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Abstract

We present an alternative approach to statistical analysis of an intermittent ideal
MHD fluid in two dimensions, based on the hydrodynamical discrete vortex model ap-
plied to the Elsasser variables. The model contains negative temperature states which

predict the formation of magnetic islands, but also includes a natural limit under

which the equilibrium states revert to the familiar twin-vortex states predicted by hy-

drodynamical turbulence theories. Numerical dynamical calculations yield equilibrium

spectra in agreement with the theoretical predictions.




Given a discrete representation of the continuous equations for an inviscid fluid, a statis-
tical theory can be constructed, and, even though such systems are not in thermodynamic
equilibrium at the molecular level, one can expecf real systems to tend towards the statisti-
cally favored states during time scales for which the model is valid. For numerical simulation,
of course, some discretization of the continuous system is also necessary.

Two methods of discretizing hydrodynamical turbulence have been employed: a decom-
position of field variables into Fourier modes, and a representation of the fluid as a collection
of discrete vortices. A statistical Fourier analysis for two-dimensional magnetohydrodynam-
ics (MHD) has already been undertaken [1]. In this letter, we show that a point-vortex
discretization like that of hydrodynamics (or the equivalent guiding-center plasma [2]) is
also possible for 2-D MHD, and we give results based on statistical theory as well as direct
numerical simulation of the vortex system. |

Why is such an approach worth taking? It has been asserted [3] that different ap-
proaches to discretization of functional integrations cannot in general be expected to yield
equivalent results. Indeed, in the hydrodynamical studies, the two different discretization
approaches, while both making similar qualitative predictions about a cascade of energy to
low wave-numbers, do not yield the same results [4]. In a neutral fluid, it is known that
small dissipation causes the fluid to form intermediate-scale vorticity distributions, some-
times called coherent structures [5]. Some statistical theories of neutral fluids are emerging
which account for these structures, which dominate the non-linear evolution [6, 7]. Mean-
while, a great amount of literature has been written on the dynamics of point vortices in 2-D
fluids (Refs. [8, 9, 10, 11, 12] and many others), and such models have been used to predict
end-states of the flow [13], and the fluid’s dynamics evolution towards that state [14]. These
successes are encouraging and make the prospect of analogous phenomena in 2-D MHD ex-
citing. Computationally, discrete-vortex models can dualitatively reproduce the behavior

of the primitive fluid equations at a lower cost than a spectral or grid point code [15]. In



addition, there is the possibility of modeling more general large-scale filamentary structures
[16, 17]. Taking an analogous approach to MHD simulations could lead to similarly efficient
numerical models of magnetic turbulence.

There is mounting observational evidence of intermittent plasma structures occurring in
high-# astrophysical plasmas [18]. In a high-8 plasma, in which the fluid pressure domi-
nates the magnetic pressure, it seems reasonable to expect that the emergence of coherent
structures in both vorticity and current is a natural phenomenon. Because laboratory fu-
sion plasmas are run with very low B, numerical simulations give the best opportunity to
search for high-# intermittency under controlled conditions. Recent high-resolution MHD
simulations have in fact displayed strongly intermittent states in 2-D plasmas [19], which
adds to our confidence that a treatment of plasma turbulence based on coherent structures
will prove to be appropriate.

Long ago, Elsasser [20] pointed out that the basic equations of ideal MHD can be written

in the form
ou
E—-I—(ID'V)U:_VUVU':'U"'B
?—12+(u-V)w:—V77;w=v—B
ot
V-u:V-w:O,;n:%—i—Bz. (1)

Velocities are measured in units of an arbitrary constant vg, and the magnetic field is mea-

sured in units of By = /47 pvg.

Let us also define functions §2 and A by
' =Vxu;u=VxA"
NV =Vxw;w=VxXAY. (2)

We will either use a general species superscript to indicate u or w or omit any superscript
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to generically indicate both possibilities.

In a neutral fluid, the vorticity is conservatively advected through the fluid. We seek an

analogous result for our ’s. Defining the total advective derivative operators
D'V =Vx(uxV),D"V =Vx(wxV), (3)
one finds that the curl of the momentum equation becomes
DY + DY =0, | (4)
while the induction equation may be written
DYt -D*RY =8, (5)
in which there is a source term
S =22Yx 2% 4+ 2[2% Vu — 2* Vw] + Viiuxw) — (Vu)xw — ux(Viw). (6)

In two dimensions, 2 = Q2 and A = A%, and most of the terms in S vanish identically.

What remains can be written
S =S5z =[0;A",0;A") 2, (N
where [- - -] indicates the Poisson bracket in two dimensions.

Let our plasma be highly intermittent in its spatial distribution, consisting of a number

of v and w filaments with positions {@;} and intensities {e;}. The {¥’s then take the form
Q=> oz —x) . (8)

The variables {z;} and {c;} fully determine the fields u, w, and S through eqs.(8), (2), and
(7). Equations(4) and (5) are solved by the motion of the filaments if

dey _odad o
di = w(z}), It = S(x}) ,

dz? w da}"_ w

= u(el), TE = —S(a?) (9)
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The induction of current represented by the source term is manifested by a simultaneous
increase in the strength of u-filaments and a decrease in the strength of w-filaments. The fact
that v and w filaments are not necessarily coincident and that filaments are not guaranteed
to be present wherever S is non-zero makes this discretization approximate, but acceptable
for large number densities of filaments.

Of importance in Eq. (5) is the fact that S contains no derivatives of £2, whereas D {2
contains first-order derivatives of 2 in both space and time. Thus, if we are interested in
tracking the motion of filaments, and we assume that in the vicinity of a filament, 2 is much

more sharply peaked than u or w, we may write

__ IVul/lw
= V0 /10]

<1, (10)
and note that S is smaller by a factor € than the convective terms D§2. This amounts to
stating that the filaments should change strength only slowly compared to their advective
motion. In this letter, we neglect S, so that o remains constant, leaving a more general
treatment, including the three-dimensional case, for a later paper.

Let us now suppose we have N total filaments, N, of type u and N, of type w, in which
the u’s have strength +a, and w’s +a,, (all the same for each species). This system of
filaments is Hamiltonian with canonical variables (z;,|cs|y;). The (z;,y;) are the normal
Cartesian coordinates, taken to be periodic, of the ith filament. The Hamiltonian is

H(zy,...,zn) =Y, > aia;G(mi|m;), (11)

€U JEW
where G is the Green’s function for Poisson’s equation, VG = —§(z — '), with appropriate
) 7 .

boundary conditions. In an infinite domain, G(z|z’) « In |z — 2'|. Note also that
/u-w:/A“Q“’:/A“’Q“:H. (12)

The Hamiltonian expresses the quantity [ v? — B?. There is no self-energy contribution

to H because a lone filament has v and B fields of equal magnitude. H plays the role of an
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interaction energy; the sign of the magnetic field energy is reversed because we are neglecting
the effects of induction along the convecting filaments. It is perhaps more convenient, how-
ever, to view H as a parameter that measures whether the fluid is kinetically or magnetically
dominated. Unlike the usual plasma 3, though, which measures the ratio of magnetic energy
to microscopic, thermal energy, H measures the difference between the magnetic energy and
the kinetic energy due to macroscopic fluid motion. There is a natural boundary at H = 0.
The sign of H can be changed by reversing the signs of the filament strengths of either of
the two species. This transformation simply switches the fields v and B.

One may determine the equilibrium properties of this system through a calculation like
that performed for a guiding-center plasma in Ref. [21]. Taking the micro-canonical ensemble,
in which the value of the Hamiltonian is constrained to a constant value E, the structure

function,

o(E,V,N) = [ §(E - H)[] da:, (13)

may be explicitly calculated by using the integral representation of the delta function and by
invoking a random-phase approximation [22], in which the central limit theorem is applied
to obtain the Jacobian for the change of variables from the filament positions @; to the
Fourier-transformed filament densities, p, and p,, (with error O(N—1)).

The result of this calculation gives

~ 1 - 22 -1
&= [dee"F ] [1+ ﬁ&] , (14)

Nz, Ny

in terms of dimensionless quantities

~ VN, Nyo 0, = E ;
@—@—‘/N—"";E——“”—mua (15)

. . . 2 .
where £? = n2 + n? is the dimensionless wavenumber, and k* = 47" ?. The product in the
integrand runs over all ng,n, > 0 except n, = n, = 0, and the integral can be reduced

to an infinite sum over residues, which occur along the imaginary axis at z = +imk. One
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immediately sees that &, unlike the hydrodynamical structure function, is symmetric with
respect to E, and that it differs from a Gaussian distribution in that it asymptotically
approaches an exponential function e~ mrminlBl ag |E| — 4oo. Figure 1 shows $, from a
numerical evaluation of Eq. (14), along with a Gaussian for comparison, both normalized
to 1. Also shown are histogram data of E from an ensemble of vortex systems with fixed
filament intensities and random filament positions. The small number of events in the tails of
the distribution of E causes some scatter in the data, but the data conforms to the calculated
structure function in the center and clearly deviates from a Gaussian in the tail. Tokamak
experiments have measured deviations from Gaussian probability distributions, which has
been taken as an indicator of intermittency in the turbulent edge plasma [23].

One may also calculate the filament density spéctra

(lou(m, ) ) _ (low(ng m)I?)
N,ao2 Nyo2 .

1 ]. . E" z2 -1 22 -1
=vi5,.5) 1 1 16
and the cross-correlation spectrum

<p'u,( a:7 y)pw( ) ;)>
/N, N, a0, V?

1 4 GioE 22 - 2 17"
" ond Z7r/c [1 * m2(n? + %2)2} ngy [1 t 7r2/~c4] ' (17)

Spectra of (|p,|?) and (]pw|?) are even in E, while (pyp}) is odd in E. Both have a
pronounced lowest-wavenumber component when [E| > 1. Ensemble-averaged spectra of
vorticity, w = 2-V xv, current, J = 2-V X B, and cross-helicity, v-B, can be calculated by

the following relations:




(v-B) = 5% ((Ip (%) = (lpu(m)?)) - (18)

The spectrum of w? always flattens out at large «, and when E is large, there is a dom-
inance of vorticity in the longest wavelength mode, such that the longest-wavelength mode
grows proportional to E as B — co. As E — —o0, the lowest-wavelength mode approaches
a constant value ~ 0.26. As mentioned before, changing the sign of E interchanges the
spectra of J? and w?, so a concentration of magnetic energy at long wavelengths is expected
for £ < —1.

Figure 2 shows the spectra of w? and J2, for E = 2. The solid and dashed lines are
calculated from Eq. (16) and (17). The data points are time-averages from a dynamical
simulation of eqs. 8 and 9 using a two-dimensional guiding-center particle-in-cell algorithm
[24], modified to account for two species of filaments. The target energy is reached through
a random Monty-Carlo procedure, at which point the configuration is saved to become
the initial condition of the dynamic simulation. Note that there is some evidence that the
trajectories of neutral-fluid vortices are not entirely ergodic [25], although the non-ergodicity
appears to be weak [26]. In our case, time-averaged quantities seem to correspond well with
the micro-canonical ensemble averages.

The lowest wavenumber mode is dominant for the kinetic energy and suppressed for the
magnetic energy. At small x, discrepancies are due to random sampling error, but at large
&, there is a small bias. This could be due to the fact that the code uses a finite size for the
particles (while the theory assumes zero diameter), or perhaps represents the failings of the
random-phase approximation at large «. Figure 3 shows the values of the lowest wavenumber
modes, w?(kmin) and J2(kmin), for positive values of £. The asymptotic behaviors (w?) o< E
and (J?) — const. are clearly demonstrated.

We wish to draw a comparison of these results with those obtained in a series of papers

exploring the statistics of two-dimensional MHD turbulence by Fyfe, Joyce, and Montgomery



[1]. Their analysis used a canonical ensemble based on Fourier modes as phase variables, in
the manner of Kraichnan’s hydrodynamical turbulence theory [4], in the regime (v-B) = 0,
which is obtained in our model when N,a2 = N,o?. Their model predicted the formation of
magnetic islands, with the necessary condition < [v?— Bz> < 0, the same as our condition
that £ < 0.

The velocity spectra, lloWever, differ significantly. Their analysis always predicts a flat
kinetic energy spectrum, even when the magnetic field is identically zero. The reason is that
the Fourier statistics are based on the MHD invariants, but as the magnetic field shrinks
to zero, the invariants of the system change. The total energy becomes the kinetic energy
normally, but the mean squared magnetic potential goes to zero. The enstrophy, meanwhile,
changes at a rate proportional to the magnetic field strength. As the magnetic energy
vanishes, the enstrophy should be included as an invariant in the calculations. The omission
of the enstrophy as an invariant in the analysis dramatically alters the spectrum. The
Elsasser variables approach the neutral limit more easily, because none of the field variables
vanish for vanishing magnetic field. Instead, the u and w fields approach each other and
become identical in the zero magnetic field limit.

Careful account must be made of the invariants of the system’s evolution, as failing to
account for one of the constants of the motion can completely alter the form of the expected
states. In an ideal fluid, there are an infinite number of motion invariants, but most do
not survive discrete truncation of the system. In two-dimensional MHD, three invariants
which do survive truncation are the total energy, cross-helicity, and mean squared magnetic
potential, although no proofs exist which guarantee that these are the only three. Additional
headaches arise if one wishes to study MHD in the low magnetic-field limit, in which the
magnetic invariants approach zero identically, but the enstrophy begins to change slowly
enough that it should also be counted as an invariant. Throughout, of course, careful at-

tention must be paid to time scales. If one waits long enough, any non-zero magnetic field
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will destroy the constancy of the enstrophy, while at the same time, viscous and ohmic dis-
sipation whittle away at the inviscid invariants. Eventually, we expect that the effects of

neglecting the sources in equation Eq. (5) will also make themselves felt.

This work was supported by the National Science Foundation and the U.S. Department
of Energy contract #DE-FG05-80ET-53088.
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Figure Captions
Fig. 1

Structure function @, showing phase-space probability density as a function of
the energy E. Solid line is computed from Eq. (14), and data points are measured
histogram frequencies from a set of random configurations. The dotted line is a

normalized Gaussian chosen to match at £ = 0, shown for comparison.

Fig. 2

(J?) and (w?) spectra for £ = 2. Data points are time-averaged from a dynamical
simulation. Solid and dashed lines are spectra predicted from the micro-canonical

ensemble.
Fig. 3

Values of the lowest-wavenumber mode vs. E from dynamical runs and theoret-

ical predictions.
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