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Abstract

The variational structure of the plasma linear response function is
used to demonstrate the relation of magnetohydrodynamic and trapped-
particle instabilities. Though in most systems, where bending energy
stabilizes ballooning modes, trapped-particle instabilities have a low
growth rate, in tandem mirrors with thermal barriers the trapped-
particle instability growth rate approaches that of MHD instabilities.
In additiﬁn, the kinetic theory yields stabilizing effects due to the
difference 1in electron and ion orbits, and destabilizing effects due to

the variation of the ExB drifts along a field line.
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quadrupole end cells, they can be unstable to the trapped-particle

I. INTRODUCTION

It has been proposed that tandem mirror fusion reactors be designed
with thermal barriers in order to substantially reduce the ion energy
and density required in the end cells.t One such design is the axicell
tandem, in which the thermal barrier is produced by interposing
axisymmetric auxiliary mirror cells (axicells) between quadrupole mirror
end cells and the central solenoidal cell. The use of axicells
possesses the dual virtues of reducing radial particle transport and

allowing for higher magnetic fields.

.Because of the effective barrier produced by the axicell,. particle -

densities can be_ﬁery low in the transition region between the axicell
and the end cell where the magnetic surfaces are transformed from
circular to elliptical. While such configurations may be stable against

MHD perturbations due to the anchoring of the field lines by the

2 Furthermore, we find that the existence of the low density

mode.
transition region results in growth rates of the unstable trapped—
particle mode which are considerably enhanced above that of the usual
estimates; in extreme cases, the growth rates can approach MHD growth
rates. The most wunstable perturbations appear to be those which are
flute-like in the central cell and axicells, but which decrease to zero
in the tramsition region. The instability is driven by the average

unfavorable curvature in the central region. Since the trapped-particle

modes are primarily electrostatic, the field lines are not significantly

perturbed and 1o bending  energy stabilization OCCUrs,. Some
stabilization is, however, possible as a result of the charge separation

which arises because of finjte Larmor radius effects and of differing
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ion and electron trajectories. This latter stabilizing feature is due
to the presence of equilibrium electrostatic potentials essential for
improved particle confinement 3in tandem mirrors; its counterpart in

tokamak trapped-particle instabilities is negligible.

II. VARIATIONAL PRINCIPLE AND GROWTH RATES
In order to make a quantitative study of the trapped-particle

instability in tandem mirrors, we start with the low-frequency

_ 8yrokinetic equations derived in the high mode number limit _using the

eikonal representation. The appropriate set of field wvariables
are: ¢ the electrostatic potential, By, the parallel component of the
magnetic field, and A, the parallel component of the vector potential
or, equivalently, ¥ Awhere A" = c/iw(h°2x) .

In the limit of low pressure (8 < 1) and small Larmor fédius,
k%v%h/ﬂz = kfr% <1, the eigenmode equations for ¢ , By » and Y may
be derived from the following quadratic variational form (which differs

3

from those derived by Antonsen and Lee” only in the inclusion of finite

Larmor radius terms):

2 2
k225 2 ) 3Fy (w = wg) _
[4& 2 (g.vx]2+Dx2+xpzso+%—r* —Z-dr 0 G =0
B | 4mw? " % (o - up)

(1

where the new field variables Y and Q are given by
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The summation z is over particle species and the distribution
function Fy is considered to be symmetric in vy e The particle
bounce frequencies wy, are assumed to be large compared with the mode
frequency w (mb >w); G= (fde/lv"l)/f(dz/lv"l) and implies averaging
over a trappéd-partiéle'trajectofy. ' N - o 7
If w > wg > wp » and we neglect Q in the interest of brevity,
Eq. (1) can be solved to obtain the following variational expression for

the growth rate (w = iy):

[d8/Bo[ (=3p/300) <wsw, (x + 92> = klc?(bevy)%/4n]

far/By(~8p/360) [<¥? - 92> + <kivi/202>>(x% + v2 + <2xP>) ]

(2)

where

1/arq?(3Fy/3¢)a
o> =
Jfdrq?(aFy/s¢)
)  Y{arq?[(8F./8e) + 1/Ba(8Fq/5)]:
S = uf 1L gloe) o( 0 u]]a

Ifarq®(a%y/2e)
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w = 'g(mv% + uBO)é-E .

In strict accordance with the derivation presented; w as written

c ?
above is only valid at very low beta. However, Eq. (2) with the above
definition of w, » is valid for small but finite B and flute-like

4 That is to

perturbations where we include finite Q in the analysis.
say, Q adjusts iJtself so as to cancel the drifts due to the
diamagnetic well. We also note that when Yy £ Wxy » X <K ¥, and if the
equilibrium is only weakly dependent upon electric drift fields, Eq. (2)
ié étiil véiid, k‘and A ié fhe lﬁariéti&nélw eiéression forv the
trapped-particle mode.

As the denominator in Eq. (2) is positive definite, perturbations
for which the numerator is positive are unstable. In normal orderings
when the passing and trapped particles are comparable, the
fastest-growing modes (i.e., MHD modes) arise by making the denominator
as small as possible, i.e., ~Cﬁk§rf) , This is effected by choosing
perturbations such that x # 0 but ¢ + 0 (equivalent to the MHD
assumption E“ + 0 ). The resulting variational expression for Yy is
identical to the MHD variational principle and the growth rates can be

large v © (w*wc/kfr%)l/z « The flute interchange mode corresponds to

X# 0, beVx = 0, and it is unstable unless

rdl ( ap )x
= [ |i<wgw, > < 0 .
Bo \9¢g ¢

If the flute interchange is stable, rapidly growing ballooning modes may

still arise and they correspond to perturbations in Y which are

T
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localized in regions of average unfavorable curvature. However, since
these perturbations involve field-line bending (that is beVx # 0 ), they
are stable in low B8 plasmas, B < Borit Where B ,.qp 1s the MHD
ballooning mode limit for stability. However, instabiiity can still be
found if we allow x + 0 to eliminate the bending energy and choose
v#0 . These perturbations correspond to the trapped—-particle
instabilities which in conventional orderings produce 1ow. growth
compared to an MHD time scale. The mode is predominantly electrostatic

and localized in regions of average unfavorable curvature. Since the

_term proportional to 7<¢2 - $2> is typically of order one for many

confinement systems, an estimate for the trapped—-particle growth rate is
Y - (w*mc]l/z s much smaller than a typical MHD growth rate. For
axicell tandem mirrors, however, :where the perturbations can be
flute-like in the central cell and axicells [hence, for trapped
particles (¥ = E}] and decrease to zero in the low density transition
region, <¢2 - $2> is proportional to the fraction of transiting
particles and, therefore, much less than unity. Thus trapped—-particle
growth rates are considerably enhanced above the usual estimates. If
To/Tt(nt/No)Lt/Lo - k%r% , the growth rates approach MHD growth rates
where n (L. , T.) and Ngo(Lg , Tg) are the density (length,
temperature) of the transition region and central region respectively.
In Eq. (2) we have assumed Yy << @y « In practice this assumption
is marginal for ions. However, we have been able to show that if finite

ion bounce frequencies are included in the theory, with x =0 , the

growth—rate—will—be—larger than-predicted-by-the—variational-form-of

Eq. (2).
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ITII. CHARGE SEPARATION

We will now discuss the case of ® " wy > wg when Eq. (2) is no
longer valid. We restrict our discussion to B < Berit and thus neglect
perturbations in X o We first consider the limit wyg > wg and describe
a model calculation in which the stabilizing influence of charge
separation is assessed. We then derive the dispersion relation for the
limit wy ~ wg .

If w "™ wg > wg , the quadratic variational form obtained from
Eq. (1) and relevant to trapped—particle modes can be written in the

form:

w?A+wB+C o= 0 (3)

k

' 2v2
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The previous expression for the growth rate of the trapped—particle
mode was obtained by neglecting the linear term in w .
The importance of the linear term in ® is that it iIntroduces a

stabilizing effect. Equation (3) may be formally solved for w :

w o= - 5y ﬂﬁi -4 L 1
2R ° 42 Iy )

A finjite value of ﬁ contributes a positive term (Y is taken to
be real) to thé discriminaﬁt and dis stabilizing. It represents the
stabilizing éffé;t of;cﬁéréévsepafatibn onithévtrafpéd;éaftiélé mode.

The coefficient B is a sum of two terms. The first term in .5?,
<(wyg - mD)(-{;2 - ¢2)> » 18 usually zero for confinement systems like
tokamaks  where the | distribution functions and trapped particle
trajectories of ions and electrons are self-similar. This follows,
since by definition <(wy - wp)> = 0 is just the expression of charge
neutrality. Tandem mirrors, however, have finite electrostatic
potentials in equilibrium, and this manifests itself not only in the
presence of electric drifts but also in trajectories which are different
for jons and electrons. Thus, <(wg - mD)(E'2 - ¢2)> # 0 . The second
term in B is the usual finite Larmor radius term and is wusually
non-zero, <$2(w* - Bb)(kiv%/292)> #0 .

To estimate the stabilizing effect of B , we consider a model
calculation in which the equilibrium magnetic (BO) and electrostatic
 (8g) fields of the axicell tandem are represented by step-functions as

shown in Fig. 1.
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The perturbed field variable V¢ is

Y. is comstant in the central region where the majority of the particles
are trapped and undergo average unfavorable curvature drifts, and is
zero in the low-density transition region. This perturbation tends to
maximize the. trapped-particle growth rate.. -

For particles trapped in the central region:

For the passing particles which leave the central region and enter

the transition region:

t
tl + t2

1’) =
where t; and ty are the transit times in the central and
transitional regions respectively and t; >> t, .

The distribution functions for ions and electrons are taken to be

Maxwellian:
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The original system of equations is invariant to a fixed ExB drift and
it is convenient to choose a frame of reference moving with the plasma
in the central cell. Hence, if Wgpy 3is the electric field rotation
frequency of the plasma in the centrél region and w’ = w - Wy » then

Eq. (3) can be replaced by:

w2A+ B+ = 0 (4)

where ¢ = 6 - w8 and

T, T By \ = o2
L e 1 miﬂi
(Ly, = L) n;, .10
_ _ 2 [ Mt et \. _ce. ., _
8. = B 2(wgy - wgple ('T—+'T—) 3o k1 b<l(ng - ng)
3 e

_ Ly = Ly)
b o2g (1. 1y [ as — v o, (T2 -1
¢ = ey (r* T—)/ ws = wgpJuch?) + — (wpg = wg1)
i e 0
(Lz - Ll) . n
ce it et
3] ki obx¥{ngy - nge) + B (wgp = wpy)%e (—T;- + 3:) .
n;. and n,. are the density of the passing particles in the

transition region.

The stabilizing effect of charge separation becomes dominant when

;Bz > 4AC’ and this inequality reduces to:

et et
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> 2vy (5)

when the Latrmor radius terms are negligible;

c (& YNoTs ) |
Pl G el B P A8 (6)

when the Larmor radius terms are dominant.
Yo is defined to be the trapped-particle growth rate when B can

be neglected.

1+ T,/T,)/de/Bna< - >
Y% _ ( 1/ e)f /0 (w* mEl)wc . (7)

[(1 = 21)/B) {[nge + nge(T3/Te) ]/}t + (L1/ByJifef,

It should be remarked, of course, that in the case when the trapped
particle mode is stabilized in this way by charge separation, the
resulting negative energy modes may still be destabilized residually by

collisions or bounce resonances.

IV. AXTAL ELECTRIC FIELD VARIATION
In the more realistic case where wx ~ wg >> w. , the quadratic

varjiational form with y = Q = 0 is:
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(8)

where |w = wgp| > w, is assumed.

As before, an estimate of the mode frequency w®w may be obtained
from Eq. (8) by substitution of a suitable trial function for ¢ .

To this end, it is convenient to separate the axicell tandem into
distinct regions of localized trapped-particles. If we again consider
the 1limit where the fraction of particles which are able to pass from
one region to another is small, then within each region quasi-neutrality
tends to constrain to be flute-~like: ¢ ~ @j(l - ij/m) with $j a
constant. The subscript j denotes the jth region.

It therefore appears reasonable to consider a trial function

for ¢ :

where ¢j are adjustable constants to be chosen so that Eq. (8) is

A
stationary with respect to variations in wj .
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For locally trapped particles:
Py o= $j[l - f%j) jth region .

For the passing particles:

_where

g(dz/w“ g

ij de/IV“'i .
j .
[o 2 = J-—-'-———-——— .
3 Jda71v1

@ 5 is the fraction of time spent by a passing particle in
the jth region,
If we substitute the trial function for ¢ in Eq. (8) and we

impose the requirement that Eq. (8) be stationary with respect to

variations of wj » We obtain the following linear equations for wj :

A L T e e — e e
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[1 - E(mEk/w)ak]

o) -ty - Gyl

202 .

- cuD)wc
e = . (9
w :>

We have neglected terms of order w ok vl/2w9 « It will be noted that in
Eq. (9) only the pa331ng partlcles contrlbutekte‘tﬁe‘firee‘tefﬁ, ﬁhereas
the locally-trapped particles are assumed to dominate the conﬁributions
to the other three terms.

The dispersion relation is obtained by equating the determinant of
the set of equations given by Eq. (9) to zero.

Solutions of this dispersion relation are currently being
investigated. We may note that jin the case where the axjal wvariation
of Wy  considerably exceeds wy and n, is not too much smaller than
NO , that a flute mode may be driven unstable by axial variation
of wy .

In this 1limit, the first term in Eq. (9) will be the largest,
requiring that all $j's be equal (i.e., a flute displacement). A
solubility condition is then found by summing over j leading to the

dispersion relation:

e T B 1 R e e I o —— e e rr——, | ——— .
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dg ™My ~
| 5 le K} [(“’ - og)(e - wg) - = ?.‘ij_i]

&0l 1e + 5] - (10)

and k = (b-7)b .

For large k; , the Ileft-hand side of Eq. (10) will dominate
yielding a quadratic equation for w®w . Instability will result when
”(wE - Eﬁ]z > B%i where the raised bar indicates field line average. A

" similar result has also been obtained by X. 'S. Lee‘gg_§;,5 B

V. SUMMARY

We have generalized the wvariational principle for the trapped-
particle mode and applied it to the case of tandem mirror stability.
This case has several novel features.

1) Due to' the potential barriers the equilibrium may contain
regions of very low density in the transition between central cell and
stabilizing anchor. In this case we have shown that the growth
rate Yqg , of electrostatic trapped-particle modes localized away from
the anchor may approach that of the unanchored MHD system, even though
MHD interchange and ballooning stability criteria are met.

2) However, because of the equilibrium parallel electric fields,
ion and electron trajectories differ. This leads to a stabilization
(effective even for m = 1) roughly when wyg > Yo » although residual

collisional or resonance growth remains.
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3) The equilibrium may also be characterized by large axial
variations of the §x§/32 drift frequency. If these are very large

compared to Wy , a novel type of flute instability is predicted.
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Figure Caption

Fige. 1
Profiles along a field 1line of idealized equilibrium magnetic field,
BO » electrostatic field, ¢y , and trial function, ¥ , used to model an

Axicell Tandem. System has reflection symmetry.
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