0.12
2048 [0.5 0.22 (1.2 0.05 |-0.65 (3.5 0.064 0.41

Table IT

28







~~
- @©

T T N A I T NS |

I 3 $
_ L R L _ LAN A R |

NN g}

- M

|
(S L &

HH

F;g 2

5F




107 —

1072

T lllllli

§ L] g WRETTI I L1t

1073

T Illllli

’]@"4 ! L |

(O]
N
(O]
~
(NN
—
c
* O
L (NN

51

A
N




1

T i f
- a) '
wr 10 +
Cn)*i
.09 £ — Y
I L | |
— 1 |
"b) i
,}/ 04 + ' l it 1y
T i A .
Ci)*l IL ’ TF '
031+ A" |
02 A R
4 200 . 409 .
tw*i




-




