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Abstract

Collisions of Langmuir solitons are described in terms of eilua,tipns of motion for
equivalent point particles. The description is valid in the limit when the eigenfrequen-
cies of bound plasmons are much higher than flle inverse interaction time, and the
velocities of the solitons are much less than the ion acoustic velocity. It is shown that
the velocities of the solitons do not change due to binary collisions, but they generally

change when more than two solitons collide simultaneously.
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I Introduction

There is a widespread trend in studies of one-dimensional Langmuir turbulence to describe
a strongly turbulent plasma as an ensemble of interacting plasmons, ion acoustic waves and
solitons.» 2% 4 Although many authors use this approach on a qualitative level, no accurate
formal procedure has been developed that would allow the reduction of the basic nonlinear
equations for the coupled modes to equations of motion for interacting quasiparticles. The
major difficulty in implementing such a reduction arises from the necessity of identifying
weakly interacting objects in a strongly nonlinear system. This usually requires having some
small physical parameters, in addition to small wave amplitudes.

In this paper, we will present an example of a situation in which solitons can actually
be consistently described as interacting quasiparticles. The simplifying small parameters
in our problem are associated with the existence of different time scales corresponding to
“fast” and “slow” degrees of freedom. A natural tool for handling such problems is the
adiabatic approzimation. We will apply the idea of adiabaticity in two forms. First, we
assume that the evolution of a soliton is slow compared with the bounce period (the inverse
eigenfrequency) of the bound plasmons, so that bound plasmons adjust adiabatically to the
changing shape of ~the soliton with no state-to-state transii_:ions. Second, we restrict our
consideration to the case of slow solitons whose velocities are much less than the ion acoustic
velocity. This means that colliding solitons actually do not radiate ion-acoustic waves, for
the same reason that colliding nonrelativistic charged particles do not produce substantial
electromagnetic radiation. However, unlike charged particles, solitons do not interact at a .
distance; the interaction only occurs when solitons overlap. This brings up the problem of
how to introduce coordinafes for the overlapping objects of finite size and evolving shape.

The solution for this problem follows from the results presented in Ref. 5 in which mul-



tisoliton stationary solutions (compound solitons) were constructed with arbitrary distances
between the components. We will show that the coordinates we need are nothing else than
the free parameters of the compound selitons. By selecting these coordinates and using the
adiabatic approximation we reduce the Lagrangian of the continuous system of interacting
modes to a Lagrangian of the finite number of point particles, each of therﬁ corresponding to
a soliton. We then apply energy and momentum conservation laws to analytically solve the
problem of binary collisions. Binary collisions are shown to be trivial: they do not change
the velocities of the solitons. We also present a numerical solution for a triple collision, which
demonstrates that, generally, the velocities of the solitons do change due to the interaction.
This suggests the idea of extending the technique described here to the studies of kinetic

phenomena in a gas of solitons.

IT Basic Equations

We will start from the one-dimensional Zakharov equations® that describe nonlinear coupling
between high frequency Langmuir waves and low frequency ion-acoustic waves. The coupling
is due to 1) the ponderomotive force and 2) the dependence of the electron plasmé frequency

on density perturbations. We write these equations in the following dimensionless form:

*n  O*n  O?

otz Bz Oz? £ (1)
OE O%E

Wy + B2z nk, (2)

where n is the perturbed plasma density and E is the amplitude of the high frequency
electric field. The parameter g, which is herein assumed to be small, measures the ratio of
the acoustic frequency (at a wavelength equal to the typical soliton size) to the eigenfrequency
of the bound plasmons. The condition that g is small means that the “potential energy”

n in the Schrédinger equation (2) is a slowly varying function of time compared with the



oscillating time-dependent eigenfunctions of the bound plasmons. Therefore, the solution of

Eq. (2) can be written in adiabatic form; i.e.
E = Z ein?t/gEj ,
J

where E; is a slowly varying adiabatic eigenfunction and «? is an eigenvalue of the equation

— K2E; + == = nE; , (3)

0z2

in which all quantities depend on time parametrically through n. In the adiabatic limit,

Eq. (2) conserves the quantities

N; = / \Ei2dz, (4)

which represent the occupation numbers of the adiabatic states of plasmons. This shows
that transitions of plasmons from state to state are forbidden in this limit.

In what follows we assume that all the populated states belong to the discrete spectrum.
With g being small, the characteristic beat frequencies between different eigenmodes appear
to be much larger than the acoustic frequency. We therefore neglect rapidly oscillating cross-
terms in the right-hand side of Eq. (1) and only retain the diagonal terms which create the
major ion response. Then Eq. (1) takes the form5
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where v is the total number of populated states.
A particular solution of the system (3) and (5) is a single soliton moving with a constant

velocity s:
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As we restrict ourselves to considering only slow solitons with s < 1, we neglect the s?

contributions to formula (6), and rewrite this formula in the following simplified form:

n=—|E?,
K2

~ cosh(k(z — z¥)) ’

where the position of the soliton z* changes linearly with time, as the soliton moves with a

E (7)

constant speed s < 1. Note that, in this approximation, the width of the soliton (defined

by the parameter &) is uniquely related to the number of plasmons:
N =4k .

A trivial generalization of the solution (6) is a set of several solitons With different values
of k and different velocities. This generalization is good as long as solitons do not overlap,
which of course is not the case when solitons collide.

To quantitatively describe collisions, we use the following approach: To zeroth order, we
neglect second-time derivative in Eq. (5), since all the solitons under consideration are very
slow. To this order, at any moment of time during the collision, the profiles of n and E;

must satisfy the following set of equations:
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It was shown in Ref. 5 that, for any given number of oécupied states v with given
occupation numbers N;, Egs. (8), (9) have a multisoliton solution with v free constants. We
choose these free parameters to be generalized coordinates of the solitons. We then consider
these coordinates to be slowly varying functions of time so that second-time derivative in -

Eq. (5) can be treated as a perturbation. From the perturbed equations, one can find a



small correction to the multisoliton solution and (what is more important) the solvability
conditions for the first order problem. These conditions can be formulated as the equations of
motion for the solitons. The procedure described above is actually an asymptotic expansion

based on the small parameters g and s.

ITIT Generalized Coordinates

We now introduce generalized coordinates in a formal way. Similar to a single solution, a

multisoliton solution corresponds to a non-reflective potential well in the Schrodinger equa-

tion (5). These potentials are known from the solution of the inverse scattering problem.” & ?

The corresponding profile of the perturbed plasma density has the form

2

d

where I is the unit matrix and C is a symmetric matrix defined as

C;Cy

Ci =
Ki + K

exp (— (ks + kE) z) .

Here, C; are free parameters related to the positions of the solitons. The normalized eigen-

functions of the bound states in the potential (10) satisfy a set of linear algebraic equations:

)+ 3 pule) s exp(—(si+ ma)e) = Crexp(—rio). )

Ki + Kk
It is also interesting to note that potential (10) can be presented as a combination of squares

o .9
of its eigenfunctions*:

n(z) = -4 ripi(z) .
i=1
Equations (10) and (11) generalize the trivial solution for a set of the well-separated
solitons to the case when the solitons can overlap and lose their individual profiles.

We choose the parameters C; to be generalized coordinates of the solitons. These pa-

rameters can be expressed through soliton positions that are well defined for the separated
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solitons. The positions obviously become uncertain when solitons overlap. Nevertheless, the
quantities C; do not have any uncertainty. Therefore, by following the time behavior of C;,
one can relate final positions and velocities of the solitons to those before collision.

In order to find C; for well-separated solitons we introduce new variables z¥ so that
C; = v2meal . (12)
For a single soliton (v = 1), z¥ is exactly the position. For v > 1, the position of i-th soliton,

as we will see, may differ from z¥ by a certain shift, which is roughly of the order of the

soliton width. To determine the shift more precisely we assume, without loss of generality,

that
o <z¥. . <aX (13)
and also that
1 1 ,
* L
|z; — zi| > max (;1, a) (14)

for all 7 # k. The latter inequality is the separation condition for the solitons.
It follows from Egs. (13) and (14) that, in the vicinity of :v;‘, we have Cy; > 1fori < j

and Cy < 1 for ¢ > j. These inequalities allow us to simplify matrix I+ C as

I+C=
/ 6_2"31(3_“"1*) . .&@e—nl(z_mf)_nj(w_m;k) . @e_nl (w—wl*)—nn(z—z:)
K1tKj K1tkn
2./KiF; e—nl(x—zl )—nj(a:—:t: ). 14 —25_,'(:1:-—1:*) 2V/FiFn —kj(z—z] )-—nn(a:—:cn)
e s - e
K1+Kj Kithn )
2/RiRn o~y (5~ )= n(z—o¥) . /ARG —kj(o—af )= kn(a—ak) . 1

\ K1+Kn KntKj

(15)
By taking out common multipliers from rows and columns with numbers less than 7, and by
neglecting exponentially small off-diagonal terms in rows and columns with numbers larger

" than j, we find that the determinant of this matrix is

det(I+ C) = (H P G ))

i=1
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1 2/FiF3 . 2:£ﬁ1nje—nj(z:—a:;-k) 0 - 0

K1tK2 K1tKjy
2/RiRz 1 . WT""J'e—ﬂj(w—w;F) 0 - 0
K1+K2 Ko+Kj
det /FIR] —rje—af)  /FEFT —ki(o-af) 1+e~2ﬂj(m—w;“) 0 - 0 (16)
K1+Kj K2 +Kj
"0 "0 0 1
0 0 - 0 0 - 1

Because of the structure of Eq. (10), the common exponential multiplier in this expression
does not contribute to the form of the density profile. We now substitute Eq. (16) into
Eq. (10) to obtain

2

d —n-z—z*
n=_225c51°g(1+‘416 el ’)> ’ (17)

where A; depends on &y ...%;—1 but not on.z. Equation (17) describes a soliton centered at
z; = o +log(4;)/(2;) - (18)

The explicit expression for A; can be found by calculating the determinant in Eq. (16). In

the case of two solitons we obtain:

. _ K1 — K9 2
Ay=1; A2_<m+52) . | (19)

For three well-separated solitons, the result is

K1 — K2\ ? (k1 — k3)% (ke — K3)?
A=l;A=( );A: : 20
! 2 K1 + K2 27 (k1 + K3)%(Kka + K3)? (20)

Equations (12) and (18) and quantities A; give the required relationship between the

generalized coordinates C; and the positions of the separated solitons. Also, these equations

show that it is preferable to use :1;;" as generalized coordinates. This will make generalized
velocities of the separated solitons m;‘ equal to their actual velocities &;. Therefore, in what

follows, we will discuss the equations of motion for m;“ rather than for Cj.



IV  Equations of Motion

To derive the equations of motion for mf we use the following procedure. First, we introduce
a new function £(¢,2), which is the displacement of ions from their equilibrium positions.

Hence, the perturbation of plasma density is

%

~3e

and Eq. (5) takes the form
o e 0
o2 0z Oz

Second, we note that Egs. (3) and (4) define a functional dependence of |E;|? on the instan-

|Es|? . (21)
1

i=

taneous density profile. This allows us to rewrite Eq. (21) as

%

= = Alf) | (22)

where
-~ _ 826 6 Y 2
A =55 LIE
is a time-independent operator (however the right-hand side of Eq. (22) depends on time

parametrically through £).

In the case of slow solitons we can treat the left-hand side of Eq. (22) as a perturbation

and seek the solution of this equation in the form:
E(t,2) = bo(e, 2} (1)) + &u(t, z) - o (23)
We assume that &; < &, where &o(z, 2 (t)) is the solution of the zeroth order equation

At) =0, (24)

which is given by
b =2 logdet (I+ C) (25)




where

Cy = 2, /hle‘"ﬂj m(a:-—a::k)—fcj(w—m;’t) ) (26)
Ki + ch

The first order terms in Eq. (22) give the following linear equation for &;:

o? ~
o S0 = Atk (27)
where Ay, is linearized operator A, that depends on &.

It can be proved straightforwardly that A is a self-adjoint operator. Also, by differen-
tiating Eq. (24) with respect to z¥, and taking into account that & satisfies this equation
regardless of 2¥, we conclude that

7 96
Az oz}

i.e. functions :Lg: are eigenfunctions of the operator Az, with zero eigenvalues. Now, by inte-

k3

’

grating Eq. (27) over ¢ with the weight functions 2 —*-, we obtain the solvability conditions,

too 9 0%6
/_oo @ 5% T2 = 0 (28)

which are actually the equations of motion for zF. These equations can also be written as
360 550 5 0% 0%
—=0. 29
Z / zf £t ;;21 / Bw}" oz} 29)

Note that Eq. (29) is derived in the small velocity limit (:cf < 1). However, by shrinking
the time scale we can formally make ¥ ~ 1, which is convenient for solving the equation
numerically. The physical solution can be obtained from our numerical results by an appro-
priate stretching of the time unit.

Another derivation of Eq. (29) is based on the minimum action principle for Egs. (3) and

(5). The corresponding Lagrangian has the form
_Lor(oe\ L (o) 0 o
5/(&) dw“@/(%) dat [ 52 Do IBda -
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wherein the following constraint is imposed on F;:
. /lEi|2dw = 4x; = const . (31)

In accordance with the above described procedure, we choose a trial function &, given
by Eq. (25) with z¥ being the generalized coordinates that are to be determined from the
minimum action principle. As before, |E;|* and |%"2 are functionals of {y. It was shown in
Ref. 5 that £ makes the second term in the Lagrangian independent of z¥. This remarkable
feature is related to the fact that «¥ are free parameters of the the solution of Eq. (24). Also,

*

the sum of the last two terms in the Lagrangian does not depend on z;, since if we multiply

Eq. (3) by E¥ and integrate over z, using Eq. (31), we obtain that
% | OE|* , _,

Hence, Lagrangian reduces to

__1_ - * * +°°3§o 350

The corresponding Euler—Lagrange equatlons coincide with Eq. (29). This equation can also
be interpreted as the equation for the geodesic motion of a particle in a space of v dimensions

with a metric tensor of the form

gij_/+°° 9% 0 d

—c0 8:0* aac v
where v is the number of solitons.
As Lagrangian (32) is translationally invariant and does not have an explicit time depen-

dence, we conclude that Egs. (29) conserve the total momentum,
| - 0 98 0o
P= . f dz 33
z',%_: IEz —00 6:1:* 8 9z¥ ( )
and total energy of the solitons,

¥k too 9y Oéo
Z o OzF Omk da . (3¢)

1,k=1
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These conservation laws are sufficient for the analysis of binary collisions. In order to

describe this particular case we introduce new variables,

%
:c’f-}-:cz

A=

and rewrite Egs. (33) and (34) in form the

ros () vt B

A? (o€ ¢ . [ O O
W=7/(8—A°) do + (6—5"> dz +A6/8—A°8—;dx. (36)

By combining Eqgs. (35) and (36) we obtain

W=EI(%%W{P2+52 {/(g%) dw/(%) dw—( %%d&c) :l} . (37

It is clear from the structure of Egs. (25) and (26) that

() (2
0A 6;m_ Oz Ass

and, using the fact that [ ( ) dz is independent of the soliton coordinates, we conclude

/ (gi) dz = const.

In evaluating this integral we can assume, without loss of generality, that solitons are

that

well separated. This gives

2
/(g—%) da:=13—6 (rz?-}—m‘;’) :

The other two integrals in Eq. (37) are independent of A but they generally depend on é.
Thus, Eq. (37) defines 6 as a function of 6. It should be noted that § does not change it’s sign

during the collision, which means that solitons pass through each other without reflection.
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It follows from Eq. (37) that asymptotic values for §at § = —oco and § — +o0 coincide,

both of them being givén by

: 3 9
62 = (-8— (:si’ + fcg’) W — %Pz) / (r1k2)°

Therefore, final velocities of the colliding solitons are equal to the initial velocities, al-

though the velocities do not remain constant during the interaction.

V  Three-Soliton Collision

When more than two solitons interact simultaneously, the conservation laws are insufficient
to fully describe the collision. This situation is similar to point .particle collisions in classical
mechanics. In order to solve the problem of a three-soliton collision, we integrate Eq. (29)
numerically. The issue is whether the final velocities of the solitons differ from the initial
ones in this case , as opposed to binary collisions. The results presented in this section give
a positive answer to this question.

We solve an initial value problem for (29) by using the fourth-order Runge-Kutta method.
The integrals in (29) are evaluated on the sﬁatial interval [—10, 10], which provides sufficient
accuracy, since the derivatives of £y are exponentially localized in space.

The binary collision presentéd in Fig. 1 illustrates the results of the previous section and
allows us to test the numerical scheme. As shown in Fig. 1b, the velocities of the solitons
change considerably during the interaction. However, the asymptotic values of the velocities
are well conserved. Also, the total energy and momentum are conserved, with an accuracy
of 107* (this refers to both two-soliton and three-soliton collisions).

An example of a three-soliton collision is shown in Figs. 2 and 3. Here, two of the
three solitons are initially identical to those in Fig. 1. However, with the third soliton, the
collision becomes nontrivial. The collision presented in Figs. 2 and 3 looks almost like a

velocity exchange between the first and the second solitons in presence of the third party.
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This only happens due to particular choice of initial conditions. Generally, the interaction
changes the velocities of all three solitons.

It is very likely that multiple collisions in a gas of solitons will bring this gas to thermal
equilibrium. An important feature of this process is that the relaxation time for a low den-
sity gas must be much longer than the inverse frequency of binary collisions. It would be
rather interesting to derive kinetic equation for this relaxation process. Another interesting
extension of the results presented here would be the accurate calculation of various thermo-
dynamic functions for the gas of solitons in explicit form, at least in a low density limit ‘When

nonideal effects are relatively small.

Acknowledgments

The authors would like to thank Drs. H.L. Berk and P.J. Morrison for editing this manuscript

and J. Hernandez for his help at the early stage of this work.

This work is partly supported by the U.S. Department of Energy Grant no DE-FGO05-

S80ET-53088.

14



References
1J. Gibbons, S.G. Thornhill, M.J. Wadrop, D. Ter Haar, J. Plasma Phys. 17, (1977), 153.
?L.I. Rudakov, V.N. Tsytovich, Phys. Reports 40, (1978), 1.

3S.G. Thornhill, D. Ter Haar, Phys. Reports 43, (1978), 43.

4

BN Bretzman and K- Jungwirth, in Reviews of Plasma Physics, edited by B.B. Kadomt-

sev, 18, (Energoatomizdat, Moscow, 1990), 3 (in Russian).

5V.T. Astrelin, B.N. Bi‘eizman, Z. Sedlacek, and K. Jungwirth, Fiz. Plazmy 14, (1988), 706
[Sov. J. Plasma Phys. 14, (1988) 417]. |

®V.E. Zakharov, Zh. Eksp. Teor. Fiz. 62, (1972), 1745 [Sov. Phys. JETP 35, (1972), 908].

"F. Calogero and A. Degasperis, Spectral Transforms and Solitons: Tools to Solve and

Investigate Nonlinear Evolution Equations (North-Holland, Amsterdam, 1982).

81.M. Gel’fand and B.M. Levitan, Amer. Math. Soc. Transl. Ser. 2, 1 (1955) 235 [Izv. Akad.
Nauk. SSSR Ser. Math. 15 (1951) 309].

°V.A. Marchenko, Dokl. Akad. Nauk SSSR 72 (1950) 457 (in Russian).

15



Figure Captions

1. Two-soliton collision. The inverse widths of the solitons are x; = 2.1 and &, = 2.0 for

the first and second soliton, respectively. (a) Time evolution of soliton positions z; .

(b) Time evolution of soliton velocities &3.

2. Three-soliton collision. Inverse widths of the solitons are x; = 2.1, &k = 2.0, and
k3 = 1.9 for the first, second, and third soliton, respectively. (a) Time evolution of

soliton positions z*. (b) Time evolution of soliton velocities 7.

3. Instanteneous density profiles during the three-soliton collision. Arrows indicate the
directions of the soliton motion. (a) Initial profile. (b) Intermediate profile. (c) Final

profile.
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