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Abstract

We investigate the anomalous heat conduction in a tokamak plasma analytically
and computationally. Our toroidal particle simulation shows a new emerging physical
picture that the toroidal plasma exhibits marked properties distinct from a cylindrical
plasma: (i) the development of radially extended potential streamers localized to the
outside of the torus, (ii) more robust ion temperature gradient instability, (iii) radially
constant eigenfrequency, (iv) global temperature relaxation, and (v) radially increasing
heat conductivity X;. These results a,re. analyzed by linear and quasilinear kinetic the-
ory. A relaxation theory based on the reductive perturbation theory in the quasilinear
equatibn is developed. The theory constrains the thermal flux so that X; increases ra-
dially. The Bohm-like scaling is found in connection with the radially extended mode

structure.
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I Introduction

The 7; instability’ as well as the ion temperature gradient (ITG) instability? are possible
candidates to explain the anomalous ion thermal transport observed in many large tokamak
plasma.® % %6 In the previous reports”™ & we have found that the properties of the 5; and ITG
instabilities in a slab (or cylindrical) plasma and those in a toroidal (tokamak) plasma are
quite distinct. Simulation runs of the toroidal plasma have shown that the main differences
of toroidal modes as compared with cylindrical cases are: (i) the eigenmodes are elongated in
the radial direction and nearly global, while cylindrical ones are localized around the rational
surfaces; (ii) the toroidal modes have higher growth rates than the cylindrical counterparts;
(iii) the eigenfrequencies are néarly constant over an extended radial region; (iv) a global
temperature relaxation and enhanced thermal conduction are observed; (v) in particular, the
heat conductivity X; is an increasing function of‘the minor radius as opposed to a decreasing
one in a cylindrical counterpart. These signatures are quite striking, as they are all in
the right direction to match more closely with experimental tendencies than the cylindrical
characteristics. Thus the importance of the toroidal geometrig effects on the physics of these
modes and associated transport should be emphasized. These differences are primarily due
to the toroidicity-induced coupling of rational surfaces over many poloidal mode numbers.
In the present article we shall characterize the temporal evolution of toroidal plasma and
the n; and ITG modes and the resultant properties of the modes and transport. We study

this problem through toroidal particle simulation and linear and nonlinear analysis.

II Toroidal Particle Simulation

Employing the Toroidal Particle Code,® we ihvestigate the n; and ITG instability in a toroidal

plasma, simulating a tokamak plasma. In the present investigation we use the fully dynamic



ions with adiabatic electrons with the following typical parameters: the aspect ratio Ry/a =
4, the average ratio of the ion plasma frequency to ion cyclotron frequency (wpi/we) = 1,
the average ratio of the ion Larmor radius to minor radius (p;/a) ~ 0.02, the magnetic shear
parameter 8 = rq'/q ~ 1.0, the Debye length Ap; & p;, and the toroidal mode number(s)
n=29;7and9; 7,9, and 16; 7, 8, and 9, while the poloidal mode numbers vary from
m = 4 to 39. The profiles of the safety factor ¢(r), 3(r), p;(r), and the density scale length
parameter ¢,(r) are identical or similar to those shown in Fig. 5 of Ref. 7. For the 7; mode
runs, we choose the initial 7; parameter 7;(r) = 9nTi(r)/d¢nn;(r) = constant, varying
from 0 to 4 with n;(r) being a Gaussian. For the ITG (n; — co0) mode runs, we choose the
parameter e = Ly/R (where Lt is the ion temperature gradient length and R the major
radius) typically ranging around 0.07. In this case the initial temperature profile may be a
Gaussian or tan™! profile.

Typical temperature relaxation in time is shown in Fig. 1(a) for the ITG modes. A radial
portion of an exponential shoulder (T;(r) oc e~"/I7) shows up in a rapid time scale (in a time
comparable to the wave growth). The extent of that portion (with the exponential profile)
gradually expands until almost all radial portions that encompass the rational surfaces. For
the 7; modes the radial profile relaxes from tan~! towards that of the Gaussian, for which
the initial n;(r;t = 0) changes (o§erall decreases) to become a global constant #;(¢9). This is
shown in Fig. 2(a). During these relaxations (either for ITG or for 5; modes) the respective
parameter er or 7; that characterizes the instability tends to become a global constant. Once
these self-similar (or universal) profiles are achieved, the system evolves much more slowly
with the profile functional form kept intact (this may be cailed the profile consistencylo) but
the value of €' or n; gradually decreasing toward the margiﬁal stability value. This trend is
shown in Fig. 1(c) for er and in Fig. 2(b) for 5; respectively. Corresponding to the globally
(nearly) constant er (or 7;), the (nearly) globally constant eigenfrequency appears as shown

in Fig. 1(b). Our observation of the global eigenvalue and eigenfunction is consistent with




2D linear theory results.'* The step-like feature in Fig. 1(b) is due to another eigenvalue.
Following the change of global constant er, the eigenfrequency also changes accordingly, as
shown in Fig. 1(d).

The ion heat conductivity X; for the value 7; = 4 at the end of runs is plotted as a
function of the minor radius in Fig. 3 (with single n runs as well as multiple n’s). In all cases
the X; is an increasing function of r (nearly exponential). As ndted in Ref. 7 this is a salient
feature of toroidal plasma in contrast to tha,ﬁ of cylindrical case in which X; decreases as a
funétion of r. The latter would be the case if the heat diffusivity is determined by a local
diffusion step Ar that is tied to the local temperature (and thus the local Larmor radius).
On the other hand, the appearance of the radially increasing X; indicates some mechanism
that is global in nature. This indication coincides with the implications of the toroidal
mode characteristics we describe in the abbve. Furthermore, in many large tokamak high
temperature discharges produced by auxiliary heating such radially increasing X; behaviors -
are universally reported.3 4 56

In Fig. 4 we show typical temporal evolution of the amplitude of electric potentia,lA(m =
9,n = 9) and three snapshots of potential contours in r and 8, corresponding to the three
stages marked by I, II, and III. Stage I is the linear state, II around the saturation (early
nonlinear), and IIT in the steady state (fully developed nonlinear). The radially extended
nearly global mode structure is evident throughout those three stages, including the- latest
steady nonlinear stage.  The potential vortices are strongly twisted and choppier away from

6 = 0 (torus outside), while near § = 0 the prominent ballooning structure is evident.

IIT Linear and Quasilinear Theory

As we described above, the temperature gradient decreases toward a marginal stable value. In
the TPC simulation even in the stage when the mode amplitude is saturated, the temperature

profile appears to be slightly on the unstable side so that there occurs constant excitation of
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waves whose energy is expended on the transport maintaining a level of heat flux. In order
to theoretically describe the toroidal ITG modes, we calculate the perturbed circulating
nonadiabatic ion distribution f7* = § exp(:£) in the ballooning space at 6 = 0 as

3 Q- 0F; (F +9 +97 - 3/2)

e

and £ = vxb- -k /w; (b=B/B)forImw > 0. In Eq. (1), far represents the local
Maxwellian, and Q = w/wg, Qf; = wf;/ws, O = kyjvi/wa, w = ko p; e, T = v/vi, and
oy =vy/v; (v = (2T;/M;)Y/?) where wf; = —(cT,-/eB)(kg/LTI), and wy = 2e7wi; is magnetic
drift frequency. When the mode approaches the marginal stability, the denominator in
Eq. (1) also approaches zero, giving rise to kinetic resondﬁt effects. This underlines the
importance of kinetic effects in the present problem. Using Eq. (1), the linear theoretical
dispersion relation was derived and the real and imaginary parts of eigenfrequency were
computed. The result'? shows that as the er increases and approaches the marginal stability
€Te, that is, when the growth rate v decreases toward zero, the real frequency of the eigenvalue
first rapidly decreases toward a value roughly wy (the magnetic drift frequency) and then
tends to be a constant (of order unity) times wy. As fa1; as kjv;/wq < 1, the real frequency
Wy app;oaches a constant w, ~ wy, where the growth rate « is around a fraction of wy, where
the fraction is estimated about %.

The evolution df the background distribution function f; may be described by a quasi-
linear theory: 0fo/0t = L[E( f), f], where f is the perturbed distribution, E the electric
field generated by f , and L is the usual Vlasov operator. When we make a second moment
of velocity of this quasilinear equation, we obtain an equation describing the background
temperature evolution:

' 3 or

EnE+V'Qf—‘07 (2)

where the source term is neglected (consistent with the simulation situation), T" refers to the

~

background temperature and @ is the second moment of velocity of the term L[E(f), fl and
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it takes the form

*® -~
, cET" xB-e,

1 .
rQ = Re/dv 5 MY 5 - g exp(¢L)
ngo r kace v
= B€ |¢(r)I2G(Qani)LTar)’ (3)

where () has the meaning of heat flux due to the fluctuating electric fields E and G is the

normalized heat flux (of the order unity). From Eq. (1) G is given as
i e e oGR8/
G - \/'7-‘:/0 va. /;oo dv“ ']0 (u)(v" + v.L) 0— (6ﬁ + 53_/2) . \Qt 5“

. exp(——'i?ﬁ — %) (4)

for Im w > 0. For the stable region the velocity integrals must be carried out with analytical
continuation from Im w > 0 to Im w < 0 across the marginal stability. Then, the resonant

residual part of G is calculated as

02\ 12 41 _ | —
6 =svra(n+Z) 7 [ay [ drs3tu)o+20) expi-of - 20

2

[0 — 0% (o) + 20t + 977 - 3/2)] -5 [t - (Q + %) (1— y2)] (4)

where 7)) = (Q + Q2/4)Y?y — /2, and a = 1/2 for Imw = 0 and @ = 1 for Im w < 0.

Here the integration contour C is chosen so that the complex variable ¢ goes around the pole
t=(Q+ 02/ - y?). |

It should be noted that the heat flux G in Eq. (4) does not vanish even when the mode

becomes marginally stable Im w — 0 and stays po.sitive in the neighborhood of Im w = 0.

Numerical integrated value of Eq (4) is given in Ref. 12. This is in sharp contrast to a fluid

theoretical calculation of quasilinear heat flux,'® where @ = 0 at marginal stability.

IV  Relaxation Theory for Toroidal Plasma

We discussed the relaxation process of the temperature of the toroidal plasma and modes

evolution in Sec. II. In the early stage of the simulation before saturation (roughly corre-
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sponding to Stage I in Fig. 4) the temperature profile rapidly (in a fluid time scale) relaxes
toward an exponential profile (ITG case). In the later stage the temperature profile relaxes
slowly, maintaining the functional form, exponential (ITG case), and its parameter er only
gradually increasing toward the marginal stability, though ér is still less than er,. In this
stage the physics is kinetic, as it is near marginal stability. Since there exist these two dis-
tinct time scales in relzixation, we introduce a multiple time expansion in our quasilinear
equation (2). A systematic expansion may be carried out by the well-known reductive per-
turbation method,* introducing a smallness parameter & (which will be determined below).

We expand the time scales, temperature, and heat flux as follows:

'3_3 o 0 4 0

3t—8t0+€ 0t1+€ 3t2+ ’

T=To+€T1+"'V,

Q=eQo+e*Qr+---, (5)

where Qo = —XJ VT, Q1 = —X?VTy — X} VT, and Ty is fhe global temperature profile,
which, as we showed, exhibits a self-similar profile (exponential for ITG, Gaussian for 7;)
and is only slowly varying, i.e. 0To/8% = 0. The present reductive perturbation theory
is crucially based on the fundamental properties of relaxation of the tokamak-like toroidal
plasma we described. The important point is that the instability is radially global and
vigorous in toroidal plasmas so that the plasma parameters have to relax rapidly until they
approach sufficiently near the stable profile. (In a cylindrical plasma, therefore, there is
no such relaxation theory)'. However, as long as there is enough heat reservoir (as in our
simulation case) or there is energy input, the sustained ﬁrﬁte fluctuations will cause a certain
amount of heat flux and thus dissipation, which as to be compensated by the weak but still
unstable wave activities. The amount of sustained fluctuations thus is a function of the

energy (or power) input (or the availability of the heat reservoir).




From this expansion theory we obtain a series of transport equations (as commented on =
in Eq. (2) we have neglected source terms for clarity of theory. However, it is readily possible

to generalize this to include source terms): -

0T,

3
0(8) §n0—8T0+VQ0=0, (6)

In Eq. (6) if there is a finite V - Qq(r), it will force Ty to rapidly relax such that Ty — 0.
Thus on average we obtain 073/0t, = 0 and, therefore, V- Qo = 0 and

rQo(r) = rXO(r) % = const . (8)

Thus for ITG in which the relaxed Tg profile is ~ exp(—r/Lr) and for 7; the relaxed profile is
To ~ exp(—r?/2L%), for which the O(e) constraint (8) requires that the thermal conductivity

vary as ‘ -

XO(ITG) ~ S8 | ©)
r

exp(r/Lr) ,

const r? .
W)~ e (7). ©)

These formulae apply away from the center and edge where the source term effects can never

be negligible. These radially increasing X; profiles are in agreement with our simulation
results, as well as the experirﬁenta,l results.

In the next order in €, O(&?), we can obtain the slow evolufion of the background tem-
perature To(t;). In the case when kyp; < Vl (ie. J3(u) ~ 1), and &k ~ 0, we can write
G(Q, Lz,mi,r) = G(Q, L1), where  and L1 become a global constant due to toroidal plasma
properties. Thus

ng ce

rQ(r) =

ng(r)|¢(r)*G(Q, L) , | (10)
where n is a given toroidal mode number and use is made of kJ = ng/r. Since r@(r) = const,

except for a weak r-dependence of ¢, Eq. (10) is nearly r-independent, from which we conclude
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that |@do(r)? = |do|® +&|ds(r)[> + - -+, Q1(r) becomes

No ce

Q=" Znab0re. (1)

Note that Eq. (6) will not determine the overall strength of @, although the radial profile is

determined. In order to fix the strength of @ or X;, we have to employ Eq. (7) as well.

V Heat Conductivity

We investigate the heat conductivity in the presence of ITG (or ;) driven plasma fluctua-
tions. As we discussed in the prévious section, the initial temperature profile evolves rapidly
into a self-similar functional form. After this is established, the temperature profile relaxes
so that the global parameter (er or 7;) slowly change, but the temperature functional form
is maintained. After this the profile smoothly tends to the sfeady—state profile. In this sec-
tion we try to describe the heat conductivity in each stage. Typically in our initial value
simulation the potential fluctuation level shoots up as the linear instability grows until satu-
ration. Then the amplitude tops and later decays or stagnates. The heat conductivity X;(¢)
evolves in time in a similar fashion; it increases until the saturation time, after which time it
decreases and eventually stagnates at a roughly steady value. Using Eq. (10), the ion heat

conductivity can be written as

(kg pi(r))vi(r) Ly
Ti(r)?

Xi(r) = 3 ((cd(r))?) Re G(0, I1) (12)

where <|¢(r)|2> to the first approximation may be regarded as constant (|¢g|%). It is evident
that the equation (12) has a monotonically increasing radial dependence, as given in Eq. (9).
In the following we evaluate the heat conductivity in two different regimes, one in the fluid

regime and the other in the kinetic one.



A. Hydrodynamic regime

In the present TPC simulation in stages I and II the dynamics is hydrodynamic, while
in stage III it is kinetic as discussed in Sec. IV. Hydrodynamic or kinetic is defined by
]w + 1y]2 max(kj v;,wy). In this subsection we investigate the heat conductivity in the hy-
drodynamic regime. However, it is noted that if we had an external power source strong
enough, even in the steady saturation stage III we might have the hydrodynamic regime. In
this hydrodynamic regime we assume that the saturation mechanism is the wave breaking
(ie. wave turnover effect), since the effect .of multiples of the modes (n’s) (i.e. the nonlinear -
mode coupling among diffgrent toroidal eigenmodes) is not strong in the present investiga-
tions in which the external power source is absent and the heat reservoir is provided only by
the central plasma.

The displacement of the plasma fluid by the excited wave kg in the radial direction is

roughly
cksd
= ’ ’ 13
£= 2 (13)

where v is the growth rates in the hydrodynamic regime. When the radial displacement £
becomes approximately the half wavelength in the radial direction, £ ~ 7 /k,, the wavebreak-
ing takes place and thus the wave growth saturates. This condition yields the approximate

saturated potential amplitude as
Ty B

sat = . 14
¢ t Ck',» kg ( )
In the hydrodynamic regime the growth rate is estimated to be

Th =Wk wa - (15)

Thus in the hydrodynamic regime we obtain X; from Eq. (12) and approximate expressions

(14), (15) as .
kg Pi Vi R62

Xt = 472
' T (k-a)?

Gh ) (16)
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where € = a/R. The hydrodynamic normalized flux G}, is evaluated as

A o2 1 3
Gh=——\/—7_F.z/0 dvy vy JE(u)e L/_ dv” [1-}—( 7 (vﬁ+vf_+7—77-§):l

?

X [1 — iy/2er (vﬁ-l—%iﬂ (vf + vl )e ~f C/ (17)

where expansion in terms of 1/2er < 1 was carried out and C; is a constant of order unity.

With Eq. (17), the X; expression (16) becomes

471'2 01 ke Pi Vi R62

Xk = 18

’ 6:11,/2 - (kra)? (18)

Choi and Horton® and Romanelli*® among others have shown that the global linear radial
mode width is a geometrical mean of p; and a so that approximately we have

(hra)? == . (19)

If the mode width in the nonlinear stage is not too different from the linear stage [this is

not inconsistent with our simulation], then Eq. (19) may be used as an estimate in Eq. (18).

This yields

CT —-1/2 -1/2 '
02(3) (a 72 B712) (20)

where C; is a constant and (kg p;) ~ 0.2 is taken. In our simulation the radial size of the
streamer (the potential vortex structure) is about the same as in the linear stage (Fig. 4).
In the simulation in particular the ratio p;/a ~ 1/40 is approximately eight times larger
than the typical experimental value of ~ 1/300. This makes the radial size scaling in our
simulation about three times greater in terms of the fraction of the minor radius. In the
future smaller ratios p; /a will be used at in simulatiqn to definitely resolve the scaling. If we
take scalings for the radial streamer size as k£(*) ~ 1/p; and £ ~ 1/a, the corresponding X;

scalings would be

s cT _ _ M1/2 2T3/2 _ _
Xi® ~ ey ( B) (pi L7 R = V3 C (——232 )(L Y2 g1/2)
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[corresponding to the gyroBohm scaling] and
X?(g) ~ C3(v; a) (a L}ll? R"l/z) ,

[corresponding to the hydrodynamic transport scaling] respectively. The ion energy confine-

ment time from Eq. (20) is approximately obtained from 7/ ~ L2./X as

Th=Cs—a ' LY’ RV, (21)

T

where Cj3 is a constant.

B. Kinetic regime

We find in stage III in our simulation that the system reaches close to marginal stability
(though slightly above the marginal). This implies that the dynamics is kinetic in this stage.
From a closer scrutiny of stage III, we see that the mode amplitude of various Waves increases
or decreases incessantly as shown in Fig. 4(a). Sometimes a sudden crash of amplitude
appears, Which usually coincides with reconnection of one vortex occupying radial interval
r € [ry,r2] with another at r € [ry, r3). Some resurgence and decay of the mode amplitude are -
related to a local temperaturé bump or hole. Detailed description of these processes will be
reported elsewhere in the future. The overall behavior of the temperature profile and wave
activities is as follows: if there appears a local temperature bump steeper than the global
gradient characterized by er, the wave activity in the neighborhood is elevated so that the
locally enhanced heat conduction will smooth the bump. On the other hand, if there appears
a local hole less steep than the global gradient, the wave activity in the vicinity is depressed
so that the locally reduced heat conduction is overwhelmed by the overall global rate of heat
conduction, which leads to smoothing of the hole. Thus the overall growth rate «y is sustained
around a constant +, (critical growth rate), which is above the marginal value of zero in order
to sustain the overall global energy dissipation (heat transport). The smallness parameter

¢ is determined as \/7./w,. If v was less than +,, all wave activity would have diminished
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and no global heat conduction would be maintained. The heat reservoir provides heat and
then lets the tempéra.ture profile steepen, which lends to an increase in v to approach 7.,
where the critical parameter 4, is much smaller than 4, or the real frequency w,. We call
this behavior of the tokamak plasma the self-organized criticality. This is not unlike the
situation discussed on the avalanche of a sand pile by Bak et all” However, their theory
does not have distinction between the marginal stability and critical threshold as ours does,
nor do they provide a éelf-consistent analytic expression for transport. In order to explain
the profile consistency, others have resorted to the plasma’s self-organizing tendency.!® 17
We now wish to derive the ion heat conductivity in the self-organized critical state by
evaluating the residual part (4), though there is non-residual contribution. In the kinetic

regime, we can approximate ) = 1 and ; = 0 to estimate the normalized flux G as
! 2 2 T 23 T
Gr(Q=1) =/_1da: exp(—2 + z*)(2 — z?) [1—Q*i (2—:0 —~2~>] ~Cs+C5 Q% (22)

where Qg = ﬁ and Cy,Cs are constants of order unity. The excited waves can scatter

particles in this regime to balance the wave growth®
y—KD=0, (23)

where the diffusion coefficient due to wave-particle interaction is estimated as

_ 8¢ _ kgl

D‘"E?‘athBz ’

(24)

and
Ta 1

N O —
2w SAr - wy

St (25)

where Ar is typical radial extension of global eigenmode and 6t is estimated from the typical
time scale that the global eigenmode is affected by the strong sheared phase rotation in the
poloidal direction. Equations (23), (24), and (25) give

_ B’y

|g]? = ko k)i (26)
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As remarked in Sec. II, when the system approaches from the hydrodynamic regime toward
the kinetic one, the growth rate decreases acéompanied by a rapid decrease of w, first followed
by a near plateau value w, ~ wy. If we call the entry to the plateau regime (kinetic) begins
when w, becomes insensitive to the change of e and thus +, the entrance is evaluated at
v = fwa, and f = 1/4. Equation (26) with v = fwy and Eq. (22) [and taking the second

term in (22)] give rise to the ion heat conductivity estimate in the kinetic regime as
k cT _ : l
X = C (E) (aLrR™?), 27)

where once again we took (k,a)® = a/p; [Eq. (19)] and Cs is a constant. If, as before,
k$) ~ 1/p; and k® ~ 1/a scalings are taken instead, we obtain the corresponding X;
scalings as

X~ 0 () (i Lr B
and :

Xf© ~ C4(v; a)(a Ly R7?)

ond

respectively. Note that in the kinetic regime the choice of (kr @) & a/p; should be even
better justified, as the system is close to the linear stage. The ion energy confinement time
derived from Eq. (27) is

F=Cr—=—=a 'Ly R*, - ' (28)
where C7 is a constant. The energy confinement time in Eq. (28) is the so-called Bohm

scaling proportional to the toroidal field B.

VI Discussion and Conclusions

A characteristic feature of these simulations is an initial nonlinear phase during which linear
wave growth saturates and the temperature profile relaxes comparatively rapidly to a self-

similar profile not far from marginal stability. In the later nonlinear phase, the self-similar
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profile relaxes more slowly towards marginal stability. The radial size of the potential vortex
structure is approximately the same as in the linear stage and we estimate radial correlation

lengths to be ~ (p; a)'/?. The thermal diffusivity X; scales as (Eq. (16)):

(kg pi) v; @
(k?a®)R

X; ~
and if we take (kg p;) ~ O(1) and k,(p; a)/? ~ O(1), X,-.oc £ v; pi, a Bohm-like scaling.

As stated earlier, our simulations and discussion are limited to no (or weak) power input
in the radial region of consideration. Thus the scalings Egs. (21) and (28) do not have an
explicit'dependence on the input power P. [The input power P might appear through other
parameters, as has been done in Ref. 21]. Also implicit in our calculation is the plémsma
current I, which appear, for example, in § but was in our discussion tucked away in such
approximations as 3 ~ 1. Furthermore, the average ratio of ion Larmor radius to minor
radius is <%> ~ 0.02, much larger than typical experimental values. Thus a direct one-to-
one comparison with eﬁperimental data cannot be made. It is, however, interesting to see
in light of Eq. (28) that the experimental confinement time goes like 75 o« B%® R%® €02 in
Ref. 21 for example.

Other simulation codes?? have shown nonlinear states with vortex structures significantly
smaller than the radial scale lengths of the linear eigenmode. In these simulations, £ ~ L.
the initial temperature and density profiles were not close to marginal stability and were
“maintained on the average” by imposing periodic boundary conditions. Global change of

22 as the shell thickness is much smaller

wx(r), for example, is not allowed in those models,
than a. Linear growth does not saturate by profile relaxation but by the onset of a “non-
linear” instability resulting in the “break-up” of the linear eigenmode and the formation of
vortex structures with characteristic scale lengths of many ion Larmor radii. When this oc-

curs, the potential amplitudes at saturation of linear growth are not determined by Eq. (14),

and Eq. (16) for X; is no longer applicable. A limited number of runs with these other
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simulation codes suggest that the X; scaling tends to be gyroBohm.

It is evident that we need many more simulation runs (particularly those of scaling
physics) and more detailed theoretical analysis. Such investigations will tell us how much is
model dependent and which scalings of X; aﬁplies. It is the purpose of the present paper to
foster the stimulus to such investigations and to give some insight to processes that might

be important to consider.

An earlier paper? deals with a view that plasma profiles would remain close to marginal

stability.
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Figure Captions

1. Growth rate Im w/wy (a) and real part of the frequency Re w/wq (b) versus er for
different value of X = kjv;/wy. Figure (c) shows the growth rate yR/v; (solid line)
and normalized heat flux G = @ - B/nomee|¢|* (dashed line) versus kg p;/v/2(= kq B;).

2. Temporal change of the plasma temperature profile as observed in our TPC simulation.
(a) The initial arctan profile relaxes toward the gaussian with which n; becomes a global
constant. (b) The evolution of 7; as a function of time and radial position (initially

gaussian temperature profile).

3. The measured heat conductivity (in the unit of p? ¢,/L,) vs. the main radius of the
toroidal plasma from the TPC simulation. Both single helicity runs as well as multi-

helicity runs show similar qualitative tendencies.

4. Temporal evolution of the potential energy and potential structures. (a) The potential
energy vs. time for three stages I (linear stage), II (saturation), and III (steady). (b)
Potential structure in the poloidal cross-section at stage I, (c) at stage II, (d) at stage

III. The toroidal outward direction is to the right.
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