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Abstract

The two—component fluid equations describing electron drift and ion
acoustic waves in a nonuniform magnetized plasma are shown to possess
nonlinear two-dimensional solitary wave solutions. In the presence of
magnetic shear, radiative shear damping is exponentially small in LS/Ln

for solitary drift waves, in contrast to linear waves.
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I. INTRODUCTION

Nonlinearity in the equations for drift waves din a nonuniform,
magnetized plasma permits the formation of solitary waves in addition to
the usual small amplitude dispersive modes. By analogy with the well
known Korteweg de Vries equation in one dimension, drift wave dispersion
and nonlinear steepening (mode coupling) can balance to form coherent
structures localized in the plane perpendicular to B . These localized
solutions of the drift wave equations are called solitary vortices or
modons (pronounced mod-ons).

Two important physical proper;ies>of solitary drift waves are»that
they propagate with speeds complementary to the speeds of the linear
modes, and that they possess a high degree of stability to perturbations
and self-collisions. Recently)y/ these features of one~dimensional
solitons were used to construct a drift wave turbulence theory based on
an ideal gas approximation for an ensemble of drift wave solitons. The
dynamical form factor S(k,w) of a one-dimensional drift wave soliton
gas has features that are qualitatively different from those derived
from weak turbulence theory.

In the present work, the theory of two-dimensional solitary drift
waves in the presence of a sheared magnetic field is developed. After a
brief treatment of the two-dimensional soliﬁary drift waves in the
straight magnetic field ‘usiﬁg techniques® /° developed for mnonlinear

atmospheric waves, it is shown that the effect of shear on the solitary

drift waves is fundamentally different from that on the linear waveé&é///

In the sheared system, the nonlinearity of the wave equation produces an
effective potential well that reflects the outward propagating wave

energy. For small amplitude solitary waves the potential well is weak;

U N O T



-3
however, for finite amplitude solitary waves the radial well is deep and
only an exponentially small outgoing wave tunnels through the barrier.
Due to the nonlinear barrier, the radiative shear induced damping of the
solitary drift wave is exponentially small for modons propagating either
faster than the electron diamagnetic drift wvelocity or in the ion
diamagnetic direction.

To further characterize the drift wave dynamics, as would be
measured in fluctuation experiments, we compute the dynamical form

factor S(k,w) for a wuniformly-distributed collection of identical

modons. Due to the strong coherence of solitary  waves, the

frequency-integrated wavenumber spectrum S(E) has a maximum at
finite k; and a power law behavior for large k; . For a
distributioée/Zf solitary waves with vérying energies, such as the Gibbs
ensemble, . the frequency spectrum at fixed k, becomes broad and peaked

at frequencies above the electron diamagnetic frequency Wre o

The article is organized as follows: In Sec. II the two—component

fluid equations are reduced and the conservation laws are derived. In
Sec. IITI the solitary vortex solutions are derived following the

analysis of Flierl et al\t

and generalized to include k; # 0 . Some
recent atmospheric simulations showing the stability of the vortex are
noted. 1In Sec. IV the dynamical form factor of a uniform ensemble of
two—dimensional solitary drift ﬁaves is given. In Sec. V the solutions

of the three—-dimensional drift wave equation in the presence of magnetic

shear is derived. 1In Sec. VI we provide the conclusions.
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II. EQUATION OF MOTION

We consider electrostatic electron drift waves and ion acoustic
waves in the inhomogeneous plasma slab no(x) with a sheared magnetic
field @ = (eB/mic)(; + X&/Ls) . The dynamical equations are the
pressureless ion fluid and the almost adiabatic electron  f£luid
equations. The condition of quasi-neutrality relates the ion density to

the electron density n(§,t) which is taken to be

~ n(x,t)
nn = L
no(X)

(1 +2) (x,t) (1)

where ¢ = e@/Te is the normalized electrostatic potential and &£ is an
operator giving the nonadiabatic part of the electron response.

The ion fluid equations can be written

: - v
Dogn - Ervev = 0 (2)
Dt Ln ~
D _ 2 .
S v = —cSV¢ +tvxQ , (3)

where L=} = -3 Lrnnn(x) 2= /s and
n x40 s ~s e/™i »

D P

—_— = — + e V .

Dt 53¢ |~

An ordering for the drift waves consistent with experimental

evidence of low-frequency fluctuations is given by
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where pg = ¢ /Q and w represents a typical frequency. An additional

but independent small parameter is

=

measuring the density gradient sc

=]

ale compared with the scale for

rotation of the magnetic field vector. The rotation of the magnetic

field wvector couples the ion acoustic oscillations to the drift waves

and implies the ordering

kKl 7 keg T o(l) .

)

s

This ordering for k, 1s in contrast to that of Hasegawa and Mim;7//

where kL, ~ @(e) justifies  the
oscillations.
With the orderings Eqs. (4) and

variables are

X T PgXy

¢ > €
v/eg > €Y

t > (L,/cg)t

neglect of the parallel ion

(5,

the mnatural dimensionless

(6)
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where the wvariables on the left-hand side of these equations are the
physical wvariables and those on the right-hand side are  used
subsequently.

Résolving momentum balance in the x~y plane and %—direction, we

can solve Eq. (3) for v o= (; X v) x z and for v to obtain

z

~ D A

vy = zx V¢ - e-ﬁvld) + eSxv,y + ﬁ(ez,szs)
Dv

z T

= - °¥ 4 7
Dt 9z Sxvx (7
" where

D 5 L - 3 ‘
= = _—_ 4+ zx Vo e V + €,e8) = — + . 8
St s T2 ¢ O (e ,e8) =T [¢, ] (8)

In the convective derivative, the dincompressible ExB flow dominates

and is written in terms of the Jacobian or Poisson brackets defined by

With these velocity fields the continuity equation [Eq. (2)] and

Eq. (7) become to lowest order in ¢ and S

D 2 3 7 =
BE(1+Q—VJ_)¢+Vd-§%+b°VvZ = 0. (9a)
Dv, .

R /) (9b)
Dt

where beV = ji-+ Sx 3y The linear dispersion relation of Eq. (9) in
y
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. . 2 » 2y _ 2.2 _
the absence of shear is given by w (1 +-&%w + ki) wkyvd - k"cs =0
where vy = pgscg /Ly = 1 and Sghu is the Fourier transform representation

of the operator £ .

For systems with sufficiently weak shear [S < 6K8)] the coupling of
the drift wave to the ion acoustic wave may be neglected. Taking
bev ~ ikIl = 0 and neglecting the non-adiabatic electron response, & = 0

in Eq. (1), Eq. (9) reduces to that derived by Hasegawa and Miméy/

{1 -8 +vq 1 4’ - 0. (10)

It is interesting to note that Eq. (10) is the expression of BErtel’s
theoremV on conservation of potential vorticity through (ez) (see
Appendix). Equation (10) was first derived by Charne§3/in a geophysical
context for Rossby waves in a rotating neutral fluid. The analogy
between Rossby waves and drift waves has been discussed by Hasegawa,
Maclennan and Kodamaf%fy/

The drift wave energy density and the enstrophy are defined by

E = %deX ,[¢2+ (vl¢)2+v§j (11)
R = 1fd3 [ (v,6)2 (vf(p)zﬂ . (12)
These quantities are conserved in the k; = 0 dynamics of Eq. (10) but

not by the full dynamics of Egqs. (8) and (9). The energy and enstrophy
change due to electron dissipation and to radiative damping from

shear—~induced ion acoustic waves:

e e e e e —— e T . e 1 er————— o e e e e e
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) 2. jx=L
dE _ 3 D ) . (13a)
— = - — Lo +
dt /:i x4 Dtg(p 'ﬁydz ¢ 9%X0t|x=-1L
dK 3.2 D 2 9¢ (93¢ 3¢ x=L (13b)
— = Vv — + beVv, ) + 99 (2% 4 °¥ .
dt fd *Ie <Dt‘% b VZ“) /dydz 9x (Bt ay) x=-L

The fields ¢(x,t) and v,(x,t) are assumed to decay as y , z + @ (or
to be periodic); They are, generally, finite at large =x due to
magnetic shearxé//and the last term in Eq. (13) represents linear
radiative damping. We will see in Sec. V that the nonlinearity may be
neglected in the radiation vregion for a solitary drift wave. In
addition, the enstrophy is not conserved due to the coupling of the

cross—-field motion with the compressible parallel motion.

ITI. SOLITARY DRIFT WAVE VORTICIES: SHEARLESS CASE
A solitary vortex or modon solution of the Charney equatié%%/i was
discovered by Sterag/and Larichev and Reznik&;/&n this section we follow

the exposition of Flierl et al&é//to obtain a solitary vortex from

Egqs. (8), and (9) with ky # 0 but S =& = 0.
Traveling wave solutions of Egs. (8) and (9) are obtained by

letting n =y + az — ct and looking for solutions of the form

]

¢ (X,5,2,t) ¢ (x,m)

VZ(XsY:Z9t) = VZ(X,n) (14)

where ¢ 1is the speed of propagation. Using Eqs. (14), it is easy to

see that
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vp(xn) = = ¢ (x,n) (15)

satisfies Eq. (9b) exactly, since [¢,VZ] = 0 . Substituting Eqs. (14)
and (15) into Eq. (9a) with & =0 yields a mnonlinear partial
differential equation for ¢(x,n) which can be written as a single

Poisson bracket relation:

2
[¢ - cx, Vf¢ - ¢ + (Vd + %r)'x}? = 0. (16)

This relationship implies that the functions in the bracket are

dependent,
[ 2\
Bt (vt D) - R e a7

where F 1is an arbitrary function. We are looking for localized
solutions, that is for each x , ¢ + 0 as y + ». Considering the y » =

limit of Eq. (17) determines the form of F :

2
F(z) = -C§+ﬁﬁa , (18)

that 1is, F must be linear for localized solutions. Note that the
result in Eq. (18) is not an approximation, but results from the
requirement that the solution be localized with the form ¢(x,n) .

Using Eq. (18) for F in Eq. (17) gives

e —— ——— e e e e

SIS s iy o o e s [ —— iy o s | e e b — et | oo § i e i



v 2
v +,<7§.- 1+-ﬁ_>¢ = 0. (19)

Isolation of the solution requires that the speed of the vortex satisfy

¢ -cvy-a? > 0. (20)

It is important to note that the linear modes exp(ik « X - iwt) Thave
phase velocities w/ky which obey the opposite condition from

inequality in Eq. (20). Figure 1 shows the allowed regions for the

localized, mnonlinear solutions called solitary waves. The solutions

with ¢ > V4 are nonlinear electron drift waves, while solutions with
¢c < 0 are nonlinear ion acoustic waves retarded by the density
gradient V4 and rotating in the ion diamagnetic direction.

Equation (19) has solutions which are a sum f modified Bessel
functions. At present we follow Flierl gﬁ_gggﬁ/:zd consider only one

mode in this sum

a
r2 = x4+ n2 and cosd = x/r
v 21/2
g = all -3 - & . (21)
c CZ

At this point we notice that there exist contours of the function
Y =¢ = cx which do not extend to y + . On these closed contours the
function F(P) of Eq. (17) cannot be determined by the argument leading

to Eq. (18). For the single mode solution, closed contours occur within
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the circle of radius r = a defined by ¢ = 0 . Within this circle the
function F may be chosen arbitrarily subject to the requirement
that ¢ be twice differentiable across the boundary.

The simplest choice of F(z) in the interior is
. 2
Fint(zy = - [Y_ '+ 1)z .
8.2.{ ’

Continuity of ¢ , 9¢/dr and Vf¢ at r = a determines the solution

AK1<E£>.coé 6 - for kr v a
a .
¢(r,0) = (22)
Br cosd + CJ (1E cos 6 for r<a .
a . W=~
a 82 ﬁ 2 ac
A = 2% B = acll +2), c = —(—) —_—
K (8) ’ ( Yz) Y] L0
and Y 1is determined by
Ko(8B) Jo(y)
2oL o2 s, (23)
B, (8) YL

Equation (23) has an infinite set of roots Yn(s) ,n=1,2,.4., as
shown in Fig. 2. As B8 » 0 the roots 7Y, become the nth zero of

Jl(Yn) while as B + = they become the nth zero of Jy(y,) . Thus, the
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variation of a particular Yy, over the entire range of B is of
order w/2 .

In this vortex dipole solution, Egqs. (22) and (23), the parameters
a, ¢ ,and a or A, ¢, and o may be chosen independently subject
to the inequality in Eq. (20). All other parameters in Eq. (22) are
determined for a specified branch of Eq. (23).

The exterior form of the solution is determined by B8/a and is
thus independent of the matching across the boundary at r = a as well as

the form of Fint(w) . However, the stability of the solitary vortex

may depend strongly on the form of Fint(¢) : a theoreﬁ{}//of Arnold

implies that flow in a bounded domain obeying Eq. (17) is stable if
dF/dp < 0 .

Numerical experiments imply that the modon solution with vy = Yl(B)
is stable, though it probably does not have the extreme stability of a
soliton. McWilliams gE_glle subjected the modon to random initial
perturbations and found that it survived - if the RMS perturbation
amplitude was less than 10-20 per cent of the modon amplitude. For
larger perturbations the modon was destroyed by the shearing of its
contours in the ambient (applied) field. Experiments on collisions of
modoﬂé{;//;how that for some parameter ranges coaxial collisions are
nearly elastic. More generally, internal degrees of freedom seem to be
excited by the collisions and fission or filamentation of the dipoles is
possible.

There have apparently been fewer computations involving the higher
mode, gigi) Yo(B) , v3(B) , etc., solitary vortices, although it seems
reasonable to suppose these will be less stable than the first mode.

Are}%}/g;s shown a collision between a Y,(B) and a y1(B) vortex for
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the 2-D Euler equations in which the Y1 vortex absorbs the nucleus of
the vy, vortex, leaving what appears to be two first mode vortices.

Fleirl gﬁ_ éé}é//have shown that the solution in'Eq. (22) can be
generalized by the addition of a azimuthally-symmetric "rider" field.
The radial structure of this field is determined by matching conditions
at r = a as before, but its amplitude can be chosen arbitrarily. Thus,
it 1s possible for the azimuthally-symmetric term to mask the cos 8

nature of the modon.

IV. MODON PROPERTIES
In this section we obtain the modon amplitude, size, energy,
enstrophy, and spectrum as a function of the parameters a and c .

For simplicity, we set o = 0 .

A. Asymptotic Forms
Consider first the limiting form of ¢ for small and large wvalues
of B . From Eq. (23) we obtain the asymptotic forms of the

parameter 6 :

iz - log B + 0.11593 + ¢(B%,8%10g8) , B < 1
B
6 ~
L3 vot) B>>1 .

Using this we obtain expressions for vY(B)
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v {1+ B2+ o(p% 8%0s8) B << 1
2(v9)
YaB) ~
o | 2 7 (1)
Y“( B 82) @<B3) ’ B ’
where Yg and Yg are defined as the nth zeros of J; and Jy ,
respectively.,

The limit ¢ » vy with a fixed (50 that 8 » 0) is the Eulerian limit
of the Charney equation, since the electron streaming term exactly
cancels the drift term leaving precisely'the vorticity equation for a
two-dimensional Eulerian fluid.

In this limit the modon reduces to a vortex pair solution given by

Batchelo 15

an
cos O r>a

¢E = (24)

This solution looks like a point vortex dipole for r > a .
In the opposite 1limit, ¢ + 07 with a fixed (so that B + =) the

modon becomes
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(25)

-
92]
]

a3vd Jl(an/a)

Yo J1(v3)

- —} cos 6 r<a
a

as was first obtained by Stern}%//Here the nonlinearity acts to

completely screen the dipole for r > a .

B. Modon.SiZe andrAmﬁlitude
Defining the actual size of the modon, ry , as the radius at

which ¢ is maximum gives

" o 1 Y2
J — = — l —

which is graphed in Fig. 3(a) for a =1 .
In the limits of large and small B , ry takes the values
0.55 g+ 0
ia‘l - (26a)

0.32 B + o

The peak amplitude, shown in Fig. 3(b) for a = 1 , varies as

B el o s T et TR P N
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1.28ac B >0
o(rg) = (26b)

0.076a3(c - v4) B+ o

Note that for a given radius, a , the electron modon (c > v4q) requires

a finite amplitude field for creation, ¢ > 1.28 avyg .

C. Spe;tral Distribution
Electromagnetic scattering experiments in confinement devices
“ measure the electron density fluctuations “through the -dynamical form
factor S(k,n) . The observed spectra are approximately isotropic
in k, and peaked in k| mnear kjpg ¢ 1/2 . For each k; the frequency
distribution is peaked at wp 2 Wxe With a width Aw > Wp
The fluctuation spectrum of a wuniform distribution of N

]

identical modons is given by

SC,w)8 (k= k6@ - o) = —— e,k 0
(2r )%

where ¢ (k,w) = fd3xdt exp(—ig  x + iwt)p(x,t) and the average is over
the dinitial position X9 of the modons. The Fourier transform of

Eq. (22) gives

(2n)3¥ Kk, J,(kja) + 6k aJ;(k a)
S(k,w) = —__v__i ica262(32 +v2) _; 2kt 1 i ; l(zlz
k? (8 + kfa®)(v* - kfa®)

x §(w - kyc)G(kz - aky) . -(27)
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The spectrum is isotropic in kl except for the factor kx/kl due
to the dipole mnature of the modon. Since the modon propagates at a
fixed speed, only frequencies satisfying the dispersion relation w = kyc
are excited. Figure 4 shows S(k ) = [dk,dw S(k,») for k, = 0. In this
graph the spectrum is peaked at ka = 0.54 and decays as k™) for
ka >> 1 with oscillations due to the Bessel functions in Eq. (27).

A more general state consisting of a superposition ‘of modons with
various sizes and speeds will have a spectrum given by Eq. (27)
with N, replaced by a sum over the individual parameters (a,c). This
spectrum will have a frequency width proportional to the spread in

velocity of the modon ensemble.

D. Energy and Enstrophy
The modon energy and enstrophy integrals can be computed

straightforwardly. For k" =qa = 0 we obtain

4 2 2] 7 7 [ a/o\2
- onomEet by () ) esy? 38
E Le =3 [1 + (7)] {(63) + (46 + 1) [_2.(\() +

\

N[ =
1

<
o]

2.2 Rl \2 -
ST

where L. is the effective length of the physical system containing the
two dimensional structure.
These formulas are shown in Fig. 5. The asymptotic forms for large

and small B are

Ly

el g
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2na?c?1, [1 +12{ 3616 - lo B)J B+ 0
c 4 ¢ g .

E = _ (29)

The energy of the Eulerian vortex dipole (B = 0) is infinite because of
the slow fall off of ¢(x 1/r) as r » ® . This property implies that
there is a modon with c > Vq with minimum energy for a given a . As an
example when a = 1, Emin = 10.2 L, atc = 1.04vd while at a = 10.0,

Epin = 2.2(104)Lc at ¢ = 1.008vg,. This  contrasts with the
one~dimensional analogue of the modon: solitary wave solutions of the
Petviashvili equation\é/ For these solutions the energy of the ¢ > vy

branch goes to zero as c¢ + vy while the ¢ < 0 branch has a minimum

energy state for c = -O.lvd .

e+ e A —— e e

e e —_—
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V. SHEAR DAMPING OF SOLITARY DRIFT WAVES
In this section, we consider the effect of variable pitch in the
magnetic field' on a solitary wave localized near a rational surface.
Letting x = 0 represent this surface, we take %(x) =z + §(X/LS) . The
sheared field induces a distribution of values for a = k"/ky ~ x/Lg
which, in linear theory, produces a strong dampingé/;f drift waves and
convective cells. This theory predicts that a linear mode localized

near x = 0 will spread radially. The energy radiated to large =x 1is

R

effectively lost "from the waves by ion Landau damping at x ~ % ps/S

by the resonance kH(Xi)Vi =0 ..

VA drift wave modon, ﬁdwe&er, ié iocaliéed about so&e péiﬁt”x X0
due to the nonlinear coupling terms, and becomes exponentially small for
ix = %9l >> a « If we suppose that Xy and a are small compared to
X = pS/Sl/2 , the Pearlstein~Berk turning point, then the effects of
shear are small in the regions where the modon amplitude is substantial.
Shear is important in the region |x - xgl >> a where linear theory is
valid.

The modon can be thought of as a nonlinear antenna. We obtain the
radiation £field due to this antenna by matching the linear solution to
the modon solution in the region a << |x - xg| <K %y where both shear
and nonlinearity are unimportant. For a/pS K S_l/2 there is a region

of overlap of the two solutions which validates the asymptotic matching.

The nonadiabatic electron  response, represented by the

operator’ & 'in Eq. (1), is also modified by shear. If 6 & ‘represents

electron Landau resonance, then it 1s nonzero only in the region

Ix] < x4 = S—l(me/mi)l/2 « If the modon is located at a position
p
Xg 2> % then & can also be treated wusing linear theory. If,

e 3
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however, the modon is placed at the rational surface, then nonlinear
effects must be cqnsidered in treating the electron <response. This
latter problem is a difficult one which we leave for later work.

Temporarily neglectingﬁ&?Lwe first treat the region far from the
modon. For simplicity, Wetiéet Xy = 0 , though the modon can be
positioned at any x5 << x¢ , giving a = x3/Lg as the effective k; its
neighborhood, without substantially changing the results.

Linear solutions are obtained by discarding the advective terms in

Eq. (9) and Fourier transforming in y and t . This yields the

rfamiliar eigenmode equatipn

52 (%) (%) (x) 0
—_—0 x) + Q(x)¢ x) =
52 kyw kyw

where

Qx) = E - ¥(x)
kv
- oyd _ . _ 2
E " 1 ky
kyv 2
v(x) = =18 x] . (31)
w
The WKB solution of Eq. (31) has turning points at
x| = xp = s§1 ?‘-"\a(—lﬁz)l/2 , (32)
: y

S

D Gt &
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which are on the real axis for E < 0 , as we will see is the case for
modons. The WKB solutions of Eq. (31) are, for x > 0 ,

(dkw {-Q(X)J"l/ “expir I+ fxTi[-Q<x')] Y2grh | x < X

X

by, (®) = < - (33a)

'
laﬂkyw[Q(x)]_l/4 exp zii;fiTié(x’)]l/zdx'} s X D Xp.

(33b)

In the region a << x <K xq, ¢kyw(x) in Eq. (33) must match the drift
wave modon which, from Eq. (22), has the form

1/2

¢ (x,y = ct) = A(———) eXp<— %;3 cos 6 , (34)

for Br/a >> 1, where r = [xz + (v - ct)z]l/2 . Fourier transformation
of Eq. (34) in y and t wusing a saddle point épproximation which is

valid for Bx/a >> 1 gives

f vd_1/2’,'
by (x) =6 —~ kyc) %;lA.exp =Ixil 1 + k% - ——) Il (35)

A c
Matching Eqs. (33a) and (35) is accomplished by expanding Q(x) in
Eq. (33a) for x <K Xp

It is immediately clear from Eq. (35) that only frequencies w = kyc
are excited. Once we set w to this value, the functional dependence

of ¢kym on x 1is the same in the two solutions. The radiation

amplitude becomes

| g s g
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Ta 2 vq. 1/4 | [cE] ) |
dkyw = 6((0 - kyC)-—B- A [l(l + ky - T) exp[z(il - S ,)]I . (36)

Note the appearénée df the éxponentially small factor Which represents
the tunneling of the solution out of the nonlinear well., The exponent
is XT(—E)1/2 which is the barrier width times the square root of its
height. The modon is confined by virtue of its effective energy
level E being negative, siﬁce E = kyvd/w -1~ kg and w = kyc .

In the radiation region x >> Xp the field can be obtained from

Eq. (33b):

1/2 i, 1Yd] 2
c ]
= exp = S |— . 37
¢kym(X) Kyl [Sxvy P ( 2 ) F ) (37)
Causality implies that energy is flowing to large |x| and thus, the

group velocity should have the sign of =x . This condition implies that
we use the #* sign in the above equations for cky § 0 , respectively.
The rate of energy loss of the solitary drift wave can be computed
using Eq.—(l3a). It is valid to neglect the nonlinear radiation terms
as in Eq. (13a) since ¢ 1is  exponentially small for x >> a .

Evaluating the energy loss using Eq. (36) and Parseval’s theorem gives

R

P
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|

dE lelL, [ ]
. I e
o e

. . ~}oo
C “\"‘

v, ll) | dylkyl
d S =0

2 Vd 1/2 T Jec| ,2
x {1+ k& - 2} 1-= T 1C1 2y} |
( v C,,) exp ( 25 vy y) (38)

2 .
TLl.|cla :
c 2 oo
= — —— A [ T e
exp < 78

For lc/vd - 1] > 2S8/m the integral is easily performed giving

-1/2 -
[ Vg Cc v |
—= = - 25L.A? (1 -%) d ) . (39)

s : ™
exp ( ﬁ Vd

For the case Ic/vd—l] < 2S/m , the exponential factor is of order unity
indicating a breakdown of the tunneling calculation. Indeed, both the
~ barrier height, -E , and the barrier width, =Xy , become small in this
limit for small ky .

Equation (39) implies that the modon speed changes extremely slowly
so long as c¢/vq > 1 + 28/m , but that as soon as this critical speed is
~reached, shear damping similar to the linear case destroys the modon.
Furthermore, the ion - modon (c < 0) is only weakly damped by this
mechanism. This results because of the strong screening of the exterior
potential as exemplified in the Stern limit of Eq. (25).

Nonadiabatic electron terms change the analysis in two ways for
Xg >> Xg » _First the potential V(x) in Eq. (31) is changed by the
addition oﬁﬁfkyw(x) . This consequently modifies the WKB solutions.

Also, the electron source contributes to the change in energy as shown

Ipmp—y ——T7
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in Eq. (13a). If the electron source term is due to ZLandau resonance,
then this effect will lead to an additional damping of the modon. The
0peratoriﬁ? results in damping because of the factor
~w(w - w;e) « =¢(c -‘Vd) which 1is negative for allowed modon speeds.

This damping effect is exponentially small in on/a .

VI. CONCLUSIONS

Numerous observations of steady state, low frequency fluctuations
with frequencies, wavelengths, and amplitudes characterized by
w ~ kyvd » kipg <1 > kL, < l , and ¢ = ed /T, ~“ € = pS/Ln lead wus to
re—examine the nonlinear partial differential equation describing drift
waves. This dynamical equation is derived from the two component £fluid
equations assuming negligible ion pressure, weak electron
non—adiabaticity and quasi-neutrality. The plasma geometry considered
is the nonuniform slab with a sheared magnetic field defined by
S = Ln/Ls .

We have shown that for weak shear, S < € , when the coupling to ion
acoustic waves 1is negligible, the reduced drift wave equation admits

localized, two-dimensional solutions. These solitary drift waves are

equivalent to Rossby wave modons in geophysics, and are governed by Eii//
' 9

dimensionless partial differential equation first derived by Charney.
The Charney equation was obtained for nonlinear drift waves by Hasegawa
and MimaV
In addition to the k" = 0 solutions of Refs. 2, 3, and 4, we show
that for weak shear there are nonlinear solitary drift-ion acoustic

waves ¢ (x,y + az ~ ct) for general values of a = k"/ky . These solitary

drift waves propagate in regions complementary to the m(ky,k") regions

& B | aamaiiael sy =
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of the linear oscillations as shown in the phase velocity diagram in
Fig. 1. Electron—-drift solitary waves have speeds c¢ > vy while
ion~-drift solitary waves have speeds ¢ < 0 .

These solitary vortices have a dipole-like core with radius a and
an  exponentially-screened exterior decaying as exp(-fr/a) , where
B/a = [l - vd/c)l/2 . When B8 1is small, the peak amplitude
e@/Te =~ 1.28 a/L, occurs at rg= 1/2a . The energy, E;, of a
solitary drift wave is of order achneTe(a/Ln)2 . TFor speeds c¢ > vy

there is a minimum energy for excitation given by
Eg ~ 4na2LcneTe(pS/Ln)2 (valid for a £ l)roccurring at B ~ 1073 - 1072
At B = 0 where ¢ = vVq » the solitary drift wave becomes identical to a
dipole vortex solution of the Euler -equation. In this case, the
exponential screening is replaced by ¢ = 1/r and the energy becomes
infinite. Solitary vortices traveling in the ion-diamagnetic direction
have energies which increase monotonically with increasing |c]| .

-Estimating- -the - maximum- density - of solitary vortices to —be
ng = l/azLc giveé an estimate of the maximum energy of a many-modon
system. For densities larger than this, self-collisions would
presumably destroy the modons. At the critical density, the
energy ngEg in solitary waves as a fraction of the plasma thermal
energy, n,T, is nSEs/neTe o (a/Ln)2 ~ (pS/Ln)2 ~e? This bound on
the drift wave energy density 1is consistent with the free energy
estimates of thermodynamics as well as experimental measurements.

In the presence of strong shear S Z € , the electron drift wave is
intrinsically coupled to the ion acoustic oscillations due to the

dispersion in o = k"/ky = x/LS with distance x from the k" =0

rational surfaces. We have shown that the field of the solitary wave is

g s peie
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a quasi-bound state of a Schrtdinger equation with a finite potential
barrier. Well outside the core r = a of the drift wave modon, the
solutions are outgoing drift-ion acoustic waves. These outgoing waves
radiate energy from the core to regions of ion-Landau damping as in the
Pearlstein-Berk eigenmodes.5

in the radiation region, the sheared-field modons have an
exponentially small amplitude determined by the tunneling of waves

through the nonlinear potential barrier. For speeds such that

le/vg = 11 > 8, the outer modon scale, a/B , and the Pearlstein-Berk

turning point, Xp , are well separated. We calculate the rate of 1loss

of energy “due to radiation  obtaining the ~damping rate

Yg ~ Cg/Lg exp|-Lg/Lylc/vg = 1|] + For speeds such that |c/vg = 1] < 8

thé-turning pointvis close to the outer scélé,'and Wé‘éxpect the dampiﬁg”'”

rate to be qualitatively the same as for the linear eigenmodes with

0<eX Vg e

An - “important -problem  not ~fully treated here ~is the effect of "

-nonadiabatic electron response.,— Naively-one would expect an -additional-

damping since the modon frequencies occur in the ranges w > wy, OT
w <0 . If, however, the modon is situated at the rational surface then
nonlinear electron motion must be considered.

From our analysis we conclude that an important aspect of the
nonlinear dynamics of drift waves is the occurence of solitary waves.
The solitary drift waves are coherent, localized structures with cores
of scale a . Pg » energies  proportional to achneTe s and
exponentially small tails. The structures exist both in the shearless

and sheared magnetic fields. In all cases the dynamics of the solitary

wave components provides kw spectral components that are complementary

~
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to those of the linear modes. We consider the solitary drift-iomn
acoustic waves to be an important aspect of the steady fluctuations of
the turbulent drift wave system.
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Appendix: Ertel’s Theorem

The ion fluid equation [Eq. (3)] with finite pressure terms can be

rewritten in terms of the vorticity w =V x v :

S WA T @Dy = @) e Ty, (A.1)

providing Vn x Vp = 0 (the fluid is "barotropic"). Substitution of the

-

density equation for V « vy in (A.l) reduces it to

fw + R\ W o+ Q.
ll\(" ”)' = é” ">~ Vv : (A.2)

where n 1is the total electron density. Suppose there exists some

scalar quantity conserved for each fluid element:

D}\
= A.3

8

then Ertel’s theorem® states that the potential vorticity

e
+
10

n = e VA, (A.4)

=]

is also conserved by the flow. For the case at hand the large toroidal
magnetic field with  constant direction limits consideration to
two-dimensional flows in the perpendicular plane (k" + 0) so that VA = 2

and



+ Q
lé___._“’z .) -0 . (4.5)

This = equation  reduces to the Charney equation [Eq. (10)] in the limit
when the velocity is completely ExB , v = csps;xvl(eQ/Te) s S0 that
w, = —QpéVf(e@/Te) and when n = no(x)exp(eQ/Te) . Expanding Eq. (A.5)
to first-order in ed/T, "\6%8) then gives Eq. (10). More generally,
Eq. (A.5) 4includes the Veffects of VB and diamagnetic drifts and
higher order nonlinearities. In geophysics, these effects are referred
to as non-geostrophic (geostrophy is defined as the state where the
bvelocity is given entirély by the ExB drift), and the Charney equation

is called the quasi-geostrophic potential vorticity equation.

i g e+t e
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