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Abstract

Self-consistent shear flow generation from the interaction of neoclassical and drift
wave turbulence effects is investigated. The neoclassical poloidal flow damping is shown
to compete with the plasma flow generation driven through the divergence of the
Reynolds stress. When there is no external driving force except for the free energy
released from toroidal shear flow, the turbulent fluctuations occur as a transient pulse
which takes the system along an equilibrium path to a relaxed state. Exterﬁal torques,
such as parallel neutral beam injection, are needed to maintain significant fluctuation

- levels. For a system driven by a fixed ion temperature gradient, although linearly the
poloidal shear flow generated substantially reduces the growth rate, the simulation
results show that a sequence of nonlinear pulses occurs that eventually build the fluc-
tuations up to a level that is not significantly affected by the poloidal flow. In this
new, highly nonlinear state the transport is intermittent, with high fluxes occurring

through a sequence of pulses of duration 100 L,,/c, for typical parameters.




I Introduction

Recently, the effects of background shear flow on turbulent transport have been subject to in-
tensive studies.!~" These studies are motivated by recent tokamak experimental observations
showing significant levels of radially sheared toroidal flow in neutral-beam heated discharge
and a sharp increasé in the poloidal shear flow in the edge region of tokamaks Which occurs
simultaneously with the decrease of the fluctuation level. It is believed that the generation
of background poloidal shear flow may be responsible for the decrease in the fluctuation level
at the plasma edge and for the improvement of plasma confinement, or the L-H transition.
Generally, it is known that a perpendicular shear flow has a strong stabilizing effect, 8~
by introducing a radial asymmetry in the eigénfunction which causes modes with different
radial wavenumbers to couple and a parallel shear flow can drive instability by releasing
free energy.’:“;ll In many earlier works the effects of background perpendicular and parallel
shear flow on turbulence have been studied either separately or with fixed background flow.
For purely toroidal flows, Waelbroeck et al.!* have shown that the perpendicular component
of shear flow can overcome the destabilizing effect of the parallel component for large flow
shear. However recent studies®* suggest that the background poloidal and toroidal flow will
be modified through the Reynolds stress when interaction or coupling between turbulent
fluctuation and background mean flow becomes strong. Therefore the studies of the com-
bined effect of toroidal and poloidal shear in self-consistently evolving background flow are
important to understand the development of fluctuations and plasma transport.
Neoclassical theory has shown that plasma flow in nonuniform toroidal magnetic field
will experience poloidal flow damping due to the magnetic pumping effect,'>=17 or the so-
called neoclassical effect. The effect arises due to the fact that when the plasma rotates

from the weak to strong toroidal magnetic field, the cross-section of the flux tube becomes




small because of the flux preservation. Since the collision frequency is finite, the rotation
heats the plasma and leads to an irreversible transformation of the kinetic energy of rotation
into thermal energy. In a turbulent plasma, therefore, the neoclassical effect competes with
the effect of turbulent fluctuation which tends to drive background mean plasma fow and
significantly affects the generation and development of mean plasma shear flow.

In this work we focus on the shear flow generation with the interaction of drift wave
turbulence effect and the neoclassical effect. We study the two turbulence models, one is
parallel flow shear ui, driven inétability model and the other is the 7; instability model.
The wj driven mode, as we know, drives the instability by releasing free energy stored in
sheared parallel velocity profile. As the modes grow, the perpendicular shear fow will be
driven through the divergence of the Reynolds stress. This shear flow then suppresses the
turbulence. In the meanwhile the magnetic pumping effect causes the damping of the mean
poloidal flow. From the point of view of energy, the free energy released from toroidal shear
flow first goes to drive turbulence, then part of energy goes to the poloidal flow through
Reynolds stress. The poloidal flow energy is subject to loss from the plasma heating due
to neoclassical viscosity force (or magnetic pumping). Therefore in a closed system, that
is, a system without external driving forces, the plasma flow which starts in én unstable
state always relaxes to a stable state along an equilibrium path. During the transition the
fluctuations grow up driven by the free energy in the sheared flow and then slowly decays
(as a power law in time) as a new stable state is approached.

To maintain significant fluctuation levels, it is necessary to have external driving forces.
The two kinds of external forces are used. One is parallel neutral beam injection which
drives the background parallel shear flow. The other is the ion temperature gradient driving
force which directly drives the fluctuations. The grown-up turbulent fluctuations then drive
background poloidal and toroidal flow through the forces arising from the turbulent transport

of plasma momentum. The saturation can be achieved when the external forces are balanced




by neoclassical effect and the viscosity force acting on the fluctuations.

This work is organized as follows. Section IT gives an introduction to the neoclassical flow.
The basic derivation of self-consistent background flow evolution equations with neoclassical
effect and drift-acoustic wave turbulence effect, and the equations of the mode evolution are
also given in this section. In Sec. III, linear stability analysis is Brieﬂy presented. In Sec. IV,
we show and discuss the results of the 2-D numerical simulations. Summary and conclusions

are given in Sec. V.

II Neoclassical Flows

First order plasma flow v that lies within a magnetic surface is determined in the toroidally

symmetric confinement systems by two magnetic surface functions
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where B = RoBrV¢ + (1/27)(Vé x V), Bp and Br are poloidal and toroidal magnetic
field components, respectively, By = (Bz)l/ P = (B% + B%)l/ ? 2 is poloidal magnetic flux, ¢,

6 are toroidal and poloidal angles and angle brackets means averaging over magnetic surface
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The mean flow velocity v can be written in the following vector form!?
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In Eq. (2) the first term represents incompressible plasma flow along magnetic field lines
and the second one describes the rigid body rotation of a magnetic surface. Rigid body
rotation (the second term in Eq. (2)) does not contribute to the lowest order viscosity,

therefore standard neoclassical viscosity force can depend only on the combination U —

(Br/Bp)uL.




The connection of the perpendicular flow velocity u, defined in Eq. (1) with radial electric

field B, is provided by the radial force balance equation which gives

u1 = —(2r Boc/ Ry By) <R2 BZ/B2> (%Ig " % %>

where E, is determined by electrostatic potential ®(¢) and P(¢) is the ion pressure. The
velocity u, is defined such that positive E, gives positive u, which is rotation in the ion
diamagnetic direction.

Plasma rotation equations in toroidally Symmetric systems describe the time evolution
of surface functions vy and u,. We can obtain these equations from momentum balance
equation following standard procedure described, for example, in Hassam and Kulsrud,'®

Hirshman,' and Ware and Wiley'
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where the standard toroidal geometry enhancement factor is
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and the last reduction is for large aspect ratio. In deriving Eqs. (3) and (4) we take the
plasma velocity as v + Vv with the mean velocity v given by Eq. (2) in terms of uy and wuj

and V to be determined by the fluctuation dynamics. Forces marked by index R represent

momentum generation produced by fluctuation-related Reynolds stress
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describes neoclassical viscosity force emerging when plasma is pushed along the nonuniform
magnetic field (the magnetic pumping effect) and terms marked by index a represent flow
damping due to the breakdown of toroidal symmetry of the system that is always present in

real devices
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The force F* can describe the effect of toroidal ripples or charge exchange collisions of ions
with neutral gas. )
According to Ref. 12 neoclassical viscosity is proportional to poloidal rotation velocity

and can be written in the form
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where 1™ is the neoclassical viscosity coefficient, that for the standard neoclassical assump-
tions of low rotation velocity u < c;, scales as!®16
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where vx = qRov/Vi,e¥/2, v is ion collision frequency, ¢ = 7/R, is inverse aspect ratio, Vi
is thermal velocity of the plasma component and the coefficient kv, describes the relative

effect of parallel heat flux on the longitudinal viscosity,!” which has following values:

ky* =1.17 for v L 1

by =—05  for 1< vx<e¥? (13)

Vk

k,, =—21 for x> 32,




Here we do not want to specify any particular model of a toroidally asymmetric process
that produces the nonambipolar forces F'{ and Fit. We use somewhat heuristic forms of the

forces for the description of the process:
Ff =nmuf(uL —ul), (14)
Fi =nmyjf (y) — uj) . (15)

Thé forms of the nonamBipolar forces given in Eqgs. (14) and (15) may describe the process
such as charge exchange with neutral beams (or beam injeétion) that can be derived from
hydrodynamical equations. '

Substituting Eqs. (11)—(15) into Egs. (3) and (4), we obtain the following equation for

mean plasma rotation in toroidally symmetric systém
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In writing Eqgs. (16) and (17) we reduce the cross-field gradient by 8/0¢ = (2rRB,)~*0/0x
and use the high aspect ratio approximation (e < 1).

The first terms oﬁ the right-hand side of Eqs. (16) and (17) give the neoclassical damping
of the poloidal rotation velocity us = uy — Souy to the equilibrium value uy = —u™ given
in Eq. (19). This equilibrium poloidal velocity determined by the ion temperature gradient

is in the ion diamagnetic direction for v4 > 1 when k,, < 0 and in the electron direction
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for v« < 1 when ky, > 0. The toroidal velocity ug = u) + Soul is not damped by the
neoclassical term ™ due to the toroidal symmetry assumed in calculating the F™¢ force in
Eq. (11).

The perpendicular and parallel mean flows are thus determined by the competition be-
tween the neoclassical transport coefficients v™¢, v§, vff and the turbulent (Reynolds) flow
tensors given by 7, = (UyU1 ) and g = <27,,,17||>.

The dynamical equations for the fluctuation fields @ and %j in the local slab geometry

are taken as®%18
o0 05 [0%u 0p . - ~ -
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and uy = uy(2,t) and uj = y(z,t) are the background perpendicular rotation and parallel
flow velocity field given by Egs. (16) and (17), respectively.

In Egs. (20) and (21), p. is the dissipation coefficient from collisional ion viscosity and
So = By/Bo (=~ Bp/Br) is the magnetic tilting angle.

The usual drift wave scalings are used in the non-dimensional variables in above equations:

g,y =x/ps, y/ps, Z=2/Ln;

t' = cst/Ly ; (23)
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and all the velocities, u, wy, ¥j and V1 (= (ps¢s/Ln)b X V1 3), are in units of the electron
diamagnetic drift velocity vge = pscs/ L.

Equations (20) and (21) together with Egs. (16) and (17) are the basic model equations
used in our simulations with the results given in Sec. IV. In the following sections we use
the dimensionless variables and omit the primes. These nonlinear coupled equations for the
neoclassical evolution of the mean flows and the dynamics of the fluctuations form a new
hybrid neoclassical- drift wave turbulence model for the toroidal plasma.

The total energy E is dissipated only by the small dissipation from perpendicular vis-
cosity py and the neoclassical drags; due to collisional relaxations of the anisotropics driven
by the rotation. The fluctuations transfer the background flow energies (Eyy) and (Fyge)
through the two (Reynolds) tensors. So we find it useful to define and study the four energy
components obtained by dividing the poloidal or E x B flow and the toroidal or parallel
flow into their background (bg) mean flow components and into their fluctuating (f1) kinetic

components. The definition of these four components are as follows:

By = [ 0+ 20 (24)
Br=3 @+ (V0 (2)
Frg = 2/ “"L L, (26)
Bpa= %/ 9 Ldz ‘ (27)
The Reynolds tensors are defined by
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The two Reynolds stress tensors control the flow of energy between the background and

fluctuating flow components. The energy conservation laws can be written as

dEbg’l . ne ne dx a a @ . (97%_1_ dx
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and thus the total energy conservation is
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To write Eqgs. (30)—(34), we have noticed that
I Omardw __ [Our ~ do
Y or L, J 0z L’
Omay d _ Oy dz
/ oz I, bz "L, - (39)

These relations presented in Eqs. (30)—(34) also show that (Epy+Ef1)1,2 are conserved within
the small scale dissipation p; and the large scale neoclassical field. Equations (30), (32) and
(34) also indicate that when v$ = vt = 0 the background mean flow possesses two equilibrium
states defined by uy — Spuy = 0 and vy — Spuy + u™ = 0, and the effect of neoclassical
damping is to relax the flow to either of the states. The relaxation time is determined by
(1/v™)(Ln/cs). For vx ~ 1 the relaxation time is ~ qRy/V;, which is tens of microseconds.

For vx S 1 we have the dimensionless parameter 1™ =~ (3/2)(enq)(Ti/Te) v ~ vx.
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IIT Linear Instability

We now examine the linear stability of the parallel shear flow driven mode in the magnetic
shearless system based on the model equations (20) and (21). Considering the linear modes
have the wave form of § = @(z) exp[i(k,y—wt)]+ c.c., we can derive the eigenmode equations
by lineérizing Egs. (20) and (21) as

ws + ky (2) T 10 el VR A E

w— k(@) — k(@) [w— k(@) — k@27

g
Ox?

+ [—(1 +k2) +

where wx = kyvq = Lnwxe/Cs is dimensionless diamagnetic rotation. In the quasilinear
evolution the flow profiles u, (x,t),u)(z,t) take on complicated structures. For profiles with
weak 1| we may expand the mean perpendicular and parallel velocity as u, (z) =~ u1 (0) +
)z and v (%) = uo|(0) +ujz and transform to the moving frame so that uo1(0) = uoy(0) =0
in the moving frame. The laboratory frame frequencies must be Doppler shifted by kyuo. (0)+
kjuoy (0) from those obtained in the following stability analysis. Equation (36) is then a
Whittaker equation!! with no converging mode in —co < z < oo space due to the fact that
(14 k2) > 0. However, if the expansions for u (z) and u(x) are assumed to be valid only
in a finite domain of x space, then the solutions which converge in the ﬁni’(;e domain of z
space are relevant and unstable under the conditions given here.

Now we first consider the mode which is well localized such that |kyu) + kyuj |z < |w].

We can therefore obtain the lowest order eigenmode equation from Eq. (36)

52(;5 .
2 T (A+ Bz —Cz*)3=0 (37)
where
W - k”(k,’y’u,ﬁ —k”)
A:—(1+k§)+?——w2———
ko', + kyu) 2k (kyuf — k
g ¢w2 ) oy — i€ ywn ||)} (38)

4
#
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C =

(ky!y + kyuy)? [3ky (kyuj — ki) ]
3 — W .
w w

The lowest eigenmode solution of Eq. (37) is given by

7(@) = emi-YC (@ = 2y (39)

For wxw < ky (kyw) — ky), the eigenvalue can be determined by

wk £ 4wl — 4(1 + k2) [(2/3)]6” (ky’u,il — k) — \/3k” (ky’u,il — k) (kyu!, + k”uﬁ)]
2(1+k2)
The marginal instability can be derived from Eq. (40)

(40)

w =

wi — 41+ ky) [(2/3)ky (kyf — Fy) — /By (kg — By) (ke + yuf)] =0 . (41)

When the dimensionless diamagnetic rotation wx = Lywsxe/cs is small, compared with the
flow shears, we obtain

(ks + ky)? = ok — By (42)
Equation (42) describes the balance of poloidal shear flow stabilization with the parallel shear

flow destabilization. For kj = 1/qR the first unstable &, is k, = (uf—él /27) /(g Ruj(4/27— )

and the fastest growing mode for large |uj| is ky = 2/qRuj with Ymax = 21/ \/ (qRuj)? + 2¢ Ry
In a general case Eq. (36) has to be solved numerically to get eigenvalues w and eigen-
functions @(z). In Figs. 1(a) and 1(b) the normalized growth rate contours are shown in
u) = (Ln/cs)dVe/dz and u| = (Ln/cs)dV]/dz space for magnetic shearless and with mag-
netic shear (kj = kyx/Ls and s = L,/L,) configurations, respectively. The mode with
maximum growth rate is chosen among the modes found and the growth rate is not sensitive
to the boundary of the region. For the case with magnetic shear [Fig. 1(b)] the contours
with higher growth rate are shown to avoid high «/, values which makes the stability prob-
lem complicated and it will be discussed in a separate work. The interaction of ui, and n;
destabilization is studied elsewhere® and not considered here. In the presence of 7; and small

u, the stability analysis is given in Hamaguchi and Horton (1992).°
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IV  Results of Numerical Simulations

In this section we report and discuss the results of the nonlinear numerical simulations. We
numerically solve Egs. (16)—(21) using procedures described in Ref. 19. One can study the
model in two cases, local and global mode cases. In the global mode case, the magnetic
field in the y direction, B,, is considered a small finite constant, so that the magnetic
parameter So = B,/By = const. For the local mode case, B, is a function of z, so that
S(z) = By(z)/B, depends on z, which gives a 2D model for the effect of magnetic shear.
In the case of a sheared magnetic field, it is important to distinguish between single helicity
simulation/theory and full 3D multihelicity simulation/theory as analyzed by Beklemishev
and Horton.® A recent study®! indicates that it is physically more relevant to treat B, /By
as a constant in the two-dimensional case, while in three-dimensional case it is necessary to
treat By/By as a function of x since there are multiple rational surfaces with overlapping
wave functions. In this work we only consider the two-dimensional case, and therefore in all
of our simulation cases, we consider Sd to be a constant. ‘

In this work, the simulation box is taken to be L, = L, = 20mp;, which is to represent the
region of strong shear flow. We usually set initial béckground poloidal rotation v, (z,t = 0) =
u1osin(kiz) and parallel shear flow uy(z,t = 0) = wyosin(kiz), where k; = 27/L,, which
means in physical units a variation of u by ujocs(ps/Ln) over the scale of 62p, (typically 6
cm). The initial fluctuations of @ and 7 are usually set § = 7 = 0.1 exb [— (22 + v?) /rd)]
or, alternatively, 0.1z exp[—(z? + y2)/ré] with ro = 6[p,]. The neoclassical flow velocity
is u™ = wug®sin(kiz). The set of Eqgs. (16)—(21) is solved in an 85x85 k,k, space with
Runge-Kutta-Verner fifth-order and sixth-order method for advancing in time.

We have tested the accuracy of the nonlinear evolution by studying energy conservation in
both the two-field code with ¢~ dynamics and the three-field code with ¢—vy—6p dynamics.

Since there is transfer of energy between the fluctuations energies Ey 1, Ef 2 and Ep 3 and
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between the fluctuation and the background kinetic energies (u%) and <uﬁ> the conservation
of the total energy requires many transfer terms to exactly balance. We find that the codes
conserve the total energy well. In one test with all dissipation terms set zero and a large

amplitude initial perturbation we find that over the time interval tc;/L,, = [0, 500], the total |

energy decreases by
E7(0) — Er(500) = 13.06273 — 13.06239 = 3.4 x 10™*

for a relative change of (3.4/13) x 10™* ~ 3 x 107%. In this test the background kinetic
energy initially starts at zero, increases to approximately unity and settles down to fluctuate
around 0.4. The variations in time of the three fluctuation energy components are order of
unity.

In the first three cases of simulation, we study the paraliel velocity shear driven mode
with the self-consistent background flow evolution with and without the neoclassical damp-
ing effect from v™. As shown in Ref. 9 with fixed background flow, the two field model
equations (20) and (21) include linearly unstable modes driven by free energy released from
parallel shear flow. However the background evolution with time is important because when
the modes grow up, the fluctuation fields become large and the turbulent fluctuations sig-
nificantly affect the profile of the background fow through the divergence of the Reynolds
momentum transport tensors (%7, ) and <1’7ﬂ"> as shown in Egs. (16) and (17). In the
fourth case of the simulations, we study the shear flow generation in the ion temperature
gradient driven or so-called 7;(= dfnTi /dénn) mode case with the background neoclassical

viscosity.
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Case 1: Conversion of Toroidal Flow to Poloidal Flow Through Turbulence

In the first case 1A, we set v™ =0 and v$ = vj = 0, that is, there is no neoclassical flow,
So = Bp/Br = 0.2 and the perpendicular viscosity ). = 0.01 in the evolution of fluctuating
fields only, 1 = 0 in the evolution of background flows. This case may be considered as
the limit of a sufficiently high ion temperature plasma that the ion-ion collisional effects are
negligible on the time scales of interest.

For the time interval ¢ = 0-300(L,/cs), we keep the background flow fixed, that is,
ur =ui(z,t) = ur(z,t = 0) =0 and ¥ = y(z,t) = yy(z,t = 0) = 6sin(k1x) do not evolve
in time throughout this time period [0, 300]. The modes are driven by uj = du/0z. A
saturated state of vortex turbulence is obtained at about ¢t = 160(L,/cs) to t = 300(Ly/cs)
as shown in Figs. 2(a), 3(a), and 4(a) with rms fluctuation levels of %, = 0.3(vge) and
%) = 0.55(vge). At t=300(Ln/cs) we turn on the background flow dynamical equations (16)
and (17) (with v™ = v§ = vj = 0), that is, we allow u; and v to evolve with time. The
background poloidal energy (Fig,1) is shown to immediately increase and the toroidal energy
(Ebg,2) decrease in Figs. 2(b) and 3(b) to create a new stage with a mean helical shear flow.
The turbulent fluctuations @ and 7, are shown to be suppressed as the poloidal shear flow
increases in Figs. 2 and 3 for ¢ > 300(L,/cs). Figure 4 is confour plots of  at t = 275( Ly, /cs)
and ¢t = 395(Ly,/cs). Figure 4(b) shows that for ¢ > 300(L,/cs) the sheared poloidal flow
generated is sufficient to produce mostly open stream lines which suppresses the turbulence
and the turbulent transport shown in Fig. 4(b) where the poloidal flow is still zero. The
turbulent momentum transport generates the poloidal shear flow while reducing the parallel
shear flow as shown in Figs. 2, 3, and 4.

In the case 1B we set all the parameters and initial profiles to the same values as in case
1A, but let uy (z,t) and y (z,t) evolve with time from the beginning (¢ = 0). Like the case

1A, the modes are driven by uj, however, the gradient drive now relaxes in time. A saturated
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state is now obtained at around ¢ = 60(L;L/c3) as shown in Fig. 5(a). After reaching this
maximum at ¢ ~ 60(L,/c,) the turbulence now immediately begins to decay in contrast
to case 1A. Figures 5 and 6 are time evolutions of fluctuation (Ey;) and background (Fy,)
energies for poloidal and toroidal flows, respectively. Figure 7 shows the time evolution of

the mode fluctuations @(k,, k, = 1.0) for a spectrum of k, p, — k, values. From Figs. 5

- and 6, we can see that when ¢ < 40(Ly/c;), the modes experience exponential growth at the

growth rate v S 0.1c;/L,. When the turbulent fluctuations become large, as in the time
interval 40 < tcs/ Ly, < 80, they drive up the poloidal flow in F1g 5(b). While the shear of
the poloidal flow is weak, it shows no effect of suppressing the growth of the fluctuations.
However, when the poloidal shear flow gets strong, the mode fluctuations are effectively
suppressed, and so the signals from the mode fluctuations become small for ¢t > 100(L,/cs)
as shown in Fig. 7. We note from Fig. 6(b) that the toroidal flow energy decreases with time
during the whole process. The most significant drob in the toroidal kinetic energy during
the period 30 < t¢s/Ly, < 80 coincides with the rise of the poloidal kinetic energy during the
peak of turbulent pulse. Part of the toroidal flow energy goes to poloidal flow and another
part is damped through the viscous dissipation of the fluctuations. In the final state the ratio
of the mean poloidal velocity (uy ~ 0.44(vee)) to the mean toroidal velocity (uy = 3.5(vae))

is about 1/9.

Case 2: Neutral Beam Driven Toroidal Shear Flow

In this case we study the effect of nonambipolar flow on background flow. Physi-
cally the nonambipolar flow ujf can arise from neutral beam injection. We set v = 0.1,
So = 0.2, uy = 0.01 while keeping v™ = 0, v = 0, and the externally driven varia-
tion in the toroidal profile uf = 10 siﬁ(klm). The spatially uniform wug part of uf(z) is
transformed away by going to the appropriate reference frame. From Eq. (15) this means

that a nonuniform streaming parallel momentum with the finite value of the injection rate
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v = 0.1 and speed ujf now is injected into the plasma. The initial profiles for background
flows are uy(z,t = 0) = 0 and yj(z,t = 0) = sin(kz) , and the fluctuation fields are
@(z,y,t = 0) = Uy(z,y,t = 0) = 0.1exp (—%ﬁ) with 79 = 6[ps]). In the beginning stage

(t = 0-100[Ln/cs]), uj is too weak to drive the modes unstable. However the toroidal shear

flow increases during this time from the injected parallel flow ujf, which gives a driving force

for the toroidal shear flow uj(x,t). When the neutral beam driven toroidal shear flow gets
large, the shear flow drives the unstable modes. The fully developed fluctuation then tranéfer
energy-momentum to the background poloidal flow through 7. The mean poloidal flow
reaches about one half the mean toroidal flow velocity. With the increase of the poloidal
shear flow, again the turbulent fluctuations of the modes are suppressed, but due to the
continuous driving a well defined turbulent state is reached with %, ~ 0.24(vg.) R 4. The
whole process is shown in Figs. 8 and 9 giving the time evolution of the four energy com-
ponents. A nonlinear regression fitting code is used here to determine the decay power of
the turbulent fluctuation energy. The results show that the total fluctuation energy decays
to a constant as 1/t™, with the decay index m in the range of 1.5 to 2.5 depending on the
system parameter. For the kinetic energy iﬁ the parallel velocity fluctuations Ey (%) the
parameterization is shown in Fig. 10. In Fig. 10, Where the dashed line shows the fluctuation
energy Fyp versus time and solid line is the fitting curve that determines m ~ 2.3 and the

asymptotic value of Ey o(00) = 0.008 for this case.

Case 3: Effect of Neoclassical Flow and Damping on the Turbulence

In this case, we let v™ = 0.01, v = vf =0, So= 0.2, py = 0.01 and the neoclassical flow
profile ™ = 4sin(k;z) and initially vy (z,t = 0) = 0 and y)(z,t = 0) = 20sin(kyz). With
these profiles, therefore the background flow is initially in the neoclassical equilibrium state
so that uy — Souy + uw* = 0 . With evolution of time, the fluctuations first are driven up

due to the parallel shear flow, then again when the background poloidal shear flow becomes
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strong enough (Fpg1 ~ 0.7 or uy ~ 1(vge) in this case), the fluctuations are suppressed
and decay as 1/t™ where m ~ 1 as shown in Figs. 11(a) and (b). Meanwhile the parallel
shear flow becomes weak due to the release of its free energy to the fluctuations and the
perpendicular shear flow as shown in Figs. 12(a) and (b). In the final turbulent state the
mean flow ﬁuctuatioﬁ levels are % =~ 1(vg) and %) =~ 0.5(vg) similar to earlier cases.
Figure 13 shows the evolution of the mean square deviation of the helical flow field from

the neoclassical equilibrium, which is monitored by
Epe(t) = ((ur — Sowy +u™)?)

with time. In the final state E,. S 0.03 showing that the background flow goes to another
equilibrium state determined by the line u_fL — Sou,’; + 4™ ~ 0. The observed evolution is
summarized in Fig. 14 where f means the final quasi-steady state. A quantitative example of
the stability boundary for particular parameters is the v = 0 limit of the contours in Fig. 1.

From other simulations not shown here we find that, in fact, we can start with any rea-
sonable initial state for the background flow, that is, any point in parameter space in Fig. 14,
and we find that the turbulent fluctuation will take the system along the equilibrium state
line uf — Souﬁc + u™ ~ 0 towards the linearly stable region shown in Fig. 14. This shows
that the neoclassical damping v™ and the turbulent fluctuation always tend to stabilize the
system. Therefore, in the systems studied the turbulent fluctuations can be maintained at
a significant level only if there is either an exterior accelerating torque such as neutral beam
injection as given in Case 2 to supply energy-momentum to drive the background parallel
shear flow or an additional force such as the ion temperature gradient (07;/ 8@), as studied in
the next case, to directly drive the unstable modes. The driven fluctuations of the modes can
then produce a continuous acceleration force on the background flow through the divergence

of the Reynolds stress tensors.
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Case 4: Shear flow generation and Ion Temperature Gradient Driven Fluctua-
tions

In this case, we study shear flow generation in the 7; driven turbulence. We still use
Egs. (16) and (17) for the evolution of the background flows. For dynamical equations of
the fields @, ¥ and P, we use Egs. (1)—(3) in Ref. 22. The equations for @ and j are similar
to Egs. (20) and (21) with a few changes: the toroidal curvature term 2¢,0¢p/8y is added to
the right-hand side of Eq. (20); the term V@& at the right-hand side of Eq. (21) is changed
to V| (95 + P); and a third fluctuation equation or the thermal balance equation for the ion
pressure P is added. We set n; = 1.5, toroidicity parameter ¢, = L,/R= 0.1, 7 =T, /T; = 1,
So = 0.2, I' = 5/3, dimensionless viscosity pui1 = pie2 = 0.2 and dimensionless collisional
thermal conductivity xk = 0.1 for the evolution of the fluctuation fields. We do not repeat
the Hong-Horton equations here but refer the readers to Ref. 22.

In the 2D toroidal n;-mode modéi the fluctuation levels in the absence of sheared flows
gives large amplitude vortices that fill the simulation box. An example of the growth and
saturation of the fluctuation energy without flow is shown in Fig. 15(a) which reproduces a
case from Ref. 22.

For the case with shear flow generation, we set v™ = 0.0, v™ = 0, v{ = yf = 0.
Initially, we set uy(z,t = 0) = y(z,t = 0) = 0. With evolution in time, the modes first
are driven by ion temperature gradient, and background perpendicular and parallel flows
then are driven through the divergences of the Reynolds stresses <'Uz17”> and (0,7, ). During
the time period of ¢ = 0-180(L,/cs), which is the first nonlinear steady state, the linear
growth stops at t ~ 80(Ly,/cs) and from ¢ = 100 — 180(Ly/c;) there is a well-defined steady
state. The increase of the background shear flow significantly reduces the develop.ment of
the fluctuation level as verified by comparing with the computer experiment without the
background flow buildup in the same time period. Figure 15(a) shows that without the

background shear flow, the total fluctuation energy is saturated as early as t ~ 100(Ly/cs)
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at Ey ~ 1400. While with evolving background flow in Fig. 15(b), the total fluctuation
energy growth stops first at ¢ ~ 80(Ly/c,) with Ef.~ 35 and the rms fluctuation level is
about 6 times less than that in Fig. 15(a) in the first nonlinear state.

When the time progresses to t ~ 600(L,/c,) in the system with the evolving shear flow,
the saturation of the total fluctuation energy is observed as shown in Fig. 16(a). Figures 16(a)
and 16(b) show that the saturation is characterized by the 180° out of phase oscillations of the
fluctuation energy and background kinetic energy, which is caused by the energy exchanges
between the fluctuations and the background through the enérgy fluxes given in Eq. (35).
The total average fuctuation energy level, however, is about the same as that shown in
Fig. 15(a) in which the background flow is fixed at u; = 0 and u" = 0. This indicates
that the background shear flow can greatly reduce the linear growth rate of the modes
and the first nonlinear saturation level, but does not significantly affect the long-time limit
saturation level of the average fluctuation in the nonlinear regime. Similar phenomena are
also observed in earlier numerical studies for collisional drift wave turbulence and resistive
pressure-gradient-driven turbulence by Carreras et al.*?3

The phenomena of nonlinear growth are further confirmed when we study the effects
of the neoclassical damping. We made three numerical experiments with ™ = 0, 0.01,
and 0.1. The results show that although the neoclassical damping reduces the development
and build-up of the background flow, especially reducing the perpendicular flow velocity,
the time-average levels of the total fluctuation energies in the final stage in all three cases
remain about the same as that in the case without the background flow shown in Fig. 15(a).
For a clearer comparison, in Figs. 17(a) and (b) we plot the total fluctuation energies and
background kinetic energies for the different v values, where the dot, solid and dashed line
are for v = 0.1, 0.01 and 0, respectively. As we can see from Figs. 17(a) and (b), at the
final saturation stage although the background kinetic energy levels are quite different for

the different v, the fluctuation energy levels have no significant difference. The results for
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the variation of v™¢ are summarized in Table I.

All the numerical experiments in Table I are done with the same small scale viscosity
in order to demonstrate the interaction between the turbulence and the flow. If the large
scale viscosity is applied in the system, the turbulence will be significantly suppressed and
fluctuation levels will be much lower, and therefore the flow energy level will be much lower
also, since the background flow is driven by the turbulence.

In these numerical experiments we have found that the nonlinear growth is characterized
by the series of turbulent pulses shown in Fig. 16(a) and the pulses cause intermittent trans-
port state as shown in Figs. 15(b) and 16. Further studies and analysis on the phenomena
and their effect on the system are needed and will be given elsewhere. In associated work by
Tajima and Horton?® intermittent transport for the 7; turbulence coupled to the background -
shear flow has also been found from low degree of freedom model of the driven system. In a
future work the low degree of freedom model of Tajima and Horton will be compared with

the nonlinear pde behavior reported here.

V Summary and Conclusions

In this work, we have studied the neoclassical viscosity control of shear flow generation
through the intefaction of drift wave turbulence with the self-consistent background flow
profile evolution. Both parallel velocity shear driven turbulence and ion temperature gra-
dient driven turbulence are presented. In the simulations the perpendicular and parallel
background mean flows self-consistently evolve with time and are modified by the plasma
turbulence through the. Reynolds stress. The generation of the background shear flow there-
fore is a result of the coupling between the turbulent fluctuations and the background mean
flow. In a nonuniform toroidal magnetic field, the neoclassical viscosity effect acts as a drag
force which transfers the kinetic energy in the poloidal rotation into thermal energy.

We show when the fluctuation is driven by the free energy released from the parallel
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velocity shear, without external energy sﬁpply (such as neutral beam injection), the toroidal
plasma always relaxes from an unstable state to a stable state along an equilibrium path -
which is determined by the neoclassical condition ur — Souy + u™ = 0 from Egs. (16)
and (17). Typically the development of the ufl driven turbulence is the following: parallel
shear flow drives the fluctuations by releasing the free energy stored in the sheared toroidal
velocity profile. The fully developed fluctuations then push on the background and drive the
perpendicular shear flow through the divergence of the Reynolds stress (%7, ). Thus if the
neoclassical transport coefficient v is small, the perpendicular shear flow will grow large
and then suppresses the turbulence. If 1™ is large, however, the background flow will rapidly
relax to an equilibrium state given by u, — Souy + u™ = 0 (where Sy = B,/Br). Therefore
the magnitude of u, depends on the neoclassical flow u™(z) given in Eq. (11). In the case
where du™ /dz is large, the perpendicular shear. can rather abruptly become strong enough
to suppress the turbulence. A similar abrupt stabilization of the turbulence is also observed
by Sugama and Horton” using resistive-g turbulence. In both cases (large or small ™), the
poloidal flow loses energy to the plasma due to the neoclassical viscosity force defined in
Eq. (11), which is also called the magnetic pumping effect. Therefore the system finally goes
to a stable state with the turbulence being the mechanism for the evolution.

For an open system in which an external source keeps supplying energy to the system, as
in the cases of the neutral beam injection and the ion temperature gradient driven mode, the
saturation can be achieved when the external driving forces are balanced by the large-scale
neoclassical viscosity damping and the small-scale viscous and thermal dissipation. The
results of two dimensional simulations have shown that the generation of the perpendicular
shear flow can effectively reduce the growth rate and slow down the development of the
fluctuations. Additional considerations for the shear flow control of turbulent transport
including the effect of poloidal asymmetry in the anomalous flux and the role of biased

probes is given by Hassam et al.%
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In the case of a strong ion temperature gradient driven toroidal mode, without magnetic
shear, we find that the nonlinear evolution of the poloidal velocity i)roﬁle keeps allowing
a sequence of modes to go unstable that in turn allows an overall nonlinear growth of the
spectrum up to the level found in the absence of the poloidal shear flow. Thus, it appears
that in the late nonlinear stage, the background shear flow has no significant effect on the
saturation level of turbulent fluctuations. In other words, the background shear flow can
greatly delay the occurrence of the high level of turbulent fluctuations and the associated
transport, but it does not ﬁnaﬂy eliminate the turbulent transport as previously thought.
The nature of the time dependence of the transport is predicted to change from a steady
state transport to an intermittent transport state. In the simulation the bursts occur on
the time scale of 100(L,,/cs) ~ 100usec. Further study is required to obtain the parametric

dependence of the intermittency and the associated effective transport rates.
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Figure Captions

1.

() Normalized growth rate contour in the (uy, %/, ) plane for magnetic shearless configu-
ration with k,ps = 1 and Sy = B,/Br = 0.2. (b) Normalized growth rate contour in the
(u, v.) plane for slab geometry with magnetié shear, kyps =1 and s = L, /L, = 0.1
where B,/Br = x/Ls.

Time evolutions of (a) the turbulent fluctuation energy Ep; and (b) perpendicular
background flow energy E,,; in case 1A. For ¢t < 300(L,/c,), the perpendicular back-
ground flow 4, = 0 fixed. When ¢ > 300(Ly/cs), w1 evolves with time according to

Eq. (16) with v™ =0 and v{ =1} = 0.

Time evolutions of (a) the turbulent fluctuation energy Ep s and (b) parallel back-
ground flow energy Ejg 2 in case 1A. For t < 300(Ln/cs), the parallel background flow
u) = 6sin(k12)(pscs/Ln) fixed. When ¢ > 300(Ln/cs), v evolves with time according
to Eq. (17) with v =0 and v$ = vj = 0.

The contour plot of ¢(z,y,t) in case 1A. (a) At t = 275(Ly/cs) and (b) at ¢t =
395(Ly /cs)-

Time evolutions of (a) the turbulent fluctuation energy Ey; and (b) perpendicular

background flow energy FEjg, in case 1B.

Time evolutions of (a) the turbulent fluctuation energy Ey o and (b) parallel back-

ground flow energy Ej, 2 in case 1B.

Time evolutions of individual mode fluctuation of @(kz, ky, = 1.0) for a spectrum of

k. ps values.
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10.

11.

12.

13.

14.

12.

16.

Time evolutions of (a) the turbulent fluctuation energy Ef; and (b) perpendicular
background flow energy Ly, when a counter parallel stream of beam with speed uff =

10sin(kyz)(pscs/Ln) is being injected into the plasma in case 2.

Time evolutions of (a) the turbulent fluctuation energy Ey o and (b) parallel back-
ground flow energy FEjy,o when a counter parallel stream of beam with speed ul‘f =

10sin(kyz)(pscs/Ly,) is being injected into the plasma in case 2.

Time evolution of the total fluctuation energy Ey o(t) in case 2. The dashed line shows
the Ey versus time ¢ and the solid line is the fitting curve obtained from the nonlinear

regression fit to the parameterization Epq(c0) + AE/t™.

Time evolutions of (a) the turbulent fluctuation energy Ey; and (b) perpendicular

background flow energy Ei, 1 with neoclassical coefficient »™® = 0.01 in case 3.

Time evolutions of (a) the turbulent fluctuation energy Eyp» and (b) parallel back-

ground flow energy FE,, o with neoclassical coefficient ©™¢ = 0.01 in case 3.
Time evolution of the quantity E,. = <(u 1 — Souy + u"c)2> in case 3.

Qualitative description of the background flow state evolution. The curve represents
the marginal instability of the parallel shear flow driven mode and the straight line

represents the equilibrium path line u; — Soyy + 4™ = 0 in case 3.

Time evolutions of the total fluctuation energy of (a) fixed background (u¢ and vy = 0)
and (b) evolving background (with ™ = 0) in 7; mode case in the time interval ¢ = 0-

200(Ly/c,).(case 4).

Time evolutions of (a) the total fluctuation energy and (b) the background flow energy

(with v™ = 0) in the time interval ¢ = 0-1000(L,/cs). The saturation is observed at
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around ¢t ~ 600(Ly/cs). During the saturation the oscillations of the background and

fluctuation energies look like mirror image of each other.

~ 17. Time evolutions of (a) the total fluctuation energies and (b) the total background en-

ergies for different neoclassical coefficients. Dot, solid and dashed lines are for v™°=0.1,

0.01 and 0, respectively.
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pyne \/ZEfg,l 1/ ZEng

0 50 50
0.01 47 17
0.1 45 7
1.0 45 2.5

Table I: Variation of Final Fluctuation and Background Energies
with the Neoclassical Damping

30




dx

n

e/C

L dv

- 0.02 4

0.14

0.124

0.08 -

o

n

o

(@)

=
]

i i I T l | l U Ll
08 1 12 14 16 18 2 22 24
L dv,/cdx

1(b)

0.1

(@]
(o))
I L

O ] I' 1 [- T I" 1 I 1 ] Ll ] T I i ) l
0.8 1 1.2 14 16 1.8 2 22 24

Lndv”/ c dx

Figure 1



0.06

Case 1A

0.054

0.04

w— 0.03-
LLl

0.02 -

0.014

| (@)

50

]
100

T
150

200
tcs/Ln

T
250

T
300

|
350

400

0.04
0.035
0.03-
__0.025
g 0.02-
L -
0.015
0.01

0.005

(b)

T
100

|
150

|
200
tcS/Ln

Figure 2

T
250

1
300

1

T
. 350

I

400



Case 1A

1(a)
0.25-

0.3

0.2~

0.154

Efl 2

0.1+

0.05-

1 i

0 T 1 T I T 1 J |
0 50 100 150 200

tcs/Ln

1 I 1

1 T
250 300 350 400

1(b)

I

8.7 ' T . | ' T * T
0 50 100 150 200

tcs/Ln

T T l
250 300 350 400

Figure 3



Case 1A

(a) tcg/Ln=270
1.8 ==

(b) tcg/Ln=390

15.8
v My Ny

y/Ps

!|.|'“ /”\ ;'/
il

' 1 I
Wy ’

-15.8
-15.8




Case 1B

0.25

0.2 -

@

T
60

T
80

T T
100 120

tcs/Ln

T
140

T
160

T
180

200

| (b)

60

]

80

T |
100 120

tcs/Ln

Figure 5

|
140

.
160

.
180

200



Ebg,z

Case 1B

Figure 6

(a)
0.3-
0.2-
0.1-
O ! | ] ] I | ' ] ! | I | ! 1 ! | I
0 20 40 60 80 100 120 140 160 180 200
tcs/Ln
_(b)
9_
8_
7 -
6_
5 ! | ] | 1 | 1 1 L [ ! | I I ¥ | 1
0 20 40 60 80 100 120 140 160 180 200
tcs/Ln



]

q)(kx’ky: 1)/(I)max

Case 1B

Signals of ([)(kx,ky=1)

kx=3‘0

40

T T T T T T T

|
60 80 100 120
tcs/Ln

Figure 7

T
140

T

T
160

T

T
180

200



Efl,1

0.2

Case 2

0.16

0.12

0.08

0.04

(a)

100

L
200

1

T T T 1
300 400 500

" 600
tcS/Ln

l
700

l
800

T T
900 1000

0.04

! !

100

1

T
200

i

T
300

T T
500 600

tcS/Ln

1
400

Figure 8

T
700

1
800

!

T
900

1000



Case 2
(a)

0.16

0.12-

— 0.08-

0.04 4

0 ——t
0 100

1 1 1 4 I 1 [ i

T | | T T
500 600 700 800 900 1000

tcs/Ln

| T T
200 300 400

(b)

|
900 1000

0 T T T T T T T T T T T T T
0 100 500 600 700 800

tcS/Ln

T T |
200 300 400

Figure 9



Case 2

0.16
0.14-

0.12-

2.3%0.03
E ~ 1/t +Ef|,2(°o)

. "'-:_ fl,2
0.06- =,_A/Eﬂ,2(t—>oo)=o.oosio.ooooe

I i | 1 i U

T T | |
800 1000 1200 1400 1600

tcS/Ln

— T ]
0 200 400 600

Figure 10



Case 3

1(a)

0

l
100

T
200

T
300

T |
500 600

tcs/Ln

T
400

T
700

T
800

T
900 1000

0

T
100

200

300

| |
500 600

)tcs/Ln

|
400

Figure 11

|
700

T
800

T T
900 1000



1

Case 3

(a)

e T ——

00

I | ! i

T
100 200

1 i

]
500 600
tcS/Ln

T T
300 400

T
700

{

800

900

1000

(b)

T T T T ] |
100 200 500 600

tcS/Ln

T T
300 400

Figure 12

|
700

T

1
800

|
900

1000



Enc

0.6

Case 3

0.4~

0.2

!

100

1
200

|
300

1 i

T .
500 600

tcs/Ln

T
400

Figure 13

T
700

T
800

I {
900 1000



Case 3

Lpyu .
Cs
0.1
Stable
0.05]_
Unstable
initial point
0 04 i
Lpu,
Cs

Stable

Figure 14




Case 4

200

2000
] (a) u, (x, 1) =1,(x,1)=0
1600 -
12004
: N
L ]
800
400 -
0 T T T T T T T T T T T T T T T T T T T
0O 20 40 60 80 100 120 140 160 180 200
tcS/Ln
250
1(b) u (x,1)=0
] u,(x,t)#0
2004 0
T Dnc=o
150
= ]
Ll |
1004
50
0 T T T T T T T T T T T T T T T T T T T
0O 20 40 60 80 100 120 140 160 180
tcs/Ln

Figure 15



Case 4

1 (a) v"°=0

100

T
200

T
300

|
400

500
tcs/Ln

T
600

1
700

i

T
800

T
900 1000

100

T
200

T
300

T
400

1 {

560
tcs/Ln

T
600

Figure 16

T
700

{

T
800

T T .
900 1000



Eg

1000 10000

100

10

1 IIIIIIII

100 1000 10000

10

1

T
400

1 !

1
500

T
600

T T
900 1000

| | |

0 100 200 300 700 800
tcs/Ln

?(b)

07¢20.01

4 T NC=0.1

T T T T T T T T T T T T T T T ] T T T

0O 100 200 300 400 500. 600 700 800 900 1000

tcS/Ln

Figure 17




