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Abstract

A hybrid of hydfodynamics and kinetics is used to study the effect
of finite plasma pressure on the ion pressure-gradient driven toroidal
drift modes. The linear drift modes of the system are given by a
fifth-order polynomial describing the coupling of the electron drift,
the ion acoustic, and the shear Alfvén oscillations. The characteristic
frequencies, growth rates, and polarization of the electromagnetic modes
are investigated as a function of the parameters of toroidicity, plasma

gradients, and plasma pressure.



I. INTRODUCTION

The ion pressure-gradient driven modes in toroidal plasma have been

1-4 5-7

the subject of numerous recent linear and nonlinear studies. The

relevance of the modes to the beam—heated tokamaks with high ion
temperature gradients is well recognized1_7, and the modes may be
relevant to the fluctuations observed during high-power heating.

8,9

conditions. In addition, a thermonuclear reacting plasma with an

ion temperature well above the electron temperature may be subject to a
form of the ion pressure gradient instability.

The previous studies!™’

use the electrostatic approximation due to
the fact that the maximum growth rate is well below the shear Alfvén
wave transit frequency for low beta plasmas. To be applicable to the
higher plasma pressure achieved with auxiliary or alpha particle heating

the theory must take into account the electromagnetic components of the

instability.

General formulations of the electromagnetic drift mode problem
derived from the linearized Vlasov-Maxwell system of self-consistent

field equations are given by Antonsen and Lanelo, Tang_gg_gl.ll, Hastie

and Heskethlz, Rewoldt 32_21,13,v0heng14, and Itoh.gE_§£.15 with
different emphases. When the linear mode equations are reduced by using
the ballooning mode theory for the structure of the toroidal eigenmodes,
the problem becomes solvable including many, if not all, of the kinetic
theory effects even in the actual finite pressure toroidal equilibrium.

Due to the large number of physical phenomena contained in the kinetic
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equations and the toroidal equilibrium, the mode equations are
complicated and difficult to solve. Some important aspects of the
stability problems do not depend sensitively on the inclusion of the
kinetic effects. An example of the degree of dependence on kinetic
effects is found in the study of Terry.§£'§£.4 which compares kinetic
growth rates and frequencies with hydrodynamic growth rates and

frequencies in the electrostatic dispersion relatiomn.

In this work we formulate the problem of electromagnetic drift
modes using the hybrid description based on hydrodynamic and kinetic
equations. We thus restrict ourselves to the main features of the
electfomagnetic drift modes. The formulation presented here neglects
the wave-particle resonances, the difference between trapped and
circulating particles, and does not correctly describe the frequency
- dispersion for perpendicularw@yéleﬁéthéiéomparable with the ion
gyroradigs. The advantages of tﬁe hybrid approach, however, are the
clear physical interpretations of the features of the dynamics contained
in the moment equations and the possibility of extending the study into

the nonlinear regime with nonlinear partial differential equations.

The organization of the paper is as follows. In Section II the
electromagnetic fields are defined and the reduced formulas for the
plasma currents required for Maxwell’s equations are determined. Using
the momentum balance across the magnetic field, the divergence and the -
rotational parts of the perpendicular plasma currents are computed.
Total pressure balance across the magnetic field is solved for the

parallel component of the magnetic oscillation. In Section III the
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gyrokinetic equations are linearized, and the parallel components of the
plasma currents are computed. With these expressions for the plasma
currents, two alternative forms of the reduced electromagnetic drift
mode equations are derived in Section IV. In Section V, the dispersion
relation for the coupled low frequency oscillations is derived and the
appropriate dimensionless parameters are defined within the local

- approximation. The transformation of the frequencies, growth rates and

polarizations are investigated with variation of the plasma pressure for

the five low-frequency modes. Section VI contains the summary and

conclusions.

IT. FORMULATION

We use a representation16 of the electric field of the form

E o= y - 1 34\ o '
E = -¢-\7><(ab)-E =) b (1)
: /

with b = §/B + Fourier analyzing in time as exp(-iwt) and operating

o>

with |Dbe, Vi, and %-V X on Ampere’s law we have

2 %Y _ . [4mw
c
3 2 Y . [4Tw
— vV X = —\ VvV, « &8J 3
9s L 3% l<c2) 1 ~ (3)

and
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2 - b
vi §Bu = — bV x 8§J . (4)

In Egs. (2) through (4) the field ¢ is related to the parallel

component of the vector potential A" by

oYy _ LW _
with E; = -%-V[¢ - w]. The parallel component of the magnetic

perturbation GB" is given by

, W = v2

The coupled mode equations are obtained when we express the perturbed

plasma currents on the right-~hand sides of Egs. (2) through (4) in terms

of the field quantities (¢, a, A

We first compute the cross—field current from the momentum balance

equation solved for J, ,
_cb . 0
:IL = = X [Vp + mini(ﬁ + ‘.’:’V)XE] (7)

where the u 1is given by the sum of the ExB velocity hAD and the

diamagnetic velocity V4o
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~ cbhxVp
u = vp tv = + . 8
4 = Vgt g o (8)

The finite Larmor radius (FLR) part of the stress tensor is properly

taken into account in this reduction as shown by Hinton and HortOn.17

The linearization of the perpendicular current gives

o " \ ]
= ° 1 - I d .
S = B_Obox'[VSP B, "Po F Mo (57 * a0 V) L’EJ -
The zero suffix denotes the unperturbed quantities which are dropped in
the following unless necessary to avoid confusion. The
prefix ¢§ denotes the perturbed quantities. We operate with V. ,

and B-Vx on Eq. (9) to obtain

. . §B, b
veosg = S vepe[bdB 4 uxh) - cvx (—L_). vp
= B B ; BZ
—-iwm;nc Wy
______Z (1 - Pl)vl . E (10)
B w
and
evxsd = Ve [Sviep) - ev, o [y
oL = g L°PL) T ¢y B—ZLP

w . cnv
~iwm, (1 - *Pl)kvl ( ”E> . (11)
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Retaining the contributjon from the first term in Eq. (l1) and
substituting it into the right—hand side of Eq. (4), we obtain the

pressure balance relationship between Gpl and GB" s

H
o

v? (B8B, + 4mép;)

or

conste. (12)

B8B, + 4n6p,

The pressure balance equation (12) replaces the third component Eq.
(4) of the original three coupled-mode equations (2 — 4). The
compressional magnetic field fluctuation SB” is expressed in terms of
the perpendicular pressure fluctuation Gpl « In order to obtain
closure for the coupled-mode equations, we need expressions

for GJ" and Spl in terms of the fields ¢ and ¢ .

III. PARALLEL CURRENT AND PRESSURE FLUCTUATIONS FROM KINETIC THEORY

In order to compute the parallel current fluctuation for Eq. (2),
we solve the linearized drift kinetic equation obtained from

5f e 3B 8f _
ﬂ“"(‘lu‘*'YE"'YD)‘Vf"‘[EE‘ (Xu"";’n)""u-ﬁ-}g = 0,

with

~

x [uVB + v%[b-V)ij\ (13)

|
Do



and € = v2/2 and u = vf/Z'B .

Specifying the unperturbed equilibrium distribution function as the

local Maxwellian,

Fop = Fy = no[m/ZﬂT)s/z exp(-ms/T) R

we obtain the solution of the linearized equation

(0 - wgy) v :l
e t e _ m
Fo (w - kyvy - ij {T (¢ 3 A") * T ueB

where we defined

3
Wep = Wx (1—7“+21-T2n>
wp = k- ¥p
) . T
We = k, * bx VR £
* ~1 o (eB)
n = dinT (14)
d,?,nno

and the species index j is suppressed. We define T = Te/.Ti .

Noting that the mode frequencies of interest lie between the

electron and ion transit frequencies (mti <w < w, with Wey = Vj/Lc)’
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we expand the denominators in the appropriate smallness parameter for

each species. We obtain for electromns

-[1+(%)+( )2 + J , (15a)

and for ions

The potential fields ¢ and ¢ in this expression and hereafter are
normalized to Te/e . As noted in the introduction, the solutions in
the form of Eq. (15) preclude the full kinetic effects such as the ion
drift resonance, the finite Larmor radius effects and the trapped
particles. We restrict ourselves here to the main features of the modes
without these effects. We now compute the parallel current

fluctuation &J;  and the perpendicular pressure fluctuation &p; from

these solutions. We obtain

| W W\ {SB wé, + ws |
= pe Il VB K
GJ" = nge —]:T [: (]. - Te->(1p - ¢J + (l - " ) ( 3 - " ¢)



() (- - o)

and
. T
8p; = »pé[(l - U}’l) ¢ = (1. - wpe)-w J . (17)

A more general form of this equation is given in Eq. (18) of Ref. 16.

The various drift frequencies of the pressure gradient, the curvature,

and grad B are given by

wxpg = wxs(1+ ny)
CT'A A A
wl = __beb'Vb-k_L
e.:B ~
h|
cT;
j _ jz VB
B T TP E Ao
hi

We can now express SB"/B in terms of ¢ and V by substituting

Eq. (17) into Eq. (12)

8B 8 Wi s \ w S
r_ Te _ *pi - _ *pe

with Bj = 8'rrpj/B2 « Making use of Eqs. (17) and (18) in Eqs. (10) and

(16), we compute V -« 6J, and 6J in terms of ¢ and ¢ . We have

. W e W iv 1
Vesy = moezwg[<1 -2 );p - (1 — )(p:I
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iumOTemicz m*pi.
e\ v (19)
eB w L
and
' N ' . ' ‘ 22
npew Wxe ( Wipi [Be'( Wipe kjeg
BJ = - + . —_— -— - X -
I Ky 1 0 1 0 2 1 ) w2 “(w ¢)
2w e\ )
-_K (1 - Pe‘)¢ ;. (20)
w o\ )

In the computation of Eq. (19) for the contribution from the
diamagnetic current, we make use of the equilibrium force balance

relationship,

(B} = L. s (21)
8r P 4 ~ ~ 2

to combine the first three terms of Eq. (10) to express

c o 1 ~
Vy 6£d §'V5Pl . [b X —E-(E.V)E + be}

B

= %Nwmyﬁxuwﬁ
ed

= -2i wg( pl) . (22)
Te

Based on Eq. (21) it is also easily demonstrated that the following

identities hold:
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i
>3
A0

B
7;'(w*pe - w*pi) + w%B

and

B

7?-(“*pé "“*pi) *'Iw%B (23)

=TW

A

with T = T /T; .

' 20w . Waoo | Wens \
023200 | " K "(1 - pe)xp -'(1 -2y

We also used Eq. (23) in the reduction of Eq. (20).

IV. THE COUPLED MODE EQUATIONS

We now substitute Egs. (20) and (19) into the right-hand sides of

Eqs. (2) and (3) respectively. We obtain

and

ds 19s 2
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W s
+ 9_.(1 - u?l> o2l = 0. (25)

We define the Alfvén velocity v, = B/(4ﬂmin0)l/2 and the cross—field
wavelength unit p = c(miTe)l/z/eB .« The coupled Eqs. (24) and (25) are
the basic equations describing the electromagnetic fields ¢ and ¢ .

However, an alternative presentation of the equations is useful.

Choosing the quasi-neutrality constraint

3
Z80 F Ve 8 = 0 (26)

that follows from 9/9s of Eq. (2) subtracted from Eq. (3), a

convenient alternate pair of equation results.

By combining Eqs. (24) and (25), making use of Eq. (26), we obtain

the quasi-neutrality relationship of

2 2

| _ Uke Wapi v.se" Wipe kjcg ._
e e | S Bl O
W s 20
- (1 _ t?1><p2vf¢ - e ¢) -0 . | (27)

Now the parallel component equation of the Ampere’s law of Eq. (24) can

be simplified by Eq. (27) to obtain



We may now take the quasi-neutrality condition Eq. (27),and the parallel .

component of Ampere’s law, Eq. (28),as the fundamental coupled equations
describing the electromagnetic fields ¢ and ¢ . This system of

equations is equivalent to that of Eqs. (24) and (25). However, we can

easily see that by letting ¢ =0 and B, =0 in Eq. (27) that we
recover the electrostatic mode equation.l Thus, the system of Eqs. (27)

and (28) is more convenient in certain cases.

V. ELECTROMAGNETIC DRIFT WAVE DISPERSION RELATION

In this section we consider that the axial eigenvalue problem has
been solved to obtain modes localized to the regions of the bad
curvature drifts. We do not consider in detail the conditions required
for ballooning of the wave functions in the regime of the bad curvature.
The ballooning problem is considered in Refs. 1-3 for the electrostatic
equation and in Refs. 11-15 for the electromagnetic equatiomns.
Physically, there is appreciable ballooning when the local growth rate
exceeds the frequency for the parallel group velocity to propagate wave
energy from the outside to the insidé of the torus. The dispersion
relation for a ballooning mode is given approximately by the local
dispersion relation evaluated on the outside of the torus

where W, obtains its maximum unfavorable wvalue.
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To obtain the local dispersion'relationship, we

put 3/3s »> iky and Vf > —kf in the modal equations. From Egqs. (27)

and (28) we obtain

_ S—Al - w*_p : ‘/l - w*pi I e (1 _ w*pp _ wg ] _C¢ _ IP\
( w \ w :5_ \ w ;EJ it J
w 208
+ (1 i?l) (kfpz + K)¢ = 0 (29)

(30)
with
U)A = k" VA and U!S k" CS .
Rewriting the quasi-neutrality Eq. (29) as
Aw)p = Blw)y (31)
and the parallel component of Ampere’s law of Eq. (30) as
Clw)p = Dw)p , (32)

the dispersion relation, a fifth order polynomial in w, is given by

AD - BC = O (33)
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and the polarization relation is given by

_ 9 AW _ G
2@ =5 3@ T @) (34

The quantities A through D are

c = (w w*pi) (kipzw + 208 )
D = kzpw%+2m ( "”*pe) .

An alternative form of the dispersion relation to that in Eq. (33)

is obtained by combining Egqs. (29) and (30) as

S Wk wg . Be (1 - w*Pe) ) ) [w—w*pi](wkfp2+2wg)
WWhpi 2 2 w kzpzw%wae(m-m*pe)
2.2 W
= (kP2 + 2 =), (35)

When the curvature drift is neglected, i.e. wf = 0, Eq. (35) reduces

to the well known (e.g. Eq. (8) of Ref. 18) dispersion relation for
the coupled drift waves and shear Alfven waves by the finite ion

gyroradius effect. The generalized version of that dispersion relation
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is Eq. (35) which describes the coupling of B corrected drift waves and
curvature modified shear Alfven waves by the two effects of finite ion

gyroradius and curvature.

The basic dimensionless parameters of the system are
€h = rn/R , B = 81Tp/B2 and the order unity parameters T = Te/Ti > Ny

and n, . All frequencies are measured in units of cg/r, and the

cross-field wavenumber Xk, in units of p = c(miTe)l/z/eB . The

dimensionless frequencies in Eq. (35) are

Wee = K, Wipe k(l + ne), ws = ke,
k(l + ni) €n 2 1/2 (&,
w:’epi = = = Wg = T H Wwp = (Q) —q—) (36)

Following Ref. 16 we define three plasma pressure

2
n

1/2

a and

regimes (A) B ~ ¢ where wp ~ 1, (B) B ~ €, Where wp~ ¢

(C) 8 ~ 1 where Wp ™~ Wg ~EL o

In the limit k + 0 the dispersion relation reduces to

(klp]zwl:w2<l + %ge) - wg} (wz - w%)= 0

with the five roots w =0, w = iws/[l + f3e/2]1/‘2 and w = iwA. For
general k we solve the fifth-order polynomial numerically. For each
root the polarization o = y/¢ defined in Eq. (34) is calculated. The
polarization of the mode is defined as (1) electrostatic,ES,

for o] < 1/2 , as (2), magnetohydrodynamic, MHD, if o - 1| < 1/2
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and (3) electromagnetic, EM, if |o] > 3/2 . 1In this manner the five
roots ® = wz(k) and polarizations az(w) are calculated as shown in

Fig. 1.

A. Low B Regime

2

5  the dispersion relation

In the low plasma pressure regime £ ~ €

decouples into an electrostatic branch with l[a} << 1 given by

1+n,
( ni) 0 (37)

2
02(1+KY) ok |1 -2 =X (1+n)] +x2(2))
n T 1 n

which yields the fluid approximation to the electrostatic pressure

gradient driven drift wave instability derived from Vlasov theory.2-4 In
this plasma regime the MHD branch with o = 1 is given by
w(w - W -] - m2 = 0 (38)
*pi A *
with stable oscillation at
1/2
1 2,1 2
w(k) = 7 Wapi towy t 7 Wipi .
We definel’4 the electron drift wave phase velocity
K2
= (39)

uk =
1+ k2
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from Eq. (37) and the characﬁiaistic electrostatic growth

2€n(l + ni)
parameter Y I e a—

]‘ "+ The electrostatic drift mode is

unstable for slow phase velocity where uﬁ < 47%/(l+k2) occurring

for k centered around kj = [t(1 - ZSHJ]l/z/(l + ni)l/z. The

electrostatic frequency and growth rate w = Wy + iyk are given by

w(k) = > kuy v(k) =

£k - = ug) . (40)

The maximum growth rate is vy, = (2€n)l/2

at kgp = ky = [T/(l+ni)]1/2.

B. Moderate B Regime

and occurs

With increasing plasma pressure the Alfvén frequency

wy = (Z/Bejl/z(en/q) decreases to couple with the drift mode

frequencies. In particular, for B8 ~ :—:n/q2 the Alfvén frequency drops

to the maximum electrostatic growth rate vy = (Zen)

1/2
WA

With the plasma pressure in regime (B) where B ~ e, , the

dispersion relation remains complicated.

Collecting the terms which

define the drift wave phase velocity wu, ,as given by Eq. (39) for

low B, we obtain

2 (2€n

) [L+ng + 2(l# )]
(41)

k
(14w = 1=-2,-=(1+n,) -
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which shows that increasing plasma pressure lowers the phase velocity of

the drift wave-like oscillation.
The critical wavenumber kg, for vanishing phase velocity is

[1-2_[1+n, +%(1+ﬁi)']/w;§; 1/2

As iﬁe plasma pressure increaséé, the e;iticalm%;Q;ié;ééﬂ Wﬁéﬁ/koiAgéesw
to infinity. In the present model, in which the TFLR parameter

D/rn is vanishingly small, this transition means that the mode
transforms from wavelengths that scale with p to low-order azimuthal
modes with finite Kkyr = m =~ 2q . From Eq. (42) the critical

beta B, for the onset of instability in the low order azimuthal modes

is

e (1+ D)
Bc - - T R (43)
[14n (140 4) 1q?

where we use B = Be(1+1/T). As B approaches B. from below, the

fastest-growing mode moves from the microscopic wavelength

l/ko ~ p[(l + ni)/'r]l/2 to the macroscopic wavelength of order r, .

During the tramnsition, the growth rate remains of order eé/z .

For B8 > B, given by Eq. (43) the dispersion relation contains the

approximate magnetohydrodynamic modes (¢ =7¢) given by
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ofo + {1 m)] + (22 )[1 40+ 20 +np] -0d = 0. @4

The unstable oscillations w = w(k) + iy(k) occur at

w(k) = - 5;:(1 f.ﬂi)
2 11/2
Y&)==iﬂ%&h%ﬂ%+%ﬂ+nﬁ]—mi-£%l+nﬂ2} (45)
4t

in the wavenumber range 0 < k < k_ where

(an)[vl +ng +%(1 + ni)] - wﬁ}llz
) (1+ni>/T ’

ko= 2 (46)

The maximum growth rate occurs at k =0 with vy =7y, where
1, 1/2 1/2
Yp = :Zen[l g+ (1 + ni)]} (1-8./8) . (47)

For B >> B, this maximum growth rate Yn exceeds the low plasma

1/2
pressure growth rate by the factor [1 +n, + %(1+ni)] .

In the moderate plasma pressure regime B ~ €, there remains an
essentially electrostatic instability connected with ion-acoustic waves
with wg < Wipg and a stable electromagnetic electron drift wave. Both
these modes are characterized by small Gj"(k,w) and Ell # 0 . For

the electrostatic oscillations |[¢] >> |¥] and 6j"(k,w) = 0 . The
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mode has w = w%B and v(k) = iws(l + ni]l/z and should be treated

with kinetic theory except in the regime T[l +-ni) > 1.

The remaining mode is an electromagnetic or inductively polarized
drift wave with |¥] >> [¢] . Taking o >> 1 in the second factor of the
left hand side from Eq. (35) we have
w2 - P QwE)m + ZwEw*pe - fpzmg =0

from which we obtain the stable electromagnetic drift wave oscillation

w(k) = wg + WS + and y(k) = 0.

In the dimensionless variables the mode is w(k) = k(1+2€§/8eq2).

The transitional region near B ~ Bc is the region where the five

modes are strongly coupled through the fifth—-order equation and the

polarizations are of mixed character. We proceed to examine this regime

numerically. TFor e = 0.25, q = 2, rq’/q = 1, and Ny =Ng =71 = 1 we
solve for wz(k), Yz(k), and az(k) for & =1,2,3,4 and 5 as beta
varies from below B, to above B, . From Eq. (43), B. = 0.032.

Figure 1 shows the transition of the modes, given by the fifth-order
polynomial derived from the hybrid model, occurs as the local

plasma B varies from below the MHD beta critical to above

the MHD beta critical. For reference, we note that often-used measure
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of danger Y(k)/k2 from an instability increases from approximately
0.3/(.5)% = 1.2[D,y] at B = 0.02 to 0.4/(.1)* = 40[D,y] at B = 0.03 .
Here, Dy = (p/rn)(cTe/eB), the drift wave diffusion scale factor of
anomalous transport theory. The divergence of Y/k2 in the case (c)

where B = 0.05 can be interpreted as meaning that k2 > p/rn and

thus y/k? > cT_/eB , or a qualitatively faster plasma loss rate

prevails.

VI. SUMMARY AND CONCLUSIONS

The low frequency stability of the tokamak system is investigated
on the basis of hybrid dynamical equations. The cross—field plasma
currents are derived from the perpendicular component of the momentum
balance equations in terms of oscillating fields E, 8B and pressure
fluctuation Spj . The oscillating densities an and pressures 6pj
required for quasi-neutrality and the cross—field currents are derived

from the linearized drift-kinetic equatiomn.

In the non-resonant, fluid limit we show that the self-comnsistent
field equations reduce to a fifth—-order polynomial describing the

low-frequency modes of the confined plasma. At low plasma

2

n and high plasma pressure B ~ 1 , the modes separate

pressure B ~ ¢
into a cubic equation describing three electrostatic oscillations and a
quadratic equation for the MHD modes. For intermediate plasma

pressure B ~ €, the roots of the fifth-order polynomial are strongly

interacting.
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For plasma pressure approaching the MHD critical beta Bc the
wavelength of the fastest-growing mode increases and the polarization of
the unstable mode becomes mixed. In this transitional regime it is
essential to retain the interaction of the roots of the fifth-order
system. In the transitional regime the mode frequencies are of the same
order and the system cannot be factored into the quadratic equation

of FLR-MHD theory and a cubic equation.

~ For plasma pressure above the MHD critical beta B, by a factor
of approximately two (B 2 ZBC), the fifth-order system again factors
into the E, = 0 MID equations and a cubic equation. The cubic
equation describes the inductive (¢ = 0) electron drift wave and the
electrostatic (¥ = 0) ion acoustic waves. The ion acoustic-drift
waves are unstable for mn; >> 1 with growth rates of order

(]- + ni)

Yg (en/q)[ ]l/z[cs/rnJ which is smaller by 63/2 than the

T
B . e . - 1/2 1 1/21/2
FLR~-MHD instability with Yo (2€n) [1 +ng t+ ?-(1+ni)] [cs/rn]

and E" = 0.

We conclude that, the hybrid model contains more of the physical
processes occurring in the low-frequency plasma dynamics than the
idealized FLR-MHD theory. The hybrid dynamics predicts the same

critical value of plasma pressure 8 Eq. (43), as MHD theory, but

C 3
its meaning is different from that of MHD theory. In the hybrid model
the system is unstable both above and below the critical beta.

The MHD beta critical in the hybrid model marks the point at which the

growth rate vy(k) maximized over k moves from a wavelength

determined by the ion inertial scale length (finite %kp) to a wavelength
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independent of the ion inertial scale length (kp = 0 and

finite kr = m).

The change in the physical meaning of the critical plasma pressure
may be useful for the experimental interpretation of the low—~frequency

fluctuations and anomalous tranmsport in high pressure plasmas.
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Figure Caption

Fig. 1 The frequencies and growth rates as a function of k = kep for
ballooning modes with average k" r, = an/q for the

transitional values of the plasma pressure B. The local

" plasma parametexs are T = n; = =1, q=72"and €, =025 "
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