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Abstract

In the low order isotropic k space introduced by Kells and Orszag for
the two dimensional Euler equation, we study the evolution of the
ifluctuations arising from the electron drift wave instability. The two
dimensional drift wave model contains the E x B and polarization drift
nonlinearities in the hydrodynamic¢ ions and linear, dissipative electrons.
The strength of the electron dissipation is shown to determine the spectral

-width and the -level of the fluctuations:-- TR
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I. Introduction

Low order systems as models for turbulence have received considerable
attention in recent years.l"9 A low order system of particular interest in
plasma physics has been a model for the interaction of an unstable mode with
two damped modes.”~9 For the decay of an unstable mode into a damped
subharmonic the system is three-dimensional, and extensive studiess_7 have
established the existence of turbulent-like regimes of behavior due to the
presence of a strange attractor. In studying the three-wave interaction for
drift waves two important generalizations are necessary. First the triplet
interactions require a four dimensional system since the decay into a
subharmonic is forbidden, and secondly the mode coupling coefficients are
intrinsically complex when dissipation is introduced self-consistently into
the dynamical equation.8’9’lo The dissipative drift wave triplet shows
chaotic behavior in typical interaction triangles, with comparable growth
and damping rates, in contrast to the subharmonic decay problem which

requires a large ratio (~20) of damping-to-growth for the onset of

~stochasticity. The stochastic regime of the four dimensional drift wave

triplet is characterized by random phases and amplitﬁdes for waves with
comparable frequencies and growth rates. Typically, the frequency spectra
of all three modes are broad; the amplitudes of the electrostatic
fluctuations in the saturated state ére unrealistically high (§ ~ 50 being
typical for a randomly chosen drift wave triplet).

Inasmuch as the three drift wave interaction problem is a paradigm for
drift wave turbulence, it becomes desirable to test its conclusions for

cases with a larger number of modes. To this end, we investigate here the

=—=—=—= — nature—of-drift—wave—turbulence—as—modeled—bythe—interaection—ofthe—lowest

number of modes greater than three such that the modes comprise an
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isotropically distributed set in k space. In this approach we follow the

4 who investigate the lowest order isotropically

work of Kells and Orszag
truncated two dimensional k spaces for the Euler equation describing
inviscid, incompressible flow in neutral fluids. They introduce four
truncated k space models of which the general lowest order model, requires
the evolution of twenty modes (twenty-first order differential equations).

In our study of the drift wave instability in the low order k space we
consider the frequency and wavenumber spectrum of the turbulence. Having
found in the triplet interaction a condition on the linear growth and
damping such that saturation of the instability occurs, we seek such a
condition in the interaction of twenty modes.

We show that the system parameters can be varied to range from
frequency spectra peaked near the linear frequencies to very broad frequency
spectra. We wish to consider the variation of the spectral width as a
function of the mean amplitude of the saturated turbulence to compare with
the predictions of weak turbulence theory, renmormalized turbulence theory
and with the electromagnetic scattering experiments. We show that the
strength of the dissipation in the system is instrumental in determining the

frequency width versus amplitude dependence. Finally, we make a few

observations regarding the anisotropy of the k spectrum.

IT. The Drift Wave Model and the Truncated k Space
We use a two fluid description of the electron drift waves containing
the E x B convective nonlinearity in the hydrodynamic ions and using linear,

dissipative electrons. The dynamical equation for the evolution of the

--=————————electrostatic—potential-¢(xyt)—is—obtained—fromthe-statement—of
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quasineutrality. In the limit of low ion pressure the ion density evolution
is governed by the continuity equation

Bni

with the incompressible E x B convective velocity

ve = (=) bx 7 (2)

v o= v* + y™ = -pz[jL + Vg * V]Vl¢ (3)

where the electrostatic potential ¢ is measured in units of the electron
temperature Te/e and the ion inertial scale length is given by
o = c(myz,) " /eB. . S

The electron dynamics is linear and taken from the k space dependence
of the linear Vlasov response to the drift wave. For a fixed parallel

wavenumber determined by the geometry, such as lk"| = 1/qR for a tokamak,

the two dimensional electron density response is given approximately by

ng(x,t) = ng(X)[1 + ¢(x,t) + £3(x,t)] (4)

where the anti-hermitian operator £2 gives the dissipation responsible for

U VU

the—drift—wave—instabilitiy.—For-the—collisionless—electron-wave—resonance

we have
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(10 = 1 8gky(if - 2n,) (5)

from the Fourier transform of £2 where

L 1/2

' m, 1/2
50 = (@Y7 Oyt

! Ty Txy
The constant §; determines the strength of dissipation in the model and is
of order unity for strong instability.

In writing Eq. (5) we define ral = -d ¥ n.(x) and
Ne = ddn Te(x)/dxﬂw ne(x) and introduce the dimensionless space-time
variables in units of p and r,/cg where cg = (Te/mi)l 2 is the ion-acoustic
" speed. We now rescale the dimensionless potential by ¢ 55:? (p/r )9 to

obtain unit strength for the nonlinear coupling. TFor example, V o ¥p =

—Vf dph(x,t) - b x Vo o VVf¢ in these dimensionless variables. The form of

-~the -operator - £a(§) in other-regimes-is-given -in -Ref: 8, Appendix A where a---

more detailed derivation of the mode coupling equations may also be found.

We eliminate the plasma density through quasineutrality to obtain the

nonlinear partial differential equationlo’ll governing the electrostatic
potential
3¢ (x,y,t) 3¢
1+ £ IR = - - 6
( ) —g= 3y 6, L] (6)

where £ = —Vf + £2 and
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s 5g oh 9h 9g
h] =b « Vg x vh =280 _9h0g
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We write the convective nonlinearity in terms of the Poisson brackets [g,h]
to emphasize the conservation properties of the mode coupling:
f[g,h]d§ = fg[g,h]d§ = fh[g,h]dg = 0. The two dimensional nénlinear partial
differential Eq. (6) for ¢(x,t) and Eq. (4) for n,(x,t) describe the
evolution of the plasma fluctuations in the presence of frozen density and
temperature gradients. The mean value <> of the fluctuations remains zero
- throughout time. The fluctuations are described by the root-mean—~square
level § = <¢2>1/2 and their spectral components |¢k(w)|.

We introduce the Galerkin approximation of ¢(x,y,t) through the

truncated Fourier series

$(x,t) = ) ¢p(t)exp(ikex) (7)
_ |kIkK T

where k = (kx,ky). We take kg and k, to be integral multiples of ky and

y

define K as the wavenumber cutoff. Transforming Eq. (6) to a set of

equations for ¢ (t) we obtain

doy
ko 1 ~
() 3 = ~ikyt * 7 I (k1 kg o D)0ty = xig o on, (O
kitko=k
ki1, ko I<K

where (£¢)k = Xxbyi is the complex susceptibility given by

= 1,2 . 2 1
XB = ki - 160ky(k‘l ) T]e) (9)

SO SO0
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which determines the linear frequency dispersion and the dissipation.

In the dissipationless limit and with no adiabataic electron shielding,
the function y; becomes 1 + x) » gf, and the mode coupling Eq. (8) reduces
to the two dim;nsional Euler ;quation in the form studied by Kells and
Ofszag.4 In that work four k space truncation models (A,B,C,D) are
investigated as alternative low order representation of the partial
differential equation. In the present work we adopt their model C where
K = (5)1/2,,

This truncation model yields twenty modes (E = 0 excluded) and
constitutes the smallest nondegenerate isotropically distributed k space
truncation according to Kells and Orszag. Smaller values of K/ko yield a
collection of modes whose interactions break up into that of isolated
triplets. The condition of reality of the electrostatic potential ¢ (x,y,t)
requires ¢ (t) = ¢§(t) so that ten complex modes in the one half plane need
to be advanced in ;ime. Figure 1 shows the truncated k space with the
labels we assign to each mode. The system is advanced in time by
integrating twenty real equations for y,, _; = Re[¢,(t)] and
Yoq = Im[¢g(t)].

A related system of drift wave mode coupling equations has been

considered recently by Waltz.l? His studies include a variable number of k

space modes and alternative forms of the linear growth and damping formulas.
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ITI. Properties of the Truncated System
Several important physical properties of the system of equations (8)

and (9) are now discussed.

A. Linear Modes
The model describes the linear electron drift wave instability with the

frequency dispersion given by

o) = —I— (10a)

|

|

1

|

!

K |
1+ kf ;
|

|

|

and the growth and damping of the linear waves given by

1 B

S gk5(kf - 5 ne) |
. (10b)

(1 +x$)2 |

y(k) =

[The exact complex linear frequency is ky/(l + kf + £a(§))]. For k% < é-ne
< K2 there are both growing and damped modes to model the physical systems

of interest.

The energy density of the drift wave is due to the electrostatic energy

=]

—eGne¢ in the adiabatic electrons and the kinetic energy miv% in the iomn

2

drifts. 1In these units the energy for each mode is Wk) = %-(l+kf)l¢(§)l2,
and the total energy is
i
W(t) s'%. y [1+k2]|¢k(t)|2. (11) §

Ik <K
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The measure of the average vorticity V x v in the flow is given by the

enstrophy. We define the potential enstrophy U by °

u(e) =L 7 k(1) e ()12 . (12)
2 KI<K -

P

For reference we note that the total physical energy density in the waves is

given by (p/rn)zneTe W(t).

B. Conservation Properties of E x B Coupling
The nonlinearity of the system arises from the E x B convection of the

plasma density and the ion velocity field vp. The convection mixes the

plasma and in the process transfers energy between modes k; + ko = k without
dissipation. In Eq. (8) the conservation properties follow from z Z
| k kyt+ko=k

(sz - Xkl) =0and) ) Xk(xkz - Xkl) = 0, which are satisfied for each
- - k kytky” -

triplet kl + ko = k in the interaction.

N

In the absence of dissipation [£2] 0 both the energy W.and -the-

S0
potential enstrophy are exact constants of the motion. If we arbitrarily
set Y = 0 but retain Im Xk # O the energy W is constant while the enstrophy
undergoes fluctuations.

In the geﬁéral case of interest to drift wave turbulence both the
energy and the enstrophy fluctuate in time. Figure 2 shows a typical
evolution of the energy and enstrophy for the lineafly unstable system

(ng =1 and kg = 0.33). The initial state is randomly phased with

]¢kl = 0-1.

ey
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C. Phase Space Contraction
In the rectangular Cartesian phase space composed of the real
Yog-1 = Re[¢py(t)] and imaginary yyy = Im[p(t)] parts of the field variables
$4(t), the rate of change of a volume V of systems is given by the
divergence of the velocity vector dy;/dt. For the present system of

equations the rate of change of phase space volume is given by

B (D =2) vz, (13)

v 5
1 9931

t

<]+

It B~ 80

i

The phase space flow is volume contracting when the total dissipation v, is
negative.

The question of the time-asymptotic boundedness of the solutions may be
addressed by considering the stability, or perhaps more precisely the local
Lyapunov characteristic exponents, about an arbitrary point in phase space.
Local stability to aAperturbation Syjexp(At) is determined from the roots of
the twentieth order secular equation of the eigenvalue problem for the
matrix (Mij) of linearized equations. The problem of obtaining necessaryzo
and sufficient conditions from the coefficients of the secular equation E

n=0
a. A" = 0 is conceptually straightforward; however, impractical for actual

n
evaluation. We observe, however, that the coefficients Mjk of the

linearized equations 6§j = Mjkayk are real so that the eigenvalues A are

either real or complex conjugate pairs. We also may show that due to Z

e e — e —

k
[w(k) + iy(k)] = 2y,, that the trace of matrix is -
Tr(M) = 2y, . (14)
20
Since the secular equation Z ankn = 0 has asg = 1 and ajg = ~Tr(M) = -2y

0

N (SO
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independent of the position in phase space, it follows that a necessary
condition for stability is that the system be volume contracting.

Numerical simulations for various values of Y¢ indicate that the
condition Yy < 0 is close to being a sufficient condition for stability as
well. The evidence for this important conclusion is summarized in Fig. 3
which shows the mean saturation amplitude for the largest amplitude mode in
the system as a function of Y¢+ We note that there is a critical value Y:,
with Yt ~ =0.1, below which (v, < Yi) the amplitudes are found to saturate
at successively lower levels as v, decreases (taking on larger negative
-values) and above which no saturation is observed. For Ye 2 yz we observe
exponential growth of W(t). Thus, we conclude from a practical point of
view that Ye < yi < 0 is a necessary and sufficient condition for

saturation.

D. Symmetries in k Space
The mode coupling equation possesses a symmetry in k -+ ~k_.
Considering Eqs. (8) and (9) for k. + -k, we see that for each solutiomn

¢(kx,ky) there is a solution with the properties
¢(_kx’ky) = _¢(kx’ky] (15)

and

It

0 (s —ly) = =5 (ky, k) ~ (16)

where property (16) follows from property (15) and the reality condition

¢y = ¢§. Initial data satisfying conditions (15) and (16) at t = t; remain

~

symmetric for all t > ty. This property was used as a check on the
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simulation code, as well as the constancy of W and U in the 60 = 0 limit.
Physically, the symmetry guarantees solutions of the form sin(kxx)cos(kyy -
wkt), i.e. separable solutions in x and y representing standing waves in the
x direction. A restricted set of mode simulations with standing waves as
the basis function in the Garlekin expansion is used in the hydrodynamic
studies where boundary conditions Ve (0,y,t) = vu(L,y,t) = 0 are invoked. In
contrast we consider systems that are doubly periodic in x and y (without

symmetry).

IV. Simulations

A variety of numerical simulatiqns are performed to obtain information
on the character of the frequency spectrum, the wavenumber spectrum and the
saturation amplitudes. Figure 2 shows the time history of the energy W(t)
and the enstrophy U(t) for a typical simulation with Ne = 1.0 and 64 = 5.0.
The energy fluctuates about the mean value W = 74 with AW = 30. The
root-mean-square potential fluctuation in the saturated state is

1/2
&2 /

= 2.7 in units of (p/rn](Te/e).

The simulations show that both the qualitative and quantitative
behavior of the system'is sensitive to the amount of dissipation and energy
absorption in the system. The ratio of instability due to free energy in
the plasma density gradient to the wave absorption may be varied in the
simulations by the parameter Ng. We note from Eq. (10b) for Y(E) that
decreasing N, increases the growth'rate of the unstable modes, and decreases
the damping of stable modes. A convenient measure of the ratio of wave

emission to wave absorption is y,, the total growth rate. A dependence of

— - - the system-on—this ratio—is_ewvident in Fig. 3. where increasing the

absorption as measured by Y, makes the amplitude of the dominant mode
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decrease from 16 to a few tenéhs as Y, varies from -0.12 to ~0.45. On this
basis we identify weakly and strongly unstable systems. Qualitatively, the
system varies with vy, from a state where the amplitudes fail to saturate,
growing exﬁonentially, for small Y¢ to a state of small amplitude coherent
oscillations about a fixed point attractor for Yi € -0.4.

Figure 4 shows the time signals of (a) the fastest growing linear mode
¢7(t) which is the principal source of wave energy and (b) the dominant mode
¢9(t) in the fluctuating steady state for a weakly unstable case. In
Fig. 4a we see the exponential growth of the signal at the rate of yy
followed by a chaotic saturated amplitude with a root-mean—square amplitude
of $7 = 4.53. 1In Fig. 4b the signal remains small until driven up by the
coupling to ¢7 at t = 130, whereupon it quickly reaches a steady state with
$9 = 5.37. The evolution of the potential shown here is qualitatively
similar to that of the three mode interactions.8 We note, however, that the
mean amplitudes at saturation are considerably lower in the twenty mode
system than for a typical three mode interaction.

- A unique stationary wavenumber spectrum is established in this system
in the saturated state. The time averaged spectrum W(E) is shown in Fig. 5
for a given set of initial data. We find that this same spectrum is
obtained for different initial data where we choose ¢, (0) = 10" exp(iuk)
with o randomly distributed and =2 < n < 2. The stability of the time
averaged state is also tested by making large variations y + y + Ay at
arbitrary times in the evolution. The randomly phased initial state gggg
EEE have the symmetries (15) and (16) but evolves into the saturated energy

spectrum which is approximately symmetric in kx > =ky+ The symmetry is due

to—the—dependence—of—the—growth—rate—and—susceptibility—on k2

Xo
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Figure 5 shows that the energy spectrum is approximately of the form
W(k%,ky) and peaks at the large k, mode ¢g (with yg = +0.01) rather than the
fastest linearly growing mode ¢7 (with vy = +0.04). A similar behavior is
observed in a different drift wave simulation.l3 The rotation of the peak of
the energy spectrum from the fastest growing linear mode to the large kX
mode is produced by the Kk; x ko o b convection coupling which is strongest
for the angle of /2 between k; and k.

To investigate further the isotropizing effect of the 51 X ko o ﬁ
coupling process we restart the simulation using the final anisotropic
spectrum of Fig. 5 as new initial data. In the restart we eliminate the
anisotropic driving force by setting Y = 0 for all modes. The initially
anisotropic spectrum relaxes to an app;oximately isotropic spectrum with the
same energy W = 40 after At = 2000, as shown in Fig. 6.

Figures 7 and 8 show the frequency spectra of both the fastest growing
linear mode $7 and the dominant mode ¢ g for weakly unstable and strongly
unstable cases, respectively. In the weakly unstable case, the spectra have
sharply defined peaks which lie slightly above the linear frequency. The
linear frequencies of ¢ and ¢g are respectively w = .43 and .22 while the
spectra peak at .50 and .28. In the strongly unstable case the spectra also
appear to peak in the vicinity of the linear frequency; however, the peaks
are broadly defined.

The frequency spectra are quantitatively described by a nonlinear
regression analysis ninimizing the variance about an assumed parametrization
of the spectrum with a peak at wknz,'a width vy, and area $k or I(k).

Parametrizations with Lorentzian and Gaussian fits to ¢ (w) and l¢k(w)lz

No—clear—picture—of-a—best—parametrization—has—emerged

from the comparisons. Plasma turbulence theory is often formulated in terms
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of |€n£(§,w)|21k(w) = Sp(w) with the expansion of the nonlinear dielectric
function sﬁz(w) about w”z(k) Neglecting the w dependence of the source Sy (w)
yields an Lorentzian approximation to |¢k(w)|2. Both parametrizations are
adequate for fiting the central peaked region. From the fit in the wings
however, a decided preference is evident. For nonzero dissipation (60 in
excess of a few tenths) the Lorentzian is a better fit. In the absence of
dissipation in the mode coupling (60 = 0) the Gaussian approximation is
preferred. Both fits however, give the same numerical value for the

linewidth v, and the peak value wﬁz to within a standard deviation. Figure

9 summarizes the dependence of the linewidth on the degree of instability by

plotting the linewidth Vi as a function of the saturation amplitude for the
dominant mode. We noté that turtulence theory predicts that vy « <¢2> for
small <¢2> and vy « <¢2>l/2 for large <¢2>. The predictions are borne out
by the data shown in Fig. 9. Note that the transition point is given
approximately by Vi 2 wj consistent with turbulence theory. The
coefficients of proportionality for the two regimes are given by the dashed
curves in Fig. 9.

The spectra linewidth v, depends.on the dissipation. We recall that
the dissipation introduced by the anti-hermitian operator in Eq. (5) scales
with the parameter §;. TFor §3 = O there is no dissipation, the energy and
enstrophy are conserved, and the system becomes the drift wave analog of
Kells and Orszag’s model C. In this limit we also observe equipartition of
the wave energy density W(E) = Wy = constant, a state analyzed in detail
with the microcanonical and canonical ensemble by Kells and Orszag. At
small to moderate values of 60 the frequency spectra are well approximated

by the Lorentzian.
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The observed frequency width v of the mode ¢ (t) can be interpreted
physically in terms of the random Doppler shifts produced by the turbulent
flow vp(x,t). Recélling that the linear mode frequency wj applies in the
rest frame of the ions, the laboratory frame frequency is Wy + k + vp due to
ion velocity vp. For slowly varying vg(x,t) the laboratory frequency has a
low frequency modulation. For high frequency stochastic vgp there is
dispersion of the laboratory frequency given by <(k . YE)2> leading to the

turbulent Doppler shift formula

vpk) = [1(k = k& ﬁ)zwkl(t)lz]l ’
k1 i

In Fig. 9 we show the evaluation of thieroppler frequencyrshift compared
with the frequency width measured from the Lorentzian parametrization of the
spectrum. A small coefficient of 0.15 is required to reduce vp(k) to the
observed line width. However, the physical model for vD(g) applies most
appropriately to IEII > |kl which cannot be adequately tested with the
present limited number of modes.

Finally, we discuss the characteristic of the energy fluctuations W(t)
as shown in Fig. 2. The energy fluctuations occur on a time scale
controlled by the dissipative processes and is long compared to the
oscillation period of the individual modal energies. Since each nonlinear
triplet interaction conserves energy, a rapid shuffling of energy between
the modes with large oscillations of W(E) occurs with no change in the total
wave energy. The total energy builds up when transfer channels to the

damped modes are temporarily saturated. As a result we see exponential

growth at a fraction of the linear growth rate for periods of order

lOO-ZOO[rn/cS] in Fig. 2. Once the total energy exceeds a certain high
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level, however, the nonlinear transfer becomes sufficiently strong to force
a high power transfer into damped modes. Figure 2 shows the rapid drops of
W+ W/5 in periods of order 20—50[rn/cs]. The succession of build-ups and
falls in the energy is a relaxation oscillation enabling the competing modes
to efficiently share the fixed input power. Increasing the input power
increases the frequency of the relaxation oscillations. Increasing the

12,13

number of modes in the system, which provides more channels for the

power transfer, decreases the intensity of the energy fluctuations.

V. Conclusion

We preéent two dimensional simulations in a low order k space for the
evolution of the fluctuations arising from the drift wave instability. We
use a hydrodynamic model for the ion dynamics and a linear dissipétive
electron response; the model combines the principal factors of the twé
nonlineatr models of Hofton10 and Hasegawall for the déscription of nonlinear
drift waves. The two dimensional nonlinear partial differential equation is
solved in the truncated k space introduced by Kells and Orszag in their
statistical analysis of wvarious low-order truncations of the two dimensional
inviscid Navier-Stokes equation. The isotropically truncated k space
requires the evolution of 16 triplet interactions in a 20 dimensional phase
space.

The simulations show a wide range of behavior, from broad band
turbulence to coherent oscillation with sharply defined frequencies. The
range of behavior appears to be most succinctly characterized by the value

of the total growth rate Yi = Zk Y+ We show that the condition Ye < 0 is

necessary for the local stability of an arbitrary point in the twenty

dimensional phase space. We give evidence for the condition Ye < 0 also

N N
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being approximately a necessary and sufficient condition for the time
asymptotic stability of the system. In practice for Y¢ < =0.1 the amplitude
of the dominant mode saturates with [¢] < 10 in units of (p/rn)(Te/e]. For
Y¢ < =0.5 the saturated amplitudes are much less than unity.

Due to the dissipation in the system the saturated state is a state
with fluctuations of the total system energy W about a mean value W. As the
dissipation vanishes the fluctuations of W vanish. The enstrophy that
measures the mean vorticity of the flow also fluctuates even for Y = 0 due
to the complex values of the mode coupling matrix elements. In co;parison
with the previous triplet studies, we find that the frequency spectra are
qualitatively similar whereas the amplitudes of the twenty mode simulations
are appreciably lower. We conclude that the randomly chosen triplet
interactions are useful paradigms for drift wave turbulence although they
are not capable of giving quantitative results for the turbulent processes.

For weakly unstable system parameters the turbulence safﬁrates with
% < 1. The frequency spectrum of ¢k(t) clearly shows peaks near the linear
frequencies-wk with a width that increase rapidly with §, approximately as v
« W (§)2.

For strongly unstable system parameters the turbulence saturates with
1 <% < 10. The frequency spectra are broad with v, >> wr+ The broad
frequency spectra are peaked at a low frequency w“lzk) < I which ranges from
10-507% higher than the linear frequency w(g). These features are shown in
Figs. 7-9. The width of the spectrum v varies approximately as
Vv o« W1/2 « §. The variation of the spectral width with § is interpreted
physically in terms of the turbulent Doppler shift model in which Vp

measures the dispersion of the linear mode frequency k, wj; due to the

turbulent flow vp(x,t).
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In the strong turbulence regime the mixing length estimate
ecb/Te ~ l/ern is a commonly invoked estimate for the saturation level. In
the dimensionless variables this critical mixing length turbulence level,
$M, interpreted in terms of the dominant kg, mode in the saturated spectrum
(ky = 2k gives §y= 1/k, = 1/2kg ~ 1.5 which compares with the observed
levels § = 2 to 20 for Ye =>—.44 to ~0.1. Alternatively, the fluctuation

level given by Hortonl0

also varies inversely with kg  as in the mixing
length theory and is proportional to 66/2 due to the driving term of the
turbulence. The simulations show that there is a dependence of § on k. and
60 which is more nearly consistent with the dissipative estimate rather than
the simple mixing length estimate.

In a future investigation we will report on work in progress using the
random phase approximation to compute the averaged values of the spectral
energies. Due to the relatively small number of k modes in the present
model, the results for the distribution of energy in k space are principally
qualitative. The model shows that the broad frequency spectra are not
related to the number of k modes in the system. As suggested by the
prototype of a single triplet interaction chosen randomly from a continuous
E space, the broad frequency spectrum is directly related to the presence of
dissipation in the system. The anisotropy of the wavenumber spectrum is
shown to result from the driving mechanism Yy which is peaked along k, = 0
competing with the isotropizing effect of the convective mode coupling
process. In the dissipative system the time averaged wavenumber spectrum
W(k) is a unique structure, stable to large perturbations which arises from

a large basin of attraction in the 20 dimensional phase space.




-20-~
Acknowledgments
The authors wish to acknowledge the efficient work of Mr. Lee Leonard
in performing the numerical simulations. The authors are grateful to
Drs. M. N. Rosenbluth and D. Biskamp for useful discussions.
This work was supported by the Department of Energy Contract Number DE

FGO5-80ET-53088.




‘10.

11.

12,

13.

-21-

REFERENCES

E.N. Lorenz, J. Atmos. Sci. 20, 130(1963).

D. Ruelle and F. Takens, Comm. Math. Phys. 20, i67(197l).
J.B. McLaughlin and P.C. Martin, Phys. Rev. Al2, 186(1975).
L.C. Rells and S.A. Orszag, Phys. Fluids 21, 162(1978).

S. Ya. Vyshkind and M.I. Rabinovich, Zh. Eksp. Theor. Fiz._Zl, 557(1976)
[Sov. Phys. -JETP.ﬁﬁ, 292(1976) 1.

J.M. Wersinger, J.M. Finn, and E. Ott, Phys. Fluids g§) 1142(1980).
P.K.C. Wang and K. Masui, Phys. Lett. 81A, 97(1981).
P. Terry and W. Horton, Phys. Fluids 25, 491(1982).

M.N. Bussac, "The Nonlinear Three Wave System, Strange Attractors and

Asymptotic Solutions' preprint (1982) and Physica D, 236(1982).
W. Horton, Phys. Rev. Lett. 37, 1269(1976).
A. Hasegawa and K. Mima, Phys. Rev. Lett. 39, 205(1977).

R. E., Waltz, in Proceedings of the U. S. Japan Workshop on Drift Wave
Turbulence, Institute for Fusion Studies, IFS#53, 195 (1982).

D. Brock and W. Horton, Plasma Physics 24, 271(1982). 1982).




-

FIGURE CAPTIONS
The isotropically truncated wavenumber space of twenty modes.

Time evolution of the energy W(t) and enstrophy U(t) from an initial

state of randomly phased amplitudes with (¢l = 0.1,

Mean saturation amplitude of the fastest growing linear mode ¢7 and the

dominant mode ¢g as a function of Y., the sum of the growth rates.

Time evolution of the fastest growing linear mode ¢7 and the dominant

mode ¢g for a weakly unstable case (Y, = —.35).
Stationary wavenumber spectrum for weakly unstable case (Yt = ~.35).

Isotropic stationary spectrum obtained by switching off the linear

growth rates y; after At = 2000.

Frequency spectra [¢7(w)| and [pg(w)| of the fastest growing linear mode

and the dominant mode for a weakly unstable case (Yt = -,30).
Frequency spectra [$7(w)| for a strongly unstable case (y; = — .131).

Linewidth of the frequency spectrum as a function of the saturation

amplitude of mode ¢gq.
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