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Conventional linear stability analyses may fail for fluid systems with an in-
‘definite free energy functional. When such a system is linearly stable, it is
said to possess negative energy modes. Instability may then occur either via
dissipation of the negative energy modes, or nonlinearly via resonant wave-
wave coupling, which leads to ekplosive growth. In the dissipationless case, it
is conjectured that intrinsic chaotic behavior may allow initially non-resonant

systems to reach resonance by diffusion in phase space.

This is illustrated for a simple equiiibrium involving cold counter-
streaming ions. The system is described in the fluid approximation by a Hamil-
tonian functional and associated noncanonical Poisson bracket. By Fourier de-
composition and appropriate coo.rdina,te transformations, the Hamiltonian for

the perturbed energy is expressed in action-angle form. The normal modes

viii




correspond to Doppler-shifted ion-acoustic waves of positive and negative en-
ergy. Nonlinear coupling leads to decay instability via two-wave interactions,
which occur generically for long enough wavelengths. Three-wave interactions
which occur in isolated, but numerous, regions of parameter space can drive
either decay instability or explosive instability. When the resonance for explo-
sive growth is detuned, a stable region exists around the equilibrium point in

phase space, while explosive growth occurs outside of a separatrix.

These interactions may be descriBed exactly if only one resonance .
is considered, while multiple nonlinear terms make the Hamiltonian noninte-
grable. Simple Hamiltonians of two and three degrees of freedom are studied
numerically using symplectic intégra,tion algorithms, including an explicit al-
gorithm derived using Lie algebraic methods. Two-wave and three-wave de-
cay interactions lead to strongly chaotic rﬁotion, which destroys the separatrix
bounding the stable region for near-resona.nﬁ triplets. Phase space orbits ex-
perience slow diffusive growth.to amplitudes sufficient for explosive instability,
thus effecfively reducing the critical amplitude. For Hamiltonians with more
than two degrees of freedom, there is actually no critical amplitude for growth,
because small perturbations may grow to arbitrary siée via Arnold diffusion.

It is observed numerically that this diffusion can be very slow for the smallest
perturbations, although the actual diffusion rate is probably underestimated

due to the simplicity of the model.
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Chapter 1

Introduction

In this paper we discuss the effect of negative energy waves and intrin-
sic chaos on the nonlinear stability of plasma systems. Many plasma equilibria
that appear stable by a linear analysis can contain negative energy modes
[1, 2, 3]. If dissipation occurs, these negative energy modes become unstable
as they give up energy; in the dissipationless case, nonlinear instability may
occur via'resonant coupling to positive energy modes. The growth of negative
energy waves from dissipation or resonant wave-wave coupling is well known
in plasma and beam physics [4, 5, 6, 7, 8,9, 10, 11]. Here we will consider
wave-wave interactions in dissipationless systems, which may be described via

a Hamiltonian formulation.

Analytical treatments of coherent wave-wave interactions often pro-
ceed by considering a single wave triplet, whose component waves interact
via a single nonlinear term in the Hamiltonian [5, 12]. This formulation may
be arrived at by averaging, where non-resonant nonlinear terms are assumed
fast-‘varying compared to the single resonant or near-resonant term, and are
therefore dropped.” Such a Hamiltonian is integrable, so that the wave am-
plitudes and phases may be described exactly as a function of time. When
appropriate resonance conditions are satisfied, coupling betvlveen waves of pos-
itive and negative energy results in explosive growth '(inﬁnite ampiitude ina

finite time) for arbitrarily small perturbations, while coupling between waves of

1




the same energy sign results in growth to a finite amplitude (decay instability),
limited by energy conservation. When the resonance is “detunéd”, the equi-
librium becomes stable to infinitesimal perturbations, with growth occuring
for modes above some critical amplitude (outside a separatrix in phase space).
Growth rates and critical amplitudes for growth may be calculated exactly in

the integrable case.

It is often the case that more than one nonlinear term in the Hamilto-
nian is nearly resonant and should be retained. This will in general result in a
nonintegrable system [13, 14, 15]. In this case the motion cannot be described
analytically, and some invariant surfaces in the phase space will be replaced
by regions of chaotic motion. Chéos originates in the vicinity of separatrices
between different typés of phase space trajectories, so that in the case of a
detuned resonance we expect destruction‘ of the separatix between stable and
unstable motion, and therefore a change in the effective size of the stable re-
gion. If the system is nearly integrable, most of the invariant curves within the
stable region will remain intact. For a two-degree-of-freedom Hamiltonian (i.e.,
some ﬁumber of modes coupled by only two nonlinear terms), these invariant
curves provide absolute barriers to transport in the phase space, and the sys-
tem will be absolutely stable for small enough perturbations. If the system is
very chaotic, most invariant curves within the stable region may be destroyed
so that stability is effectively lost. For more than two degrees of freedom, the
invariant surfaces are not of high enough dimensionality to partition the phase
space, so that even in a nearly integrable system transport may occur across
unlimited regions of phase space [16]. Thus waves whose amplitudes are ini-

tially well within a “stable” region may experience relatively slow growth until




they reach sufficient amplitude for instability to occur. This process (Arnold
diffusion) is generally quite slow; faster “thick layer” diffusion will occur if most

of the invariant surfaces are destroyed [17].

In general, therefore, for a system with negative energy modes, one
might expect lack of long-term stability to be the rule. Our goal in this work is
to see what type of transport occurs and to determine the relevant time scales

for a simple example.

The paper is organized as follows. Chapter 2 contains a review of
some relevant background material. Section 2.1 discusses the noncanonical
Hamiltonian formalism which will be used to describe our plasma model, and
describe the free energy.principle which yields a generalized definition of neg-
ative energy modes and a criterion for nonlinear stability [18, 19]. In Section
2.2 we discuss a simple Hamiltonian due to Cherry, which is linearly stable but
exhibits explosive instability via nonlinear wave-wave coupling [20, 21]. Section
2.3 examines the effect of chaotic motion in such a system;. In Chapter 3 we de-
scribe the physical system that was studied and the fluid model that was used to
describe it. In Sections 3.1 and 3.2 the system’s energy is described by a Hamil-
tonian functional, and the equations of motion found from the corresponding
noncanonical bracket. We describe the reduction to normal-mode variables.
Section 3.3 addresses the effects of collisions and Landau darnioing, which are
not included in the fluid theory [22]. In Chapter 4 we discuss the resonance
properties arising from nonlinear interactions between the normal modes, and
how chaotic motion arises. In Chapter 5 we discuss the numerical method used.
Section 5.1 discusses symplectic integration algorithms in general [23], Section

5.2 describes the symplectic Runge-Kutta algorithm [24] and Section 5.3 fo-




cuses on Lie transformations and on methods of obtaining explicit polynomial
expressions for the time-advanced dynamical variables [25, 26, 27, 28, 29]. In
Chapters 6 and 7 we present numerical results for a number of relevant sys-
tems described by Hamiltonians of one, two and three degrees of freedom. We
demonstrate the role of chaotic diffusion in destabilizing such systems. Chapter

8 provides a summary and conclusions.




Chapter 2

Background

2.1 Noncanonical Hamiltonian Formalism and the Free
Energy Principle

We will be investigating a Hamiltonian system with a noncanonical

Hamiltonian structure. This is the natural framework for a system described

in terms of Eulerian variables. Here we will review the noncanonical formalism

for both finite-degree-of-freedom systems and for fields [18], and we discuss the

free energy principle and the rélated concept of negative energy modes [19]

which will determine the stability of our system.

2.1.1 Finite-Degree-of-Freedom Systems

We consider first an jW-degrée—of—freedom Hamiltonian system where
the dynamical variables are given by the vector z = (2!, o zM). Such a system
is defined by a Hamiltonian function H and a Poisson bracket {, } with the

‘time evolution of the dynamical variables given by Hamilton’s equations:

i i i 0H
Z:{Z,H}=JJ~E, z:l,...,]\/f (21)
where the Poisson bracket is defined by
oF ;0G
= . Ju__ 29
{Fi G} - az,”] aZj ("" )

for any functions F' and G of the phase space variables. (Hére we sum repeated

indices from 1 to M.) The Poisson bracket must satisfy the following algebraic

5



properties:

{aF + BG,K} = a{F,K}+ B{G,K},
{F,G} = —{G,F},

{FG,K} = F{G,K} + {F,K}G,
{{FG},K}+ {{K,F},G}+ {{G,K},F} =0,

where « and f§ are arbitrary constants.

(2.3)

A special case is the canonical one [30] where the M dynamical vari-

ables split into IV configuration variables and N momenta:

ZE(Ql)"’)QN)Z)l)"‘)pN) (24‘)

and the Poisson bracket has the form

_OF ..9G |
[F,G] = 370 3 (2.5)
where the constant matrix »
o _[on Iy .
aa ] ] o

is known as the cosymplectic form. (Iy and Oy are the N x IV unit and zero

matrices.) Hamilton’s equations (2.1) then take the familiar form

. _ 8H '

ql_ ap‘~7 (2'7)
. O0H

Pi =~y

In the general (noncanonical) case, J* may be odd-dimensional and
may be a function of the z'. An important property of noncanonical brackets
is the existence of Casimir invariants, which commute with any function of the

dynamical variables z:

{C,F(2)}=0. (2.8)



Since F is arbitrary, we see from Eq. (2.2) that
7% _ g

77 =0 t=1,...,M. (2.9)
This linear system clearly has nontrivial (non-constant) Casimir solutions only
if

det(J¥) = 0. . (2.10)
Since the cosymplectic form (2.6) has determinant 1, the canonical bracket has

no nontrivial Casimir invariants. For noncanonical brackets, the Casimirs label

“leaves” in phase space upon which trajectories are constrained to lie.

Consider perturbations about an equilibrium z, given by g—f,— = 0. The

changes in H and any C under a small perturbation 6z are

52
AH = H(z + 6z) — H(z.) = gﬁ{éz" + %621';;' 62°625 + ... (2.11)
. . 2 . . ’
AC =C(z. + 62) — C(z,) = %&‘ + %Of"@czi 824627 4+ ..., - (212)

For perturbations with AC = 0, we can add 3" \;AC; (where the ); are arbi-

trary real constants) to AH to obtain the energy change at constant Casimir:

M
AH|o = %52(1{ +SONAC) = 8°F, (2.13)

i=1

where we have defined the “free energy”
F=H+) \Ci (2.14)
We see that 6°F gives the energy change under perturbations which conserve

the Casimir constraints. Different values of ); label different equilibria.

If an equilibrium is such that §2F is of definite sign for all pertur-

bations, then nearby surfaces of constant F' are topologically spheres and the




8 .

equilibrium is stable. If §2F is indefinite, then the system may be spectrally
unstable, or if spectrally stable, thgan it possesses modes of both “positive en-
ergy” and “negative energy”. This may be takén as a general definition of a
negative energy mode. Note that since energy is not a covariant quantity, we

must require that §2F must be indefinite in any reference frame.

In the theory of dielectric media the energy content of a linear wave
is defined as the work done by an external agent in exciting the wave, and is

given by [31]
_ 9] 2 _ Oe 2

where e(k,w) is the dielectric function, Ej is the electric field strength for the

mode of wavenumber k and w(k) is the frequency as found from the zeroes of
e(k,w). The energy signature is given by sgn (wg—Z), so that waves of both neg-
ative and positive energy are possible. A negative energy wave is one such that
the total energy of the system is lower in the presencé of the excitation. Our
previous definition of negative.energy waves via 62 F agrees with the definition

from dielectric theory, and provides a generalization which is valid for systems

where the dielectric function is not defined or is difficult to calculate.

It is conjectured that systems with indefinite §*F are generically un-
stable, via either dissipation or nonlinear resonance [19]. In following sections
we will examine the role of resonant wave-wave interactions in a dissipationless

plasma physics exa,mple.v

2.1.2 Fields

The ideas just discussed are readily extended to the case of fields

[18]. In this case the state of the system is specified by the field variables 1",




i =1,...,M. The time evolution is determined by a Hamiltonian functional

H and a Poisson bracket

(F,G} = / dTWo” ¢ (2.16)

where O is an operator (possibly a function of the ¢*) making the bracket
satisfy the properties (2.3), and dr is the volume element. The equations of

motion are

§H
R

For a canonical field theory the dynamical variables split into N con-

= (L Hy = 0=, =1, M. (2.17)

figuration variables n* and N momenta #*. In this case the operator O is the

9N x 2N constant matrix

| On Iy
0, = [—IN ON:I’ (2.18)

giving for the Poisson bracket

0F 6G 6G6F
3 — —— c———
{(F,G} = }j/d [5171. i W.} . (2.19)
Hamilton’s equatlons take the form
7= Y =5 (2.20)

7:(1'——— {W',H}Z _W

For the noncanonical case we again have some number P (possibly

infinite) of Casimir invariants satisfying

{Co, F)}y =0, k=1,...,P. (2.21)
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We can then find equilibria corresponding to extremals of the free energy func-

tional

P
F=H+ Z AeCh, (2.22)

k=1
i.e., the Hamiltonian subject to the constraints of constant Casimirs. By defi-

nition, equilibria satisfy
=0, i=1,...,M. (2.23)

Since we have

OF

= F) = (0 H) = O (22¢)

we see that the equilibrium equations are

5F .
5 =0 i=Loo,M (2.25)

Now suppose that 1} are solutions of (2.25). Then the first variation
of F'in the direction ¢ = (¢1, Ceey ¢M), denoted DF . ¢, is given by

d
6F = — F(+¢4)|,og = DI - ¢ = / dr o= (2.2§)

&b‘
Eq. (2.25) implies that DF - ¢ = 0 for all ¢. A second variation at fixed ¢

yields

2 d 2 1 62F 1
5F_d—DF(¢+e¢)LO_DF /d st @2

Now analogous to the finite-dimensional case, definite §2F implies stability,

while indefinite 62 F implies either linear instability or the existence of negative

energy modes.
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2.2 Resonant Wave-Wave Interactions: Cherry’s Ex-
ample
- When a linearly stable system has indefinite §2F, then it contains (by
the definition in Section 2.1) negative energy modes. These negative energy
modes may lead to instability by way of nonlinear mode coupling. A simple

example for which this occurs is described by Cherry’s Hamiltonian [20, 21]:

ws

2 (r;+493)+e [2Q1P1P2 — a2(qf - Pf)]

w
H ==-(p} +4})

=w i —wad; + i/ Ty sin(20; + 6,) (2.28)

where the second form comes from the transformation ¢ = 2J;sinb;, p; =
+/2J; cos §;. This Hamiltonian describes, for example, a particle in an inverted
harmonic potential V = —(z? + y?)/2 whose motion is stabilized by a uniform
magnetic field B, [19]. We will see in Section 4.2 that a Hamiltonian describing

three-wave interactions in a plasma,
H= w1J1 — LU2J2 band UJ3J3 + Qy/ J1J2J3 sin(91 + 192 — 03), ' (229)

may also be written in the form (2.28) by a canonical transformation of vari-

ables.

The system (2.28) has an equilibrium point at ¢; = p, = ¢ = p, =
0, satisfying g}% = 0. Linear stability is guaranteed by the w; being real;
this linear motion is just that of two harmonic oscillators. Nonlinear stability

requires definiteness of the matrix aii’i - evaluated at the equilibrium. This
10Z;

matrix has the (doubly degenerate) eigenvalues (w;, —ws); since there are both

positive and negative eigenvalues, the stability is indefinite. It turns out that
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an explosive instability arises from the nonlinear coupling term when the third-
order resonance condition 2w; = w, is satisfied (the case studied by Cherry).

Cherry found the two-parameter solution set

n=-—— sin{w;t + '7)‘,

n=——— cos(wit + ),
I

R — sin(2wyt + 27),

P2=_——— cos(2wst + 27),

where € and v are constants determined by the initial conditions. Thus the

amplitudes go to infinity at a finite time ¢, = €/c.

What happens when the resonance condition is not satisfied? Since

the Hamiltonian (2.28) is integrable (possessing the constant of motion' I =
Ji1 —2J3), we can describe the motion exactly. When 2w, # w,, the nonlinear

| coupling term leads to explosive instability only for waves above some critical
amplitude. This can be illustrated graphically by surface-of-section plots of-
the phase space, which consists of plotting two of the dynamical variables for
a fixed value of one of the others. (The value of the remaining variable is fixed
by the constancy of H.) For example, we can plot (analytically) ¢; vs. p,
for the surface go = 0, or g, vs. p; for the surface ¢; = 0. (Equivalently, a
canonical transformation could be used to reduce the Hamiltonian to one degreé
of freedom, so that there would be only two variables left to plot.) The ¢; =0
and ¢, = 0 surfaces are shown in Figure 2.1, for both the resonant (2w, = wa)

and nonresonant (2w; # w;) cases. When the resonance is detuned we see the
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Figure 2.1: Surfaces of section for Cherry’s Hamiltonian, for the resonant
(2w; = w;) and nonresonant (2w; # wy) cases. (a) ¢1 = 0 plane. (b) g2 =0
plane.
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opening of a stable islet, bounded by a separatrix. For this integrable system,

motion within the separatrix is absolutely stable.

2.3 Implications of Chaotic Motion

If Hamiltonian (2.28) is perturbed by adding other nonlinear terms,
then the integrability will in general be destroyed [32]. Using the constant of
motion [, the Hamiltonian (2.28) can be reduced to a one-degree-of-freedom
system. One additional nonlinear term will in general result in a system that
can be reduced to two degrees of freedom, with I # constant. In this case
we can again employ surface-of-section plots, like those of Figure 2.1. While
the curves of Figure 2.1 were calculated analytically, in a nonintegrable system
the orbits must be followed numerically, and points plotted as the orbifs pass

through the desired plane.

The nonintegrable Hamiltonian would yield surfaces-of-section like
those of Figure 2.1, but with invariant curves replaced by chaotic orbits in
some regions of the phase space. These chaotic orbits will occur in the vicinity
of sepa,fétrices that sepérate different types of motion [13, 14, 15]. The portion
of the phase space containing these chaotic orbits may range from very large
to very small, depending on the perturbation. Even in a nearly integrable
system, most of whose invariant surfaces are intact, the chaotic layers are found
arbitrarily close to any point, but their extent vanishes exponéntially with the -

perturbation.

If the perturbation is very strong, then most of the invariant curves
within the stable islet may be destroyed, so that an orbit starting within that

region is not prevented from increasing in amplitude until it is of sufficient
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size for explosive instability to occur. For a two-degree-of-freedom system,
the remaining invariant curves will provide boundaries for the motion, so that
any surviving invariant curve around the equilibrium point will ensure stability ‘
for all orbits within it. If the perturbation is weak enough, then mést of the
invariant surfaces will survive, and the (very thin) chaotic layers within the

stable islet will be bounded by the invariant surfaces that surround them.

If the perturbation is such that the reduced Hamiltonian has three
or more degrees of freedom, then the situation is much different. Again, de-
pending upon the form of the nonlinear terms, the motion may be either very
regulaf or very chaotic. However, the high dimensionality of the phase space
no'w allows a new type of behavior. For a two-degree-of-freedom Hamiltonian,
we have a four-dimensional phase space. By the constancy of H, the motion is
confined to a three-dimensional “energy surface” in phase space. The invariant
surfaces for an N-degree-of-freedom Hamiltonian are also N-dimensional, so
that the two-dimensional surfaces around the eqﬁilibrium point can partition
the three-dimensional energy surface into an “inside” and an “outside”, bound-
ing the small-amplitude motion. For a three-degree-of-freedom Hamiltonian,
the motion is on a five-dimensional énergy sﬁrface, while the invariant surfaces
are only three-dimensional. Three-dimensional surfaces do not partition a five-
dimensional space (just as a one-dimensional line does not partition a three-
dimensional space) and therefore chaotic orbits near the equilibrium point are
not necessarily confined there. In fact, it is conjectured that the chaotic layers
in any Hamiltonian system of more than three degrees of freedom are inter-
connected in an “Arnold web”, so that an orbit may get from any part of the

energy surface to any other point on the energy surface by chaotic diffusion
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along this web [33, 16, 17]. Therefore any trajectory not exactly on an invari-
ant surface may eventually escape from the stable islet. This process is known
as “Arnold diffusion”, and is a universal property of many-dimensional Hamil-
tonian systems. Arnold diffusion has been studied, for example, in connection
with particle losses in high-energy accelerators [34], magnetic mirror machines
[35] and tokamaks [36], and in the Earth’s geomagnetic field [37]. While the
diffusion rate can be significant [36], in many situations it may be slower than
any time scales of interest [38]. In some cases, additional phenomena (such
as collisions) may combine with Arnold diffusion to increase its impact [35].
Of course, Arnold diffusion is a limiting case; while it can eliminate absolute
stability in a Hamiltonian system, there may be much faster processes occuring

in a very chaotic system, as we shall see.




Chapter 3

Counterstreaming Ions: Basic Development

As a physical example we now consider a simple one-dimensional
plasma coﬁﬁgura,tion consisting of two cold counterstreaming ion beams in
a neutralizing isothermal electron background [8]. The system supports ion-
acoustic oscillations of both positive and negative energy. While exponentially
growing disturbances are possible, we will consider the case in which all modes
are linearly stable. In this case we find the possibility of expldsive instabil-
ity du‘e to resonant three-wave interactions. We will then examine the role of

chaotic diffusion processes in enhancing the likelihood of these instabilities.

We begin by describing the fluid equations governing the sysfem, and
the characteristic modes of oscillation that arise from the linearized equations.
Next we describe the Hamiltonian structure of the system, and from the energy

functional we derive a Hamiltonian in action-angle variables for the lowest-

rorder perturbed energy, which again yields the characteristic modes that were

found in the linear analysis. We then calculate the next-order terms in the
Hamiltonian, which provide the coupling between modes that leads to explosive
instabilify. Finally we describe the phase space topology that results from the
nonlinear interactions and indicate how chaotic diffusive processes arise, and

how they are expected to influence the stability of the system.

17
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3.1 Linear Analysis

The dimensionless equations of motion for the two ion streams are

Ovy v, = 0¢

ot +'Ua—a“:;+5; =0, (31)
on, O _
5 + 3 (neve) =0, _ (3.2)

where o = =+ labels each ion stream with the sign of its velocity relative to
the center-of-mass frame. Here the n, are normalized to the total unperturbed
ion density mg, v, is in units of the ion sound speed ¢, = E, the electric
potential ¢ is in units of 7,/e where T is the electron temperature in energy'
units, z is in units of the electron Debye length A\; = \/% and time is in
units of the inverse ion plasma frequency w, 1= H—;—;. These equations are
supplemented with the isothermal (Z:¢ — 0) approximation for the electron

motion and Poisson’s equation:
n. = e?, (3:3)

&
0z?

where n. is normalized to ng. Through the latter two equations we can in

=ny4+n_—ne, (3.4)

principle solve for ¢ (n4,n_) so that the entire system is described in terms of

the dynamical variables ny and vy.

For simplicity we consider an equilibrium of ion streams of equal den-

sity and speed:

vy = —v_ =, (3.5)




19

where the ion drift speed v is normalized to ¢,. If we assume that perturba-
tions have the dependence e'(**=“%) and linearize Eqs. (3.1)-(3.4), the condition
for the resulting system to have non-trivial solutions is the Vanishing of the

dielectric function, given by

1 1 1 1
kw)=1+—
e(k ) * [(w—kv)2+(w+kv

K22
(Here k is normalized to A7 and w to wy;.) Solving for w we obtain

. ] 1 p 1 202
w__l“ [2(1+k2)+ iJ4(1+k2)2+(1+k2)} (3.7)

A plot of the four branches of w(k) is shown in Fig. 3.1 for the cases

)2] = 0. (3.6)

v > 1 and v < 1. Taking the “+”-sign in Eq. (3.7) yields “fast modes”,
with phase speed w/k greater than the drift speed v. These modes are always

linearly stable (w real). The “-”-sign yields “slow modes” with w/k < v, which

1

e (Recall that v is the ratio of the equilibrium

are linearly stable when v >
ion drift speed to-the ion sound speed, which is also the ratio of the equilibrium
ion kinetic energy to the electron temperature). For v < 1., the slow modes
become linearly unstable, via the well-known ion-ion two-stream instability,
for small k. It should be noted that the linear stability criterion v > 1 would

be replaced by the more stringent criterion |v|cos8 > 1 in a two-dimensional

model, where 8 is the angle between k and v.

As discussed earlier, the energy signature of a wave is given by wg—j.
It is easily shown from Eqs. (3.6) and (3.7) that the fast modes have positive

energy, while the slow modes are negative energy waves.

Before further discussing these characteristic modes, we examine the
noncanonical Hamiltonian structure of this system, and re-derive the normal

modes in the Hamiltonian formalism.
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Figure 3.1: Dispersion relation w(k) for the cases (a) v < 1, where negative
energy modes (branches 3 and 4) are linearly unstable for long wavelengths,
and (b) v > 1, where all modes are linearly stable.




3.2 Hamiltonian Development
3.2.1 Hamiltonian Structure

The energy of this system can be written as the functional

L |1 1 ¢ 1/04\°
H= A/o dz [§n+v_2|_ + En_vi +/0 do ¢ e® + 3 (a—x—> } (3.8)
where A = ngAg > 1is the (one-dimensional) plasma parameter, L is the size of
the system in Debye lengths and H is normalized to the electron temperature.
The first two terms are the ion kinetic energy densities, the third is the internal

energy function for the electrons [39] and the fourth is the electric field energy.

The electrons can be envisioned as supplying an effective ion pressure.
‘The appropriate Poisson bracket is given by [39]

oty [fan |92 5E 57 6 &
{76} =A o;/o de 6va 0z 8no  Gvg Oz 6Ny )

where F and G are functions of the n, and v,, and % denotes the varia-

tional derivative of f with respect to u. The Poisson bracket has units of

1. consistent with our earlier normalizations we have

(energyx time)~l=action™
written it in units of wy, 7!, The equations of motion (3.1) and continuity
' _equations (3.2) are obtained from the usual formulae for time derivatives in

terms of Poisson brackets:

7:2’“ = {na‘(x)t)sH}
_ L §H 0 bngy(z)
— 1 Z‘ / e o
A agi/o “ Svyr Oz’ dngi(a')

_ k9 dng(z)
- /o de 3x’(nava) dna(z’)
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, 0 :
=-/ dz B_x’(nava) 6(z —2")
0
= ___a_w(nava), (3.10)
Vo = {vVa, H}
_ A My 6va(z) 0 SH

==/ dz' §(z — z’) % (é—vi + ¢)
_ _(% (%vg + ¢) , | (3.11)

where we have used Poisson’s equation (3.4) and the Boltzmann relation (3.3)

in evaluating 3%% for the last equation.

The Poisson bracket has the Casimir invariants

+ L . . ) .
Cf = [y dz ny, . _

CE=fLdzv,.

(3.12)

The physical significance of these Casimirs may be traced back to the kinetic
theory describing this system. The basic (dimensionless) equations are the
Vlasov-Poisson equations:

8 _ _,0f | delfwm)as
ot Az dz Bv? (313)

2
2e=—ffdv
where f(z,v,t) is the phase space density for a single species. This system has

the invariant

Cz/}‘(f) dz dv (3.14)
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where F is an arbitrary function; this invariant corresponds to conservation of
phase space volume for a given value of f [40]. The correspondence between the
fluid model and the Vlasov-Poisson system is made via the water-bag model

[10]. This assumes the following form for f:

Aforv_ < v <y,
0 otherwise

sl = { (3.15)

where A = constant, and v, and v_ are single-valued functions of z and t. We

then obtain

n=[20fdv=A(vy —v_),

iy (3.16)
vt < 40
and
C = [ F(A)los —v.] da. (3.17)

Eq. (3.12) is implied by Eqs. (3.16) and (3.17). Thus the Casimir invari-

ants correspond to the conservation of phase space volume that is required by

Liouville’s theorem in the Vlasov theory [41].

We now look at variations of the free energy functional
F=H+MCH+ A CT +XMCf +);C;. (3.18)

The equilibrium (3.5) is obtained from the first variation of F:

SE £ _ _1,2 |
5F=0¢{55” }=>{A1 27 (3.19)

— + __ 1
The Lagrange multipliers may be recognized as the kinetic energy and momen-

tum of the two streams.
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Stability is determined from the second variation, evaluated on the

equilibrium:

BF = A~ /dm[ 6v)+-;-(6v">2

+2v8nt6vt — 20 6n7 60" + (6¢.)" + (69)°] (3.20)

where §¢, denotes 2 5-0¢. Here we have expanded the exponential in the internal
energy function, keeping second-order terms. The sign of §F may be either
positive or negative, depending on the perturbation; thus we may have either
positive or negative energy waves in the system. It is important to note that,

for this system, §2F' is indefinite regardless of reference frame.

3.2.2 Reduction to Normal-Mode Variables

We now Fourier decompose the perturbations:

)
+ ikmz
> nhetmE,

m=—0co

S pEetne | (3.21)

m=—00

oo
Pt

where kn, = mk;, and ky = 2%, If we linearize Egs. (3.3) and (3.4) about the
equilibrium (expanding the exponential) and insert the Fourier expansions for

én* and ¢, we can solve for ¢m( n,):

. Nm Nle—I .
= T3 3 TR BT
N_{Npy

T+ )T )



+0 (N, (3.22)

where N,, = n} 4+ n_. In terms of Fourier coefficients we then have

§F = %AL i K\v;f + ,v;f)

[N J

: +,+ -
+ 2v (nmv_m —n,v_. + CC’) + 21 nyry

+ O (INal°) ©(3.23)

where C.C. denotes complex conjugate. Here we have dropped terms of or-
der |Ny,|* which came from evaluating |¢,,|*; we shall reclaim them when we

evaluate the cubic terms in the Hamiltonian.

The Poisson bracket (3.9) now takes the form (see Appendix A)

° .k [6G 6§F 6F 6G
{7,6y=2 2 AL |6ne v2,,  6ne 6v%,,

a=+ m=1

G OF §F 6G

— — .24
én2,, dve  6n%,, bv2 (3:24)
This can be put into the familiar form via the transformation
Tvkm : *
nh = Ym (p,—agy),  ni, = (n})",
+ - 1 _ ot = ()
U = 2\/7{\/,,‘,—1, (pl 7"12)1 Vim (vm) ’ (325)

N = Yo (Pa—14s),  nln=(ng)",

U = Tﬁﬁ (ps—1q4), vIm=(va)",
where the p; and ¢; are labeled by the mode number m. (Here the p; and ¢;

. .o . 1 . 1
would have dimensions of action? = (energy X time)z and have been normal-

ized to (Te/wpi)%.) The bracket then becomes

o0 & (afg_g_ amr)

{F.6}=> > 90 0p.  9ai O (3.26)

m=1 =1
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Using the transformation (3.25) our expression (3.23) for the per-

turbed energy becomes

4

§2F = : Z > (g4 +p1Bupy)

m=11¢,7=1

1 & 3 |
==Y (§Aq+PBp), (3.27)
2 _

m=1
where

kz kiv k?n kiv
l-i-k2 k”“ 1+k2, 0

1
A= kmv 525 0 0
'k,znkl'u 0 k?.nklv —'k v ’
1+k2, 1+k2, m
. 1
0 0 —km’l) kv
(3.28)
-Zk% kmv 0 0
A k2, kyv k2, kv
B | v TR 0 B
0 0 k1o fkmv
0 knklv kv kznklv
1+k2, ™Y 1+k2,

(The tilde denotes transpose.) The subscript “m” in Eq. (3.27) is a shorthand

indicating that each quantity inside the parantheses is labelled with this mode
number.

The wave momentum is given by

P=A /0 Y o (n*ot + n_.v") . (3.29)

The total momentum for our equilibrium is zero; the perturbed momentum is

*P=AL i (n;;v_"_'m +novo, + C.C.)

mY—m
m=1

o
= > kpn (p1P2 + @192 + Paps + ¢304),,

m=1

[\')l)—‘

3" (§Cq+ BCp),, (3.30)

m=1
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where
kn 0 0
kn 0 0 O '
C=1""0 0k (3.31)
0 0%, O

We now seek a canonical transformation to diagonalize both §2F and

§2P. The appropriate transformation, derived in Appendix B, is given by
q=5Q, p=TP, (3.32)

where the matrices S and T are given by

—bg —by —by —bs dl‘ —az —az " a4
_ a1 a9 Aaz a4 _ —bg b4 bl —bg
5= by by b3 by T= az —G4 —41  dg (3'33)
as Qa4 a1 ag bl —62 —b3 b4
where
a; = &,‘ /;:m];,‘lf), ) (334)
bi = Ai/ ]Acml;l'[), (335)
and
' I i [(@e=0)2-3
a = \/—E—._}, b = +8RGJ+ ?
R R N [cx
VaRa-’ - (3.36)
Go= G2 § o= @403 |
3 \/m7 3 = 8R4 )
A W=D O K (T o) ket
b4 = m, 4 = B3R
and‘where we have defined |
. k.,
km = (3.37)
14 k2
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(3.38)

b= vy/1+ k2. (3.39)

(Note that lAcl and v both depend on the mode number m whereas k; and v
do not; since the former are occurring only inside matrices that depend upon
a single m, this will not lead to confusion.) The utility of introducing &; and
b; is that these variables are of order unity and depend relatively weakly on &y

and v. In telms of the new variables we find

”[ P2+Q2 B Sk O SR e s SOt O/

L (3.40)

2 —
O°F = mz_l 5 Wi = W=
and ,
00 2 2 p2 2 2 2 2 2
52P ZI" P+Q P2+Q2_P3+Q3+P4+Q4 (3.41)
2 2 2 o
where

k S L i >0, (3.42)
Wy =R | —————— v . .
* 2(1+k2) 4(1+%2)  (1+£k2) .

Making one further canonical transformation to action-angle variables

Qi =1/2J;sin 6; (3.43)
2J; cos b;,

we arrive at

62F = Z [w+J1 b w_J2 + W+J3 — w_J4]m (344:)
m=1
FP =S k[ = Jom T+ Ji]_ . (3.45)

m=1
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The Jim) will be recognized as corresponding to the four eigenmodes
of Fig. 3.1, and the negative energy character of branches 2 and 4 is now
explicit in the Hamiltonian. To further illustrate the correspondence, let us
write the perturbed energy (3.23) and momentum (3.30) in terms of the Fourier

coefficients for the electric field F,, = —ik,, .. We obtain

57 — iw(km)( @;ﬂ‘ﬁ B, ) (3.46)

§*P = ZA ( ir)i%i)w |> | (3.47)

where w(k,,) is one e of the four roots (positive or negative) of the dispersion

relation €(kp,w) = 0. We immediately identify the wave action as
| 85 2
J = N% |Eml” . (3.48)

Again we see that the sign of the wave energy is given by wg—j

3.2.3 Nonlinear Coupling

We now consider cubic terms of the perturbed energy. Taking the
third variation of F', inserting the Fourier expansions and carrying out the

integration we obtain

63F Z { Z [nfnlu;xvg(m-{-l) + nivfzvf(m_l) + CC

Iym=1 a==+

ﬁ |: N N[N m.H)
6 [(L+EZ)(L+E)14+K,)

A Y ] }
C.C.
HETA e
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= 3 {on [a-10) (1) (1100
+ (P2—12q1),, (P1—292)_; (Pr1+242)
+. (Pa—243),, (Pa—2q4), (P3+294) s
+ (pa=19s),, (Ps—19)_; (p3+104) i

+ Bim (P2 —1a1 + Pa—1¢3)m (P2 —2q1 + Ps—143)1(P2+1q1 + Pat+193)mti]

+ B-tm [(P2—2q1 + P1—143)m (P2 —1q1 + Pa—143)—1(P2+2q1 + Ps+12G5)m—1]

+C.C.} (3.49)
where
&y, = —Em—
8T2AZv3 (3.50)

3
Bitm = kvZ kmkgikma
T guntaz FRL)(HRL)(AHRZ L)

We can now substitute the transformations used earlier in Eqgs. (3.32) and

(3.43): |
%= Z;=1 SiiQ; = E‘;=1 Sijv/2J; sin 0;
pi = Loy Tii Py = Toy Tijy /2 cos 6.

Rather than attempt to write the general expression, we simply note for now

(3.51)

that the general cubic term will have the form (up to a constant phase)
a Jmel/2 gl gimell2 gin (ma6, + myBy + mebe) (3.52)

where |m,| + |mq| + |ms| = 3 and where o here represents some combination

of the o, and fym and the matrix elements S;; and T;;.
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For later reference we note how the coefficients of the cubic terms scale
with the equilibrium quantities. Using the S;; and T;; defined in Appendix B,

we find that for wavenumbers of order mky,

3
m2k?

8F ~ (3.53)

3.3 Corrections to the Fluid Theory

A number of approximations are inherent in our fluid model. The
most important of these are the neglect of both collisions and Landau damping.

-We now consider on what time scales these effects will become important.

3.3.1 Collisions

In high-temperature plasmas it is often a very good approximation to
neglect collisions. Since we will be considering slow diffusive processes, we will
want to consider how valid this is. The typical ion-electron collision frequency

is given roughly by [22]
| S
A3 me A3

(3.54)

v

We will evaluate this for parameters of interest in Chapter 6. While a
large collision frequency would invalidate the fluid approximation used in our
model, collisions may also enhance some of the diffusive processes that are of

interest [35].

3.3.2 Landau Damping

We have assumed delta-function distributions for our ion beams. If we

consider beams with finite thermal spreads, then the waves in the system may



32

exchange energy with the background particles via Landau damping or growth
[41, 22]. Considering a broad Maxwellian distribution for the electrons and
narrow Maxwellians for the ion streams, a straightforward calculation yields

the growth or damping rate w(D:

4 3 2
wh o0 ~F (=) (&) ~E(42)

w® "~ Tk k T
Ww® (B N\ e

Where w® is in units of the the ion plasma frequency w,, and we have as-
* sumed ‘w(l){ < wB), The first term on the right-hand side describes energy
exchdnge with the ions, and the second term with the electrons. We see that
energy exchange between the waves and the ions decreases rapidly with the
ratio T;/T. If T;/T. is small enough, then ion Landau damping (or growth)
may be neglible on the time scales of interest. However, energy exchange with
the electrons then approaches a constant value proportional to \/::. As the
electrbnv terﬁpemture is made very large, the distribution becomes more and
more broad and flat. However, the phase speeds of the waves also increase with
the electron temperature, so that the rate of damping or growth stays constant.
This type of energy exchange can dominate other processes such as the diffu-
sive processes that we will be interested in; however, it may be supressed if
 there is a local flat spot in the particle distribution function, as described by

quasilinear theory [42].




Chapter 4

Resonances and Nonlinear Instability

4,1 Introduction

Our interest is in resonant interactions between linearly stable modes;
we therefore consider only sets of modes that interact resonantly (or near-
resonantly) via the cubic terms of Eq. (3.49). Other modes in the infinite sum
yield nonlinear terms with rapidly varying phase, which may be removed by

averaging. The third-order resonance conditions to be satisfied are

n kD 4+ ngk® £ ngk® =0 (4.1)
nyow® + ngagw(2) + naoaw® =0 (4.2)
where w() = w(k®), the n; are integers satisfying |ny| + |ns| + |ns| = 3, and

the o; are all equal to +1.

One important case is that of two-wave interactions, where two modes

from the same branch of the dispersion relation satisfy
2k = (2
2w a2 W@,

This situation is generic for long wavelengths (small k), where we have wy =~
1
kpm [% +02 4+ \/% + 202 ] ? so that for all pairs of waves with 2k; = ky we will

also have w; =~ 2w,. The frequency matching condition cannot be satisfied

33
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exactly, but is approached in the limit £ — 0. For a large system (k; << 1)
there may be many such nearly resonant pairs of modes. We will see that this

can be a strong source of stochasticity.

A large number of three-wave resonances is also possible in our system.
This may be seen graphically from Figure 3.1. If the point (k = 0,w = 0) on
one of the negative-w branches 3 or 4 is translated along branch 1, then its
intersection with branch 2 defines a three-wave resonance. In the continuum
limit such resonances occur regardless of the equilibrium parameters; for a finite

system only special values of the parameters will yield exact resonances.

For our symmeﬁric equilibrium there are only two physically distinct
possibilities: a resonance involving two slow modes and one fast mode (where
branch 4 connecting branches 1 and 2), or two fast modes and one slow one
(where branch 3 connecting branches 1 and 2). Note that if the equilibrium
parameters 91‘é such as to allow a resonance of either type, then there is an-
other resonance given by the reflection of these modesb.a,bout the k-axis (i.e.,
" a resonance involving branches 1, 2 and 3 will be accompanied by a resonance
involving branches 3, 4 and 1.) This degeneracy is a result of the symme-
try which was included for analytical simplicity; general equilibria will yield

isolated resonances.

Resonances involving modes of different energy signature result in

explosive instability. As stated earlier, the presence of negative energy modes
(the slow modes) in the system is independent of reference frame; the energy
signature of a particular mode, however, is not. If we go to a reference frame
moving with speed u, the signéd frequencies w go to w — ku. (This does not

affect the resonance conditions (4.1).) The quantity %%l is invariant under
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frame shift, but the energy signature (w — /cv.t)gﬂk‘a—‘:fﬁl is not. Thus if w — ku
has opposite sign from w (i.e., the branch crosses the k-axis) then the energy
signature of the mode changes. If there eiists a reference frame where all modes
of a triplet have the same energy signature, then conservation of momentum
and energy imply nonlinear stability (i.e., only limited growth is possible) [10].
It can be shown for general three-wave interactions that if and only if the wave
of highest frequency has energy signature opposite in sign to that of the other
two waves, then no such reference frame exists [11]. (The proofs of both of these
statements are outlined in Appendix C.) It is easily seen from the dispersion
diagram for our system that this frequency relation holds if and only if the
coupling is between one positive energy wave and two negative energy waves.
These resonances therefore lead to explosive instability, while those involving
two positive energy modes and one of negative energy Will exhibit only decay

instability and limited growth.

A particular three-wave resonance condition (4.2) will be satisfied only
along some curve in the two-dimensional (k;,v) parameter space. In Figure 4.1
we illustrate all three-wave resonanc;es involving mode numbers up to m = 10.
Fig. 4.1.a shows “positive energy” resonances (involving two positive energy
modes and one of negative energy) and Fig. 4.1.b shows “negative energy”

resonances (two negative energy modes and one of positive energy).

4.2 Phase Space Structure: Single Resonance

If we are near only one resonance in parameter space and need there-
fore keep only one resonant nonlinear term in the Hamiltonian, then the system

is integrable. We first consider two-wave interactions involving modes from the
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Figure 4.1: Locations in (ky,v)-space of all three-wave resonances involving
mode numbers up to m = 10 for (a) decay instability and (b) explosive insta-

“bility.
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same branch of the dispersion diagram, and then look at three-wave resonances

involving modes from different branches.

Before discussing these situations, we should note the standard form
of the Hamiltonians that will occur. The Hamiltonian for a general three-wave

resonance will take the form
H= UJ1J1 b CU2J2 + (fLU3J3 + o/ J1J2J3 sin(91 + 92 - 0‘93) ' (43)

where o = 1 denotes a positive energy resonance, and o = —1 a negative energy
resonance. (Now the subscripts on the J; will be used to label single modes,
. rather than labelling the branch of the dispersion relation on which the mode
' 1i;es.) This can actually be re‘written in the form of a two-wave resonance by
- employing a canonical transformation to a new set of coordinates. We will
employ canonical transformations repeatedly in this work in order to obtain
coordinate systems that help to illuminate some properties of the Hamiltonians.
One source of such transformations is a mixed-variable ge‘nera,ting function [30].
We will use the “type 2” generating function which is a function of the new

actions and the old angles:
1
F(Il,12,91,02) = 5]1(91 +92) +I292 +I393. (44)

The transformation from (Ji, J5,601,602) to (I1,I2,%1,%,) is then given by

J1=%=-21"I1, ¢1=%}§-=%(91+92),
J2=§£“:I2+%11, 1/]2:%::92’ (4'5)
J3=§§;=Is, ?/Jaz%:gs-

The Hamiltonian then takes the form

h=H+w2I2
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1 (777  or 7 .
= -2-(Lc)1 - w2)11 + 0'(.«)3.[3 + g' I1(11 -+ 212)]3 sm(2d)1 - 0'1,L’3).

If we set the cénstant I, = J;, — J; = 0, this becomes
N o .
b=l + owsls + -2-11\/E sin(2¢1 — ots), (4.6)

where w; = %(wl — wy). For ¢ =1 this has the form of the Hamiltonian for
two-wave interactions to be discussed in the next section, and for o = —1 it

has the form of Cherry’s Hamiltonian, discussed earlier.

The motion for the Hamiltonian (4.3) (and consequently for the two-
wave Hamiltonians) may be solved exactly in terms of elliptic integrals [5, 8].
Our further discussion of the integrable cases will focus primarily on graphical
representations of the phase space to understand the motion. For noninte-
grable systems to be considered later, there is of course no éxa,ct solution, and

numerical methods will be used.

4.2.1 Two-Wave Interactions

‘We now consider the case of a two-wave near-resonance involving
modes from a single branch. Some modes for which this could occur are shown
-_in Figure 4.2. Here modes Jl,‘ Jy and J; have wavenumbers &y, 2k; and 4k;
respectively. For k; << 1 we will simultaneously have near-resonance between
modes J; and J; and between modes J; and J;. Later we will see that three
waves coupled in this way will exhibit strongly chaotic motion. For now we con-
sider the single near-resonance formed by modes J; and J,. The Hamiltonian
is

H =wiJy +wpdy + adyy/Jy sin(26; — 65), (4.7)
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Figure 4.2: Three modes which form two near-resonant doublets.
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R [1 ' _
w:kJ%—l—fﬂ-}— Z+2z}2 - o (4.8)

Jarh [a(ks) (2328 Bres) + agey) Dot )

where

and

— Q1(ky) (2&1(%1) 2?3(/:1) + G1(ky) [;3(21“))

(31(1“) - 33(!:1))2 (31(21“) - 2)3(2’“))} .

+ (4.9)

(1 4+ k2)2(1 + 4k2)

(The subscripts in parentheses are the values of k£ at which the &; and i)i are
evaluated.) Since the angles 6,8, occur only in one combination, this can be
reduced to a one-degree—of-ffeedom system. We therefore eliminate one degree
of freedom by employing a canonical transformation to a new set of variables,
which we call “resonance variables”. One such transformation is provided by

the generating function
F = I_l(201 b 92) + I_3(92, (4:10)

which yields

_8F _ oF - aF _
J1 = 55 = 2L, Y1 = 31 =201 — 0y, (4.11)

= %6,
The Hamiltonian becomes

Le=fn=h-h, (=35 =0
== Q]_ _1 + 2011:1\/ js —_ I—]_ Sin 1r/;17 (4:12)

wh_ere

Q=2 —wy (4.13)
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is the “detuning” of the resonance and
- 1 .
L=J,+ §J1 = constant. (4.14)

(The choice of the labels “1,3” rather than “1,2” was made for later conve- .
nience.) Note that the constant of the motion I3 is just proportional to the

wave momentum k;(J; + 2J3).

For arbitrary pairs of waves, the phase space topology is determined
by the “effective detuning” ‘%l, where “+” denotes waves of positive or neg-

ative energy. Expanding Q. for small k, we find

Q:i: = w:t(Zk) — 2wi(k)

—k3i F(1 +4v* £ /1 + 8v?)
V2 TE80%/1 + 202 £ T+ 807

The detunings 4 and {)_ are nearly equal for most v, differing in magnitude

+ O(k). (4.15)

only for v near 1 (since 2. diverges as v — 1). Recalling from Eq. (3.53) that

a~ 1“1—\3 for small k, we find for the effective detuning

Q:i: 77’L3/C113"A 3 s A
— |~ —5— ~m2kiA ~m2— 4.1
a m? k? e ™7 (4.16)

with a weaker dependence on v. We will therefore have the strongest resonance
for the smallest A (dense plasma); however, we have seen in Section 3.3 that
this aiso results in a larger collision frequency, which will invalidate our fluid
approximation. We will also obtain stronger resonance by considering smaller
ki (larger L); however, since k; enters into both { and ¢, this also increases the
time scales required for the system to evolve. For a given pair of modes (fixed
m), simultaneously increasing A and L while keeping their ratio constant will

decrease the collisionality of the plasma while maintaining the strength of the
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two-wave resonance; the modes under consideration will, however, become of

lower and lower frequency.

We will see later that the behavior of the system is most strongly
influenced by the most nearly resonant sets of modes; therefore, the physi-
cal parameters that lead to interesting phenomena will be determined by some
compromise between these competing effects. Whatever the values of the phys-
ical parameters, we see that the strongest two-wave interactions will occur for

long-wavelength modes such as J; and J; of Hamiltonian (4.7).

We now examine the phase space structure for the Hamiltonian (4.12).
For graphical representations of this and other systems it is convenient to use

the cartesian form of the resonance variables:
P, = \/21_1- cos 1;,-
Qi =/ QI_,' sin 1Z’£.
In Figure 4.3 we display constant-energy contours for two values of L and fixed
A and v. I was chosen to be 0.01. The motion is conﬁned to the region
P? 4+ Q? < 2I;. When ‘%L‘ < \/-1;3- there is an unstable fixed point at the origin
and two stable fixed points on the positive and negative Q,-axis. As I%’-, passes

through \/}_;, one of the stable fixed points merges with the origin, which then
becomes stable for l%l‘ > \/I__3

Recall that in the Hamiltonian (4.12), [; = 1J1, so that in Figure 4.3 -
we are examining the behavior of J;. We could equally well have eliminated
. J1 in order to examine the behavior of J,. Equivalent to this, and more useful

for later reference, is looking at the behavior of J, when coupled to the mode
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(b)

Figure 4.3: Phase space topology for two-wave decay instability described by
Hamiltonian (4.12) with A =100, v = 1.4796, I3 = 0.01 and (a) L = 1000; (b)
L = 5000. '




44

Ja of Figure 4.2. (In either case we will be considering the behavior of the

high-frequency mode of'a pair.) The Hamiltonian for this system is given by
H = wyJy + wyJs + B/ s sin(26 — 65), (4.17)

where

k2 . . . R .
p= \/;_A [‘13(2k1) <2a3(4k1) b1(2k1) + a3(2k;) b1(4k1))

— G1(2ky) (251(%1) 33(21:1) + G1(2k,) Z’B(4k1))

(?)1(21;1) - Bs(zkl))z <Blé4k1) - 63(4’“)) (4.18)

(1+ 4kf)2(l + 16k2)
We now use the generating function
F = I~2(03 - 202) + i302 ‘ (4:].9)
to obtain
=9F _ [ _9f by = 2 — 9. —
']2 - 392 - I3 212’ ¢2 - 8I1 03 2927 (4:'20)
The Hamiltonian becomes
f{ =H - (.Uzj;;
= szz - ﬂ(fa - 2f2)\/._[~;SiIl ’(2)2 (421)
where
Qz = W3 — 2w2, (4:22)
and

Is = Jy + 2J5 = constant (4.23)
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Figure 4.4: Phase space topology for two-wave decay instability described by
Hamiltonian (4.21) with A = 100, v = 1.4796, I3 = 0.02 and (a) L = 5000; (b)
L = 10000.

is again just proportional to the momentum. This Hamiltonian describes the
behavior of the high-frequency wave of a near-resonant doublet, whereas Hamil-
tonian (4..12)l describes the behavior of the low-frequency wave. Figure 4.4
displays the phase space variables P, Q, for two values of L. We find that
the origin is no longer a fixed poiht, no unstable fixed point ever occurs, and
the two stable fixed points on the positive and negative Pj-axis always exist,

changing only in position as {}; is varied.
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Figure 4.5: Three modes which form a negative energy resonance.

4.2.2 Three-Wave Interactions

We now discuss three-wave resonances involving modes from different

branches of the dispersion relation. We first look at “negative energy reso-
- : : "

nances” (involving two negative energy modes and one of positive energy) and

then at “positive energy resonances” (two positive energy modes and one of

negative energy).

Negative Energy Resonance We now consider a three-wave negative energy
resonadce, involving the modes shown in Figure 4.5. Modes J;, Jy and Js have

wavenumbers 2kg, 2ko and 4kg, respectively. (The numbering convention is
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chosen so that we may later couple these modes to those of Figure 4.2 without

changing numbers.) The Hamiltonian is given by
H= (—UQJQ — LU4J4 — LL?5.]5 + ’)’V J2J4J5 sin(92 + 94 + 95), (424)

where

2k . 2 . . 5 ,
v \/;rLA‘ [—dz(?kl) Ga(ary) D1(2ky) +Aa1(2k1)'(12(4k1) ba(2ky)

~

— Ga(aky) a(aky) Daqaky) + Gogary) Ga(zry) D3(zky)

a

— A3(2k;) Ga(dk) 774(21:1) + G1(2k;) Ga(2ky) baaky)

. (agay = bogarny) (bagamy = bacanny) (Baae) = Bacenn)

‘)
(1 4k2)° (1 + 16K2) (4:25)

We recall that by eliminating one degreé of freedom, this can be reduced to the
form of Cherry’s Hamiltonian (2.28), so that all of the comments made there
apply also here. We will, however, go directly to the resonance variables which
reduce this to a one-degree-of-freedom system. The transformation from the
variables (Jy,Jy, J5,03,04,05) to the resonance variables (I3, Iy, I5,¥s, 14, ¥s)

comes from the generating function

F = I3(0, + 04+ 05) + L0, + I50s, (4.26)
which gives us
J2:%=~3, %[—’3:—‘%%:924‘944‘957
Jo= =T+ h, b= =0, e
J5=aTi:1=5+j3, 2/;5=%2‘:95-
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The Hamiltonian then becomes

H = H + wyly + wsl;

= 0l + 7/ Il + ) (s + L) sin s, (4.28)
where
Qa = Wy — Wy — Ws,
ILi=J— Jz = constant,
Is = Js — J, = constant.

(The wave momentum is just —2k; (Iy + I5).)

The negative energy resonance condition w; —wys —ws = 0 is relatively
insensitive to the value of L; the main control parameter is now v. For a given
L, we may calculate the value of v which yields either exact resonance or a

stable region of a desired size.

In Figure 4.6 we plot Qs vs. Ps; for L = 5000 and two values of
v, for the special case I; = I; = 0 (corresponding to equal mode amplitudes
Jy = Jy = Js). Figure 6.3.a corresponds to v = 1.47959435 which yields exact
resonance for this Vé,lue of L. All orbits are seen to go to infinity. Figure 6.3.b
corresponds to v = 1.47959256, which yieldé Q3 # 0. In this case the resonance
is slightly detuned, opening up a small stable region around the equilibrium
point, with an accompanying unstable fixed point on the Qs-axis. The value
of v was chosen so the the separatrix goes through the point P; = 0, @3 = 0.1.
Orbits outside the separatrix still experience explosive growth, while those

inside execute stable oscillations. The size of the stable region increases with
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)

>

Figure 4.6: Phase space plots for Hamiltonian (4.28) with Ii=1I;,=0. A =100,
L = 5000, and (a) v = 1.47959435 (3 = 0): (b) v = 1.47959256 (s # 0).
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‘%3-‘ These phase space plots are of course essentially identical to those for
Cherry’s Hamiltonian in Figure 2.1.b. We could have chosen other coordinates

in which the phase portrzﬁts would look like those in Figure 2.1.a.

When one of the constants I, or I5 is ﬁon-zero (i.e., either Jy4 or Js
has amplitude different from J;), the origin I3 = 0 will still be a fixed point,
but will only become stable for |Q3, > \/—I_: or \/ITE, Thus there is a range of
non-zero {3 that yields instability at the origin. This situation is illustrated in
Figure 4.7. If both I, and I5 are non-zero, (i.e., neither Jy nor Js is equal to
Ja), then no fixed points exist for small Q3. When |Q3. is large enough, a pair
of fixed points (stable and unstable) appear, but the stable point is shifted off
of the origin I; = 0 (Figure 4.8). |

Positive Energy Resonance We now consider a three-wave resonance in-
volving two positive energy waves and one negative energy wave. This reso-
nance will lead to decay instability just as in the case of two-wave interactions.
An important difference is that a given wave triplet can be in ezact resoﬁ'ance
for some v; however, the resonance condition is strongly dependent on v. (Fig-

ure 4.1).

We consider the modes shown in Figure 4.9. The wavenumbers of Jj,
Jg and J7 are 2kg, kg and 3k, respectively. Mode J; is the same one featured
in Figures 4.2 and 4.5; the numbering of the other two modes was chosen to

avoid confusion with modes already discussed. The Hamiltonian is given by

H = wz.]g + LU(;JG — w7.]7 + 5\/ J2J6J7 Sin((92 — 96 + 67), (429)




51

Figure 4.7: Phase space plots for Hamiltonian (4.28) with Iy =1.0 and I5 = 0.
A =100, L = 5000, and (a) v = 1.47959435 (& =0); (b) v = 1.47959256

(L = 0.2121); (c) v = 1.479591 (% = 0.4044).
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Figure 4.8: Phase space plots for Hamiltonian (4.28)
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(2 =0.2121); (c) v = 1479589 (L = 0.6459)..
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Figure 4.9: Three modes which form a positive energy resonance.
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where

VBk?
2\/— (a3(2k1) 614 (3k1) bs(lcl) - a1(2k1) ‘12(3k1) b 1(k1)

+ G1(ky) Gaaky) Dr(ak) — da(ks) da(r) ba(aks)

+ Ga(ry) a(2ry) Da(ary) — Ga(ary) Ga(iy) bagary)

(bs k1) b1(k1)) (?73(%1) - 131(%1)) (774(3/;1) - ?’2(3k1)>
(1 4+ k2)(1 + 4k3)(1 + 9k2)

Analysis of this Hamiltonian proceeds exactly as in the three-wave negative

+ ) L (430)

energy case. Employing the generating function
F . 1-2(92 - 05 +' 97) + j@ge -+ j707, (4:3].)

we obtain the transformation

Jzz%zjm 2;2:S*Z'=¢92—96'|*977
Je=%=1:6“-72, %56=g£=96, (4:32)

‘ J7=—§—;57=I_7+I_2, 1;72%:97,
yielding the Hamiltonian

h =H —{-wsfs -—-(AJ7I7

= Q4 _2 + 5\/I-g(j6 — I—g)(j7 + I_g) sin 'I,ZQ (4.33)

where

Q,_i =Wy — Wwg — Wy (4:34:)
and

Is=Js+ J, = constant,

I; = J; — J, = constant.
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The motion will be bounded by I, < I. Ifj—, = 0 (J, = Jy), then the
Hamiltonian has exactly the form of Hamiltonian (4.12), and the same analysis
applies, except that we may now have exactly (4 = 0. When I; # 0, we find
the same behavidr as that of Hamiltonian (4.21). The phase space is shown
in Figure 4.10. The topologies of Figures 4.10.a and 4.10.b look similar, but
for I; # 0 there is no fixed point at the origin. We could also have I; < 0,
corresponding to J, > J7, but t{his would imply a forbidden region around the

origin of the P,-Q, plane, and so will not be considered.

4.3 Multiple Resonances and Chaos

For the integrable systems just considered, small-amplitude motion
about the stable fixed points will be stable for all time. Thus when a nega-
‘tive energy resonance is detuned, only motions with large enough amplitude
(outside the separatrix of Figures 4.6-4.8) will exhibit explosive instability.
However, if we consider coupling to other modes via other nonlinear terms
in our Hamiltonian, then chaotic motion will generally arise. In itsv mildest
manifeétation, this chaotic behavior will occur in thin layers near separatriées.
Thus the separatrix between the .‘sta.ble and unstable orbits will presumably be
- “smeared out”. When chaotic motion is more widespread, many of the invari-
ant curves within the stable region my be destroyed, effectively decreasing the
size of the region. Moreover, as discussed in Section 2.3, in any chaotic system
of more than two degrees of freedom, trajectories can make their way across
the “stable” islets, so that a small perturbation may grow until it reaches the
separatrix. The speed of this transport may vary widely depending on the how

nearly resonant the various waves are. We now examine this phenomenon in
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Q,

Figure 4.10: Phase space topology for three-wave decay instability described |
by Hamiltonian (4.33), with Q4 = 0 and (2) Iy = 0; (b) Iy # 0.
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detail.

4.3.1 General Discussion
Hamiltonians of the form

H= w1J1 + CU2J2 +(.O3J3
+ € [al'(J1, Ja, J3) cos(mi0y + maly + mabs)

+ ,BG(J1, Jz, J3) COS(anel + 7’7,202 + ’I’L303)] y (435)

where F' and G are higher-than-linear functions of the J;, have been discussed
by Contopoulos [43]. A particular case involving exact resonance in both non-
linear terms (i.e., Myw; + Maw, + Maws = nyw; + nawy + naws = 0) was studied
numerically by Ford and Lunsford [44] and analytically by Kummer [45]. It
was shown that, in general, globally chaotic motion occurs for arbitrarily small
but non-zero « and B. This involves the breaking of most invariant surfaces
and the consequent wandering of orbits over most of the energy surface. Con-
topoulos éxa.mined the transition to this situation from the non-resonant case.
One exact constant of the motion besides H clearly exists since there are only
two combinations of angles in the Hamiltonian. If only one resonance condition
is satisfied (e.g., 11 = myw; + mawy + maws = 0), then another approximate
constant can be constructed, indicating the existence of invariant curves over
most of the phase space. In this case chaotic motion will be confined to thin
layers around broken separatrices. Very slow diffusion may occur along these
thin layefs; general estimates of the diffusion rate by Nekhoroshev [46] have
been épecialized by others [47] to the simpler case of coupled linear oscilla-

tors that we are considering. As the other resonance condition is approached
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(2 = nwy + nawy + nagws — 0) and the “effective perturbation” ¢/Q, be-
comes large enough, then the approximate constant cannot be constructed,
and the widespread dissolution of invariant surfaces occurs. This allows very

fast transport in phase space.

4.3.2 Multiple Resonances in the Beam Problem

We now consider what sort of multiple resonances occur in our coun-
terstreaming ion problem. We have seen that exact three-wave resonances are
possible, involving either decay instability (“positive energy resonance”) or ex-
plosive instability (“negative energy resonance”). In addition, long-wdvelength
modes from the same branch of the dispersion relation will interact strongly
due to the near-resonance that will always exists between them. Whenever we
iriclﬁde more than one nonlinear term in the Hamiltonian, we will expect to
find chaotic behavior originating in thin layers near separatrices. One result
is that the well-defined stability boundary associated with a single negative
energy resonance will be destroyed. We then expect that perturbations that
were within the unperturbed separatrix may now becorﬁe explosively unsta-
ble by crossing the chaotic layer. Another important consequence involves the
breaking of separatrices associated with the positive energy resonances. Since
these separatrices involve confined motion, the chaotic orbits that replace them
can provide a long-time driver for chaotic -transport fhrough the phase space.
When the system includes a negative energy triplet coupled to one or more
such positive energy resonances, this chaotic motion may allow orbits that are
initially deep within the “stable” negative energy islet to grow in amplitﬁde

until explosive instability occurs.




59

The extent of these chaotic regions may range from very thin'ladyers

| to the entire phase space, depending on how many positive energy resonances
or near-resonances occur. The two-wave near-resonance conditions may be
arbitrarily well-satisfied deﬁending only on the wavelengths, so that we would
expect the possibility of approaching global chaos as was just described. This
effect may be even stronger if a three-wave positive energy resonance condition
is satisfied, which can occur for modes of any wavelength. With most or all
invariant surfaces destroyed, orbits may reach any point in phase space via
“thick-layer” diffusion. If positive energy resonance conditions are not nearly
enough satisfied, then stochasticity will be confined to thin layers. Transport
across large distances in the phase space may then be expected via Arnold
diffusion (a,lfhough on slow tirﬁe scales) if the Hamiltonian has three or more

degrees of freedom. We will now investigate these issues numerically.

We will study two simple systems that illustrate the phenomena we
have discussed. For both systems the Hamiltonians have three nonlinear cou-
pling terms, one of which can drive the explosive instability, and the other two
of which describe positive energy reéonances; In the first system both positive
eﬁergy resonances arise from two-wave interactions; in the second system one

of these terms describes a three-wave interaction.




Chapter 5

Numerical Method

5.1 Symplectic Integration

As discussed earlier, chaotic motion in a system of waves may allow
phase space diffusion that can have dramatic consequences for long-term sta-
bility. At the same time, invariant surfaces in phase space will often place
strict limits on the motion. In doing numerical work, therefore, we must en-
sure that invariant structures are properly reproduced, as well as ensuring that
the observed chaotic motion and phase space diffusion are true properties of
the Hamiltonian under consideration and not spurious results of the numerical

method.

 In an N-degree-of-freedom Hamiltonian system, the evolution of the
2N dynamical variables z = (¢, ... ,q&,pl, ...,pn) during a time At is given
by a canonical, or symplectic, transformation [14, 48]. Defining the 2V x 2N

Jacobian matrix M for this transformation

.az{
Mii(z) = ==, | 5.1
(@)= 5 J (51)

the symplectic condition is stated as |
MIM = J (5.2)

where J is the cosymplectic form (2.6), Such a transformation preserves the hi-

erarchy of Poincare invariants [49], placing strict limits on the possible motion.
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A consequence of this is the conservation of phase space volume as required
by Liouville’s theorem. A number of symplectic integration schemes have been
developed which rigorously satisfy the symplectic requirement (see [23] and
references therein). We employ two such approaches. The first is a symplectic
Runge-Kutta algorithm [24, 50] which is applied to our Hamiltonian written
in cartesian coordinates (P;,@;). While this provides an exactly symplectic
transformation for the time advance of the dynanﬁéal variables, a ma,jof draw-
back is that the equations providing this transformation are implicit in the
time-advanced variables z!. In general, this necessitates numerical solution of
thé implicit equations. It turns out that for the systems of interest in this
work, this numerical solution is sometimes very difficult to acheive. A second
approach that provides an algorithm in explicit form. involves the appli‘ca.tion
of Lie transformations [26]. In Section 5.3 we show how this method is used to

obtain an explicit small-timestep integrator.

5.2 Symplectic Runge-Kutta

The Runge-Kutta method is one of the most commonly used tech-
niques for integration of ordinary differential equations [51]. Less well known
is the fact that this method, in implicit form, is symplectic [50]. For a Hamil-
tonian H, the symplectic tranéfdrmation for the second-order Rﬁnge—Kutta

timestep is given by [24]
z =2+ AtJ-VH(z+y,t+ At/2) - (5.3)

where y is the solution of the implicit equation

t
y— AT J.VH(z+y,t+ At/2) = 0. (5.4)
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A fourth-order timestep is also possible [24]; in this paper only second-order
was used. The co_mpleteuFORTRAN subroutine used was written by H. Ye [52],
based on the work in [24]. Numerical results obtained using this method will

be described in the next chapter.

5.3 Lie Transformations
5.3.1 Introduction

Like most symplectic integration methods, the Runge-Kutta algo-
rithm just described is an implicit method, requiring numerical solution of the
implicit equations at each timestep. Besides being time-consuming, this nu-
merical solution can sometimes be difficult to achieve. This turns out to be the
case for some of the highly chaotic systems considered later in this paper. We
therefore turn to another method which overcomes this difficulty, and in addi-

tion yields a much faster algorithm. This is the method of Lie transformations.

Given a time-independent Hamiltonian H, the evolution of the 2IV
dynamical variables z; during time At may be described in terms of an expo-

nential operator

zh = el"AtH 15 (5.5)

Such an operator el/+'1 for any functlon f, is evaluated by expanding the
exponentlalz

sz at(fa]+5 [f £, z;]]+ VAR (5.6)

where [f, g] is just the Poisson bracket

N a
[f,g]l = Z af'fuaz,

1,7=1
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N (0f 89 99 Of ‘
= (3_%3_2%_5;3%) - (5:1)

1,5=1
for any functions f and g of the dynamical variables. A transformation of the

form (5.6) is known as a Lie transformation.

The evolution of the dynamical variables during time At under the

action of the polynomial Hamiltonian H is then given by

Z = elm8tH 1y,
= z; — At[H, z;] + (A;)z (H,[H, z]]
_ (Ag??’ EEE ] (58)
Note that for vanishing At, this just yields Hamilton’s equations
¢ =—[H,q] = %{
pi = —[H,pi] = —g—f

It turns out that any (symplectic) transformation of the phase space

variables z; that may be written as a power series
/
zZ; = ao + ;2 + ajk2izp + a5k22620 + 0 (59)

(where repeated indices imply summation) may be uniquely expressed in the

form of an infinite product of Lie transformations of the form

/

. .
= I ¥ 1z
' n=1

C el gl el Dl | (5.10)
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where f, is a homogeneous polynomial of degree n. Each-n-th order operator
el/» 1 reproduces the corresponding n-th order terms in the series (5.9). The
- Hamiltonians that we will consider may all be written as polynomials, so that
the resulting transformations will be of the form (5.9). Each operator in.the
product (5.10) describes a symplectic transformation, and the transformation
described by the product of any number of such operators is likewise symplectic.
If this infinite product is truncated at any order n, then the remaining ﬁnite
product of operators will describe the motion accurately up to order n in the

dynamical variables.

Tt s possible to combine a product of two or more operators into a
single operator, or to decompose a single operator into a product. In general,
two operators el/>'] and el '] will not commute with one anothef; i.e., the -
action of elf'lelo*] is not the same as the action of el ']e[f’ ‘l: therefore the
combination of two Lie operators into one is not trivial. Hoﬂvever, a result
known as the Campbell-Baker-Hausdorff theorem tells us how to relate these
operators in terms of simple commﬁtators of f and ¢g. For Lie operators the
commutators are very simply deﬁned in terms of Poisson brackets involving f

and g. The theorem gives us the following form for the combination of two

operators:
glef, 1080, -1 _ k-] (5.11)
where |
b=af + 60+ 22170+ LU ol + ol o, 1)
+ S0 o N+ O (a8, 0% 0% 08 . (512
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Note that if @ and B are small parameters, then the higher-order commutators
in h are progressively smaller, and in some cases may therefore be discarded

above some desired order.

Any Lie transformation such as (5.6) or (5.8) has the required virtue
of 'being exactly symplectic, but the infinite series unfortunately cannot be
truncated at any finite order without destroying this symplecticity [28]. It
turns out, however, that closed-form expressions exist for the general series
[29]. For some special functions f the series actually terminates at finite order.

For example, in one degree of freedom, if f =.f(¢) (no p-dependence) then we

have [f,q] =0 and [f,p] = %f;— so that we get

¢ =49

A number of such results are summarized in Table 5.1 for various
functions ag(p, ¢) in one degree of freedom, where « is an arbitrary constant.
The extension to fnore degfees of freedom is trivial; in that case o would be
either a constant or a function of dynamical variables other than the (p;,¢;)
‘being operated on. The two formulas before the last one, for f = ap™q™, are
due to I. Gjaja [29]. Along with the preceding expressions, and in conjunction
with the Campbell-Baker-Hausdorff theorem, they provide explicit expressions
" for the action of any operator el/:*]. The last formula provides the basis for a
method due to Irwin, known as kick-factorization. This involves decomposing .
an arbitrary operator into a product of operators that yield terminating series

(describing a “kick” of the dynamical variable). This is the method that was




¢ =q
f=ag(q)
p'=p+a¥
=g — a2l
f=ag(p) q, q alap
p=Pp
I= _2
f = ap? q,_q ap
P =P
!
— 2 q :'q
f=aq N
p'=p+2aq
I o
f = apg ¢g=e"q
p=¢e%p
f=aPtd ¢' = qcosa + psina
2 .
p'=—gsina+ pcosa
f=olt | ¢ =gcosha —psinhe
- 2
p' = —¢sinh a + pcosh a
"= g¢gll =1, m—1]men
f=ap™¢",m#n,m+n>3 ¢ =q[l+a(n-m)gp™ ]
P =p[l +a(n—m)g*tpm 7=
! —_ —dnqn—lpn_l
f=ap*g",n>1 ¢ =qe
pl = peend" TP
'— g — ba) ™1
f=c(ap+bg)",n>1 ¢' = ¢ — aan(ap + bq)
p' = p + abn(ap + bg)"~!

Table 5.1: Transformations of (p, q) generated by elf'] for various f.
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employed in our studies of wave-wave interaction. In the next section we de-
scribe the derivation of a numerical algorithm in terms of Lie transformations,

and the reduction to explicit form by kick-factorization.

5.3.2 Application to a Simple Example

We now apply the methods of Dragt and Forest and of Irwin to derive

an explicit, small time step integrator for the two-wave Hamiltonian (4.7), cor-
rect to third order in the dynamical variables z; = (@, P;) and in the timestep
At. This will serve to illustrate the method and will provide us with one of
the algorithms to be used later. (These methods may be used to obtain oper-
ators accurate to any desired order; fof our purposes, however, third order is

sufficient.)

That Hamiltonian for the interaction of two positive energy waves

was given by

H =wJi +wyJy + adiy/ Ty sin(26; — 65)

w w

= (P + Q1) + 5 (B +@3) + 201 P Po — Qu( P! — Q1] (5.13)

where P, = 2Jycos0y, Q1 = /2J1sinf;. We seek expressions for the time
advance in terms of second- and third-order polynomials f, and f:

z; = elfarlelfzi 1y (5.14)

Let us write the Hamiltonian as H = H, + Hz where H, is the part

quadratic in P; and @ (linear in J;) and Hj is the part cubic in P; and @,

(nonlinear in Ji). Then f; is given simply by

fa = —HyAt. (5.15)
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When el "1 operates on the z;, the resulting series may be summed to give the

linear motion:

- [ a2 e

It is easily shown from the Campbell-Baker-Hausdorff formula (5.12) that our
algorithm can be made accurate to order At® rather than A¢? by splitting the

linear transformation into two parts:

Z:' — e[f2/2.~]e[f3-']e[f2/2a']zi. (5,17)

This was done in our computations.
The polynomial. f3 is given by the negative of the integral of H3 over
- the lowest-order orbits |
fo=— [ at Hy(, (5.18)
where Hs(z!) means the polynomial Hs evaluated at 2! = el "1z, Carrying

out the operations, we obtain

«

V30
+ 2sin? (AL/2) [Pa(Q? — P2 — 2Q1 Q2] b, (5.19)

fi=-

{Sin(ﬁlAt) [Qz(@% — P{)+ 2Q1P1P2]

where _
Ql = 2(4)1 - Wa. . (520)
Again from the Campbell-Baker-Hausdorff formula, we see that any operator

el I involving a cubic polynomial f; may be approximately re-expressed as a

product of operators involving the constituent monomials:

] = I A0 )

N (1)
~ ] elfs 1) (5.21)
1=1 T
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where the error is fourth order in the ;. Each operator elfs” ] yields an infinite
series that may be written in closed form. We choose, however, to express the
operators in polynomial form using the kick-factorization method of Irwin. This
consists of replacing the operator el 1, which couples two degrees of freedom,
with a new operator el '] where
6
g3 = pi(Q1 cos ¢1) + Py sin ¢{0)(Q; cos o) + P, sin ¢("). (5.22)
i=1
From the last formula in Table 1 we see that the action of the operator el9s: !
on any z; yields an expression that terminateé‘ at second order, so that each
time advance is now done in terms of compositions of quadratié'polynomial
mabpings. |
The angles comprising the linearly independent pairs (¢, ¢,) are cho-
sen to be evenly épaced in the interval (0,27). The coefficients p; are found
by simply solving the systems of equations fs = g, which comprise six linear
equations in the six unknowns p;. This system is most conveniently solved

numerically.

In implementing the algorithm, we actually decomposed the poly-
nomial operator el '] into a product of operators involving the constituent

monomials. To advance the dynamical variables by a single timestep we then
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apply the six consecutive mappings

Q) = Q1 — pi2(Q1 cos %) + Py sin ¢{9)(Q, cos ¢z(j) + Ppsin ¢§i)) sin ¢(),
Q% = Q2 — pi(Q1 cos ¢8) + Pysin ¢())? sin {7,
P! = P; + p;2(Qy cos ¢8) + Py sin ¢00)(Q; cos ¢ + P, sin ¢{)) cos ¢,
P} = P + pi(Q1 cos ¢{) + P sin ¢{))? cos ¢,

i=1,-.-,6.
(5.23)
The angles qﬁ:(;)y were chosen as follows:
( : \
o) =0 ¢§1) =/3
B =0 4P =2n/3
() = () =
Jo"=m[3 47 =0 (5.24)
oW =x/3  ¢® =2r/3
89 =27/3 ¢ =0
| 48 = 27/3 ¢® =m/3. |

We now have an explicit symplectic algorithm to follow the time evo-
lution of Hamiltonian (5.13). For some situations discussed later, it is difficult
to solve implicit equations for the time-advanced variables, so that explicit-
néss is an important strength of the Lie method. Moreover, the simplicity of
this algorithm results in an iﬁcrease in speed by roughly a factor of 6 (for the

systems considered ih this paper) over the second-order Runge-Kutta imethod.
| For some of the more time-consuming calculations described later, this too will

be an important virtue.




Chapter 6

Numerical Results: Explosive Instability and
Two-Wave Interactions

We now present numerical results for several simple systems of inter-
est. Results are grouped according to the number of degrees of freedom, which
is determined by the number of resonances included in the Hamiltonian. Three
cases are considered: one degree of freedom (to see how well our algorithm
reproduces the known integrable motion); two degrees of freedom (to examine
the effect of nonintegrability and resultant separatrix breaking in the simplest

case); and three degrees of freedom (to study the effect of high dimensionality).

The only positive energy resonances considered in this chapter will be
the near-resonances that occur for pairs of long-wavelength modes. The next
chapter addresses the special case of an additional three-wave positive energy

resonarnce.

The normalization introduced in Chapter 3 was such that time is in
units of the inverse ion plasma frequency w; 1. In these units the constant coef-
ficients in the Hamiltonian are extremely small, and the time scales over which
the system evolution occurs are correspondingly long. The actual characteristic
frequency of an ion-acoustic oscillation with wavenumber k; is k;c, in physical
variables, or k; in our dimensionless variables. For compilta,tions we therefore
_ re-normalize by dividing the Hamiltonian by %; and multiplying the time by %,

so that one unit of time now corresponds to one ion-acoustic oscillation time

71




72

k1. To make the Hamiltonian’s coefficients even closer to unity, it is divided
again by a factor of 104, so that the unit of time finally used in computations

is therefore ten thousand ion-acoustic oscillation times, 10*/k;.

6.1 Integrable Cases

Before looking at numerical studies of chaos, we first check that our
algorithm properly reproduces the known behavior of the integrable, single-
resonance systems. Wé consider both a two-wave positive energy resonance
and a three-wave negative energy resonance, comparing the performance of
the second-order implicit Rungé-Kutta algorithm and the explicit polynomial

algorithm.

6.1.1 Positive Energy Resonance

The numerical methods are first applied to the single two-wave dou-

blet described by Hamiltonian (4.7):
H = wiJy +wads + adyy/ Ty sin(26; — 65). (6.1)
We have seen that in terms of the resonance variablesv

jl - %']17 "/;1 = 201 - 927 (62)

Li=10+Jy, s =0,

this takes the form
H = Qljl +204j1\/ j3 _-Tl Sil'l'l,zl . (6.3)

with Q; = 2w; — w, and I3 = constant.
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The resonance variables (or their cartesian counterparts) are conve-
nient ones in which to view the phase space topology, but they are not good
for numerical computations, due mainly to the difficulty of evaluating \/J5s — I1
when the argument is near zero. Numerical computations are therefore done
in the original coordinates (P;, @;), using both second-order Runge-Kutta and
Lie transformations; the Lie algorithm used is exactly that derived in Section
5.3.2. For the discussion here we need refer only to the resonance variables;
the transformations between these and the (F;, Q;) were done internally by the

computer.

In Figure 6.1 we plot Q; vs. P, for two values of L; the parameters
used here are the same as those used in Figure 4.3. Results are shown for
both n'umerical‘algorithms; in both cases the timestep was d¢t = 1.0. Even
for this rather large timestep, both algorithms show good agreement with the
analytical curves of Figure 4.3. Both éets of curves were generated from the
same set of initial conditions; it will be noted that due to some distortion of
the curves by the numerical algorithms, these initial conditions do not yield

exactly the same curves.

It is important also to consider the long-time effects of numerical
error on the invariant curves. Figure 6.2 shows one curve of Figure 6.1.b with
dt = 1.0, plotted for the first 2000 and last 2000 time units of the interval
0 <t < 10°. As with all work to be described in this paper, computations were
done using 14-digit precision. In neither case is any numerical diffusion of the

orbit observed.



74

Figure 6.1: Numerical results for the Hamiltonian (4.12) with A = 100
L = 5000, v = 1.4796, using (a) Runge-Kutta, and (b) Lie transformations.
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Figure 6.2: Long-time computation of a single invariant curve of Figure 6.1.b
for timestep dt = 1.0, by (a) Runge-Kutta, and (b) Lie transformations, using
14-digit algebra. In each case the left-hand figure shows the curve plotted up
to ¢ = 2000, and the right-hand figure shows superimposed on this the curve
plotted for 998,000 < ¢ < 1,000, 000. -
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6.1.2 Negative Energy Resonance
We now consider the three-wave negative energy resonance described

by Hamiltonian (4.24):

H= U)g.]z - LU4J4 - LU5J5 + 0AY/ J2J4J5 Sil’l(ez + 94 + 95) (64)
In terms of the resonance coordinates

L = Js, z/;3=92+94+95,
Li=Js—Joy s =04 ' (6.5)
Is = Js — Ja, 1[’5‘—_— 0s

introduced earlier, this Hamiltonian takes the form

H =0+ ’)’\/—73@1 + I3)(Is + I3) sin 93, (6.6)
where 03 = w; — ws — ws and [y = constant, J5 = constant. For the special
case Iy = Iy = 0 (corresponding to J, = J4 = J;), the Hamiltonian reduces to

the polynomial form

B = 0sly + 712 sints
Qs

= (B + Q%)+ 51\/3@3 (P2+@2). - (67)

In this form the Hamiltonian is now amenable to the Lie transformation meth-
ods of Section 5.3.2. It will be noted that the nonlinear term in (6.7) is of a
different form than that considered earlier, in that it involves brﬂy one degree
of freedom rather than two. This leads to some difference in the application of
kick-factorization. The treatment of this situation is defered to Appendix D;

here we just look at the results.
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() (b)

Figure 6.3: Numericél_results for the Hamiltonian (6.7) with A = 100, L = 5000
and v = 1.47959256 (Q3 # 0), using (a) Runge-Kutta, and (b) Lie transforma-
tions.

As discussed in Section 4.2.2, the value of the detuning Qs depends
strongly on v and relatively weakly on L. For a given L, the value of v which
yields either exact resonance or a stable region of a desired size may be deter-

mined numerically.

In Figure 6.3 numerical results from both algorithms are displayed
for the case v = 1.47959256 ({3 # 0) and in Figure 6.4 for v = 1.47959435
(Q3 = 0). The analytical curves for the parameters considered here were
shown in Figure 4.6. Again both algorithms show good qualitative agreement

with the analytical curves. The only visible distortion occurs in Figure 6.4.b.
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Figure 6.4: Numerical results for the Hamiltonian (6.7) with A =100, L = 5000
and v = 1.47959435 (Q3 = 0) using (a) Runge-Kutta, and (b) Lie transforma-
tions. '
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The initial conditions were chosen symmetric about the @3 = 0 axis; distortion
of the curves by the Lie algorithm results in these initial conditions yielding

‘orbits not symmetric with respect to this axis.

6.2 Nonintegrability: Two Degrees of Freedom

We now examine two Hamiltonians involving two degrees of freedom.
The two cases of interest are that of two positive energy resonances and that

of one positive energy and one negative energy resonance.

6.2.1 Two Positive Energy Resonances

Consider first the Hamiltonian describing the interaction of all three

modes of .Figure 4.2:
H= (.UlJ]_ + wng + LU3J3 + a.]l\/.]jsin(%l - (92)
+ BJy\/Jssin(26, — 63), (6.8)

where « is given in Eq. (4.9) and 8 in Eq. (4.18). The transformation to

resonance variables comes from
F =T1,(20; — 82) + I, (65 — 205) + Ly + L0, + Isbs, (6.9)

which gives us

=8 =21, %y = ZE =26, — 6,
J2=a§£‘= I — 21, — I, ¢2=§%=93—2‘92, (6.10)
Jo= 25 =T, o= =0
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The Hamiltonian then becomes

H=H—w],
=MWh + Qo ly + o2\ I; — 21, — Ly sin gy
— (5= 2k — L)y Tasindhy (6.11)
where
0 = 2wy — wy
Q= w3 — 2w,

..73 = %Jl + J; 4+ 2J3 = constant.

Again, computations were done in the original variables P;, Q; (in three de-
grees of freedom). All results diplayed in this section were obtained using
Lie transformations; as in Section 6.1, these agree well with the results from

Runge-Kutta.

Note that the first and second nonlinear terms of Hamiltonian (6.11)
have the forms that occur in Hamiltonians (4.12) and (4.21), respectively.
-These would individually produce the phase space structure seen in Figures

4.3 and 4.4.

We have been studying the phase space topology of single-resonance
Hamiltonians with the help of phase space plots, which is trivial for one-degree-
of-freedom systems. As discussed in Sections 2.2 and 2.3, Poincare surface-of-
section plots can be used to obtain similar visualizations for two-degree-of-

freedom systems. Thus we examine the plane ¢, = Z (P, = 0) in phase
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space. That is, each time that P, = 0 goes through 0 (with the same sign time
derivative) we plot Q; vs. P;. (The actual points plotted are determined by
linear interpolation between the values immediately before and after 17)2 goes
through Z.) |

| Typically, a surface-of-section plot is made by considering a fixed
value of the energy H. For the Hamiltonian (6.11), given any initial condi-
tion 1, ; on the ¥, = constant pla;ne, the initial value of I, is automatically
determined by the constancy of the energy (unless the initial conditions are
incompatible with the specified value of H, in which case no real solution for

I, would be found ).

Here a slightly different approach will be used, in order to facilitate
comparison with the constant-energy contours plotted for the single-resonance
cases in.Section 4.2. For the Hamiltonian (6.11), we consider a series of orbits
starting with various values of (1,/71, L), but somé fixed, very small value of I,
(i.e., a very small value of J3) These orbits will all correspond to different
values of H, which will be very nearly équa.l to the values of A for the contours
plotted in Figure 4.3 for the Hamiltonian (4.12), for which the mode J; was
absent. Now, however, the resonant interaction between modes J; and J; will
lead to growth of J; via decay instability, with a strong perturbing effect on
the system. By plotting the résulting orbits we can then observe directly the
perturbation to the constant-energy surfaces of Figure 4.3 caused by coupling

to J3.

In a surface-of-section plot corresponding to a two-degree-of-freedom
Hamiltonian with a fixed value of H, invariant curves cannot cross one another

 since that would violate the invariance. Note that this does not apply to the
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plots considered here, since we are actually displaying orbits corresponding to

different values of the Harmiltonian, plotted on the same page.

The phase space topology is determined primarily by the effective
‘detunings %l and %2- If we had 8 = 0, then we know that the origin (I; = 0)
of that one-degree-of-freedom system would become unstable for ‘%} < \/f_g
For the two-degree-of-freedom system this criterion will be shifted due to the
non-éero I,. When ‘%}( is small then ,%1’ will also be small (although not quite
as small), and the smaller these two values are, the more chaotic the system’s

behavior will be.

In Figure 6.5 results are shown for A = 100 and v = 1.4796, with
L ranging from 2500 to 9000. For every orbit, the initial value of Q, is 107°
(corresponding to I, = 5x10713). I; was set to 0.01. While very large timesteps
were used in plotting the phase space for one-degree-of-freedom systems, in
order to obtain good surface-of-section plots here a smaller value is required;
we used dt = 0.1. For L = 2500 (%L ~ .19, %1% —.53) there is an unstable
fixed point at the origin. A very thin stochastic layer exists along the separatrix
through this fixed point; the chaotic motion is not observable in this picture.
For L = 5000 (%1- ~ .09, %2 ~ —.27) the stochastic layer through the origin
has become more prominent, and when L = 9000 (%l ~ .05, %1 ~ —.15) a

majority of the accessible phase plane is occupied by chaotic orbits.

Here we have considered a fixed value of the constant I;. A different
value of I3 would mean that a different value of the effective detuning %L would

be required in order to have instability at the origin of the P,-Q, plane.
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Figure 6.5: P, = 0 surface-of-section plots for Hamiltonian (6.11), with (a)

L = 2500; (b) L = 5000; (c) L = 9000. Each orbit was started with Q, = 10~6

so that each corresponds to a different value of E .

k)
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6.2.2 One Positive Energy and One Negative Energy Resonance

We have seen that wave-wave coupling involving multiple positive
energy resonances can lead to strongly chaotic motion. We expect that when
one of these waves is also involved in a negative energy resonance, then the
occurence of explosive instability may be strongly influenced by this chaotic
motion. The many-dimensional nature (three degrees of freedom) of such a
system may be particularly critical. However, before considering the effect
of coupling a negative energy triplet to two positive energy resonances with
their attendant strong chaos, we first consider the effect of coupling to a single
positive energy resonance. While unlikely to be so strongly chaotic, such a

system will exhibit some interesting effects.

We therefore consider the four modes shown in Figure 6.6. These
are the same modes of Figure 4.5 with mode J; of Figure 4.2 added. The

Hamiltonian is
H = wyJs + w3Js — wyJy —wsJs
+ BJy/Tasin(20, — 65)
+ 11/ Ja s sin(8 + 05 + 5). o (6.12)
The generating function
F = L(03 — 20,) + I3(0; + 64 + 05)

+ L0y + Isbs (6.13)
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Figure 6.6: Four modes comprising one negative energy resonance and one
positive energy near-resonance. '
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yields the transformation

J2=%—"=I_3—2—72, 252:@%‘—“93—292, ‘

J3=%=T2, 153=3*£‘=92+94+95, (6.14)
J4=%=I—4+j3, '%54=3a‘g=94,
J5=%=f5+-73, st=§£—=95,
so that the Hamiltonian becomes
H=H + wyly + wsls
= Ty + 0uTa — AL — 2L)\ Tysin
+9y/(Is = 2L)(I + I)(Is + I;) sin s (6.15)

where
y = w3 — 2w,,
Q3 = wy — wy — ws,
I, = Jy — (Jy + 2J3) = constant,
Is = Js — (Jo + 2J3) = constant.
For I, = Is = 0 this reduces to

A = 0L+ Qs — BT — 2L/ Ty sin

+ ’ng\/ j3 — ng sin ’(53. (616)

Rather than carrying out computations in the original four-degree-of-freedom

Hamiltonian, this time a special set of computational coordinates are employed,
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which reduce the Hamiltonian to a three-degree-of-freedom polynomial. It is
convenient to defer discussion of these coordinates until later (Section 6.3 and
Appendix D). For now we need only refer to the resonance variables (I;, ;)
or (P;,Q;) that will be used for displaying our results. The results of this
section were obtained from the second-order Runge-Kutta algorithm; this was
the one case where Lie transformations did not give satisfactory fesults. (That
method yielded results that depended strongly on the timestep, while Runge-
Kutta results did not display this dependence. The Lie method agreed with

Runge-Kutta only for exceedingly small timesteps.)

In Figure 6.7, we again see a P, = 0 surface-of-section, plotting Q3
vs. P; for various values of L. As in the last section, Q4(0) = 10~° for each
orbit, so that each orbit corresponds to a different value of A. The timestep |
was dt = 0.1. These orbits may then be thought of the energy contours of
Section 4.2.2, perturbed by the near-resonant coupling between modes J, and
Js. For each value of L, v was chosen so that, in the absence of mode J3, the
separatrix around the stable region would be of the same size (passing through
the point P, = 0, @, = 0.1). This separatrix was plotted for each case, to see
how the region of stability has been affected by the coupling to Js.

In all three cases we see that the stable region has been enlarged. This
may be understod from the form of Hamiltonian (6.16). In the second nonlinear
term, we see that the coupling to the 1, — I; motion (i.e, the coupling to mode
J3) has resulted in a factor of \/.7—3 being replaced by \/I5 — 21,. This effectively
decreases the nonlinearity associated with the negative energy resonance, and
we therefore expect a stabilizing influence. While the new stable region does

not change drastically in size with L, we find that for L = 2500 the separatrix
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Figure 6.7: Surface-of-section plots for Hamiltonian (6.16), for (a) L = 2500,
(b) L = 5000 and (c) L = 9000.
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Figure 6.8: Five modes comprising a negative energy resonance and two positive
energy near-resonarces. ' '
appears quite regular, while for larger L chaotic orbits and large island chains

appear around the stable region.

6.3 Chaotic Transport in Three Degrees of Freedom

We now consider a system consisting of all five modes consid~ered
above, as shown in Figure 6.8. Modes J;, Jy and Js form a negative energy
triplet, whiie mode J, forms two near-resonances with modes J; and J;. Re-
calling our earlier results: We saw a.bové that the two near-resonances involving
modes Jy, J; and J3 can generate strongly chaotic motion, depending on the

value of k). The negative energy resonance will drive explosive instability when
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the resonance condition Q3 = 0 is satisfied. We then expect that any initial
conditions will lead to immediate explosive growth. By changing v we detune
this resonance, opening an islet of “stable” motion around I3 = 0. If the sys-
tem is strongly chaotic then fast diffusion can occur in phase space, so that
any orbits may quickly acheive large enough amplitude for explosive instability
to occur. If the system is less chaotic and there are many invariant surfaces
near the equilibrium point, then such fast diffusion cannot occur. However,
unlike the two-degree-of-freedom case just considered, where two-dimensional
surfaces paftition the three-dimensional energy surface_ and provide- absolute
barriers to transport, thgse three-dimensional surfaces cannot partition the
- five-dimensional energy surface, and thus an orbit lying in a stochastic region
very near the origin is not prevented from finding its way to large amplitude

and subsequent explosive growth.

This system is of course much simpler than is likely to occur in reality.
We would typically expect many more modes to be present and interacting via
two-wave near-resonances. However, this system is of interest as the simplest
highly chaotic system of more than two degrees of freedom that we can obtain

from our counterstreaming ion model.

The Hamiltonia,n- for the five-wave set is given by
H=wJ + wzjfz + w3 —wyJy — wsJs
+ /Ty sin(260; — 65)
+ B2/ Js sin(26; — 65)

+ TV J2J4J5 sin(92 -+ 94 -+ 95). (617)




91

The transformation to resonance variables is obtained from the generating func-

tion
F= —71(291 —0,) + I_2(93 —20;) + 1_3(92 + 04+ 05)

+ f494 + f505 ) (618)

which gives us
J1=‘g—91%=2]_1, 1;1=%:'=261_625
J2:%= _3—21_2—1;1, 1172=§£-=93—292,
J3 = %5j2, 1/33=§£-=92+94+95, (6.19)
J4=%=j4+-73, 154=27F;=94a
.J5:%=Ts+j3, iszgg:Hs-
From this we obtain the three-degree-of-freedom Hamiltonian
H=H 4wyl + wsly
= QII_I + szz -+ Q3j3 + a2]_1\/ f3 — 2j2 - .[_.1 sin '(Z)l
- AL - 25— L)Y Lsin
+ /(5 =20 - L)(L + L)(Is + L) sin s, (6.20)

" where

o]l

1 = 2w; — wy,
Qg = W3 — 20.)2,

U3 = wy —wy — ws,
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and

I, = J‘.i — <%J1 +Jy+ 2J3) = consta,nt,b

I = Js — (%Jl + Jo + 2J3) = constant.

As before, the resonance variables (I, ;) are not well-suited to com-
putations. Rather than doing our numerics with the original five-degree-of-
freedom Hamiltonian (6.17), however, we ﬁote that it is possible, for the spe-
cial case I, = Is = 0 (i.e., J» = Jy = Js), to find a set of'coordinates that
transforms this into a three-degree-of-freedom polynomial Hamiltonian. This
transformation, and the subsequent derivation of a nufnerical algorithm via Lie
transformations, is carried out in Appendix D. Here we will summarize the

numerical results.

We consider initial states where modes J;, J4 and Js (those involved in
the explosive instability) are of significant (and equal) amplitude, while fnodes
Ji and J3 begin with very small amplitudes. In the transformed variables, this
means that I3 starts with sighiﬁcant amplitude, while [; and I, are very small.
As in the last section, therefore, we will essentially see a perturbation of the
constant-energy curves of Figure 4.6 due to the coupling to modes J; and J3 (L,
and I;). As we have seen, for long enough wavelengths the nonlinear coupling
between modes J;, J; and J will lead to growth of J; (I;) via decay instability.
The chaotic motion that originates along the associated separatrix (but which

may be very widespread) will then drive diffusion in the value of I5.

Fixing the value A = 100, we scan various system sizes L. As in the

" last section, for each L, v was chosen to yield an “unperturbed” separatrix of
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the same size. The system is initialized with various values of P5(0), Q3(0) while
always using P,(0) = Pz(O) =0, Q1(0) = Q2(0) = 107, (Again, the timestep
was dt = 0.1.) Starting I3 large enough should always lead to immediate
explosive growth. If I3 starts well within the “stable” islet, then it will exhibit
fairly stable motion initially, but may undergo stochastic diffusion in amplitude
until reaching large enough size for explosive growth to occur. An arbitrarily
chosen amplitude of 100 marks “escape” if any of the computational variables 2
or Q; gets larger than this. Mode amplitudes are not monitored once explosive
growth sets in; we are interested only in how the modes achieve sufficient

amplitude for this growfh to begin.

Figures 6.9-6.13 show surface-of-section plots for various initial condi-
tions, for the cases L = 5000 and L = 10000, respectively. ~The unperturbed
separatrix passes through the point P; = 0,Q3 = —0.2; all initial conditions
included P3(0) = 0, and —0.2 < @3(0) < 0 (within the separatrix). We ex-
amined the plane P, = 0, plotting Q; vs. P, and Q3 vs. P;. Superimposed
on the Pi:-Q; plot is the separatrix that would exist in the absence of modes
J; and J;. Plots are shown for various time intervals. It should be noted
that what is seen here is one possible projection of the five-dimensional energy
surface. A surface-of-section for a two-degree-of-freedom Hamiltonian maps
invariant surfaces into two-dimensional lines, so that all the essential quali-
tative behavior of the system is captured graphically. In a surface-of-section
for a three-degree-of-freedom Hamiltonian, however, there is no unique way
to plot the four independent variables. It is found, however, that the chosen

projections still provide enlightening information on the phase space structure.

The Pi-Q; and P;-Q; motions now strongly affect one another. When
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L= 5000 (,= 4.421E-08
A= 100 (l,= -3.537E-07
v = 1.4795926 ;= 9.952E-08
H = 5.945E-10 a = 4.684E-07
l,= 0.00 . B = 1.325E-06
Is= 0.00 v = 4.691E-07
o) = o000
P;(0) = 0.0000000 npoints = 70
Q,(0) = 0.0000010 tmin = [
?,(0) = 0,0000000 frrox - 1279
O 3 Qy(0) = -0.1800000 a1 = 0.{00 O 3
0<t< 1,279
Q] - ,3."/ “‘:. Q3
0.3 — e 0.3
-0.3 — +0.3 — 0.3
P, P3

Figure 6.9: Phase space diffusion in three degrees of freedom, with L = 5000
and Q3(0) = —0.16. Escape occurs at t = 1279.
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L = 5000 Q= 4.421E-08
A= 100 (Q,= -3.537£-07
v = 1.4795926 Q5= 9.952E-08
H= 5.598E-10 a = 4,684E-07
l4= 0.00 g = 1.325E-06
g= 0.00 ¥y = 4.691E-07
P(0) = 0.0000000
() = 0.0000010
P,(0) = 0.0000000 npoints = 880
Q,(0) = 0.0000010 tmin = 0
2x(0) = -0 1300000 a1 aim
0.3 — ' 0.3
Q,
-0.3
0.3

Figure 6.10: Phase space diffusion with L = 5000 and Q3(0) = —0.14. Escape
had not yet occurred at ¢t = 100, 000.
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L = 10000 0,= 5.526€-09

A= 100 0,= -4.421E-08

v = 1.4796024 (3= 2.488E-08

H = 5.839_E—11 a= 1,171g-07

l,= 0.00 g = 3.312E-07

ls= 0.00 y = 1.173£-07

{0) = 0.0000000

Q(e) = C:mll ::.“ : ":
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Figure 6.11: Phase space diffusion with L = 10000 and Q3(0) = —0.08.. Escape
occurs at t = 38, 144.
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Figure 6.12: Phase space diffusion with L = 10000 and Q3(0)
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occurs at ¢ = 59, 940.

L = 10000 (,= 5.526E-09
A= 100 (,= -4.421E-08
v = 1.4796024 (3= 2.488E-08
H= 4,673E-11 a= 1.171E-07
l,= 0.00 B = 3.312E-07
Is= 0.00 7 = 1.173E-07
P(C) = 0.0000000 .
Q,(0) = 0.0000010
P, (0) = 0.0000000 npolints = 758
Q;(0) = 0,0000010 min = (]
0 = -0.oronmn “ ot
0.3
0<t< 59,940
s O]
----------- -0.3
.3 +0.3 — 0.3

= —0.07. Escape
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L = 10000 0,= 5.526E-09
A= 100 Q,= -4.421E-08
v = 1.4796024 Q;= 2.488E-08
H= 3.583E-11 a= 1.171E-07
l,= 0.00 g = 3.312E-07
ls= 0.00 v = 1.173E-07
4 Spesiorn
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) = o oamae0e L e
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Figure 6.13: Phase space diffusion with L = 10000 and Q3(0) = —0.06. Escape
had not yet occurred at ¢ = 100, 000.
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the initial value of @3 is very small, the Ps-Q3 motion is just a small-amplitude,
regular oscillation, and the behavior of P; and Q is little changed from the two-
degree-of-freedom case discussed earlier. For larger oscillations in Ps-Q3, we see
an effective increase in the nonlinearity in the first two terms of Hamiltonian
(6.20), which allows decay instability involving I; to occur for larger values of
)1, and leads to more chaos in the motion of P, and Q;. The amount of chaos

evident in the motion of I3 increases with the initial amplitude of this variable.

For all values of L, a large enough initial value of I3 leads to im-
mediate explosive instability. The coupling of the explosively unstable triplet
to modes J; and Js allows this immediate growth to occur for smaller values
of I3 than was the case in the absence of these modes. For I3(0) somewhat
deeper within the unperturbed separatrix, we see that the value of I3 can fluc-
tuate chaoticaliy for some time, finally acheiving lérge enough amplitude for
explosive growth to occur (Figure 6.9 and Figures 6.11 and 6.12). For small
enough I53(0), the chaos in the system may be so limited that I3 does not grow
on any numerically observable time scale (Figure 6.13). (It is interesting to
note that in Figure 6.10, despite what looks like very chaotic behavior near
the the unperturbed separatrix, exploéive growth does not occur during the
time interval examined.) In a number of such numerical runs, it was observed
that the escape time typically rises very sharply .a,s initial conditions are cho-
sen deeper within the unperturbed separatrix. (This rise is not monotonic, of
course, since nearby initial conditions in chaotic systems yield very different
phase space trajectories.)

It will be recalled from Section 3.3 that the frequency of ion-electron

v
kiwp

~J

collisions is roughly v ~ ,/%;‘—(%. In ion-acoustic frequency units this is
e
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\/Tn%zli,\? Thus for A = 100 and L = 5000, the typical time, in numerical units,
for a collision to occur is At ~ 30. As discussed in Section 4.2, this collision
frequency can be decreased by increasing A, at the cost of considering longer
diffusion time scales since we must simultaneously decrease k; (i.e., consider
lower-frequency modes) in order to keep the resonance properties the same. All
of the above numerical results will still hold if we consider these less collisional
parameter regimes; the main effect of decreasing &y, with k;A constant, will be
to change the time units. It should also be noted that one effect of collisions
might be to enhance the diffusion rates [35] by scattering orbits off of invariant
_surfaces and into the chaotic layers that provide channels for escape. The
contribution of such extrinsic noise on Hamiltonian systems has been considered

by a number of authors [53, 54, 55]. It would be interesting to attempt to

include such effects in our numerical calculations; at the time of this writing,

this has not been carried out.



Chapter 7

Effect of Three-Wave Positive Energy Resonance

7.1 Introduction

The situation considered in the last section is fairly generic; for long
wavelengths, many such two-wave near-resonances will autorﬁatically occur.
We now consider the case where one mode of a nearly resonant explosive triplet
is coupled‘, not to two other modes to form two nearly resonant decay doublets,
but to one other mode in é, doublet and to two more modes in a triplet that may
be exactly resonant. One such set of modes is shown in Figure 7.1. Here the
modes J; through Js are shown with wavenumbers &y, 2k;, kq, 2ky, 4k, and 3k,
respectively. (Note that the numbering of modes in this chapter is independent
of the nﬁmb_ering used in previous chapters!) Here we have neglected the third
mode on the uppermost branch of the dispersion diagram that was considered
in Chapter 6. While such a mode could still interact strongly with mode J3,
for computational simplicity we consider the smallest system which will exhibit

the diffusion and instability of interest.

Mode J; is now involved in two nearly resonant triplets. For some
values of k; and v, the resonance between modes J;, J3 and Js may be exact,
yielding the phase space topology shown in Figure 4.10. For some other values
of k1 and v, we may have resonance between modes J;, Jy and Js as discussed
in previous chapters. Fach of these resonance conditions occur only in iso-

lated regions of parameter space; in Figure 4.1 we saw the resonance curves

101
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Figure 7.1: Six modes which can form one explosively unstable triplet, one
resonant decay triplet and one nearly resonant doublet.

in (k,v)-space for both decay instability and explosive instability, involving
mode numbers up to m = 10. We now seek regions of parameter space where

both resonance conditions (with mode J, in common) are nearly satisfied.

Figure 7.2.a shows resonance curves for interaction between Jy, J3
and Js (solid lines), and between J;, J4 and Js (dashed lines) where we have
my = 2 as above, but the other mode numbers are now arbitrary. The label
on the solid curves is the value of mg, and the label on the dashed curves is
- ms. The uppermost two curves have mg = 3 and ms = 4, which are exactly
the modes shown in Figure 7.1. We see that the two resonance conditions are
simultaneously satisfied (for some v) in the limit k&; — 0, and are both nearly
satisfied for some values of v over the entire range of k; shown. This type of
double resonance occurs for many modes in the system. Figure 7.2.b shows the

resonance curves for my = 3. Here we see that, for small k;, near-resonance
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V4 /

Figure 7.2: Locations in parameter space of three-wave resonances involving
the modes of Figure 7.1, with various modenumbers including (a) mo = 2 and
(b) ms = 3. Solid lines indicate resonance between Jp, J3 and Js and are
labelled with mg; dashed lines iridicate resonance between J,, Jy and Js and
are labelled with ms.
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occurs simultaneously for the triplets having my = 3,m3 = 2,mg = 5 and
mg = 3,m4 = 6,ms = 9. »In addition, the resonance curves for my = 3, m3 =
2,mg = 5 and my = 3,my = 5, ms = 8 are seen to cross for a larger value of
k;. This type of crossiﬁg also occurs for many modes, but in these cases the
resonance conditions are both nearly satisfied only in a very small region of

parameter space.

The three-resonance situation depicted in Figure 7.1 is similar to that
considered in Chapter 6, except that one of the two-wave near-resonances is
now replaced by a three-wave resonance that may be exact. This resonance
condition is nearly satisfied only for a small range of v, but when it is satisfied
we expect that it will lead to very chaotic motion. Of course, as in Chapter
6, we have ignored a large number of two-wave near-resonances which also
generate strongly chaotic motion. Thus the impact of chaotic diffusion that we
observe in our numerical experiments may be considered a very conservative

estimate.

7.2 Six-Wave Hamiltonian

The Hamiltonian for the set of waves indicated in Figure 7.1 is
H=wJi +wyJy + w3tz —wyJy — wsJs — weJg
+ aJyy/ Tz sin(26; — 65)

+ ,B\/ J2J3JG sin(€2 =+ 96 — 93)

+ v/ JoJs s sin(8y + 04 + 65), ' (7.1)
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Wher.e the constants o and v are given in Eqs. 4.9 and 4.25, respectively, and 3
is equal to the constant ¢ of Eq. 4.30. The Hamiltonian (7.1) cannot be trans-
formed into a three—degree—of—freedofn polynomial as was done for Hamiltonian
(6.17); computations were therefore done in the full six degrees of freedom.
(This Hamiltonian actually may, for some values of the constants of motion,
be reduced to a five-degree-of-freedom polynomial for a slight gain in compu-
tational efﬁc_iéncy, but this was not done.) It will be useful for computations
to eliminate the very large linear terms; this is done via the time-dependent

transformation derived from the geﬁeraﬁing function
A 1 A , -
F= Jl (91 - §'U)1t) + Jz (92 - wzt) + J3 ((93 - (LU2 - we)t)
+j4 (94 + L<J4f) + js (95 + (wg ot w4)t) + js (96 + L(Jst) . ' (72)

This gives us

_OF _ 7§ j, — 8F _p _ 1
J1 =55 = J1, 91—aj1 =) — jwit,
_9F _ 3 g _ 8F _ g
,]2——02 = Jo, 9?__3j2 -——02 w2t,

Jo=2L = J5, 0y =25 = 05 — (wy — wp)t,
3= 33 3 3 3 — (wg — wg) (7.3)
J4=QE‘:JA4> é4= 0L = g, + wyt, ‘
= Js, f; = 2F = 05 + (wy — wy)t,

oF
T
oF _ 7 5 _ aF _
Jo =55 =Js, b5 =57 =06+ wet,

yielding the Hamiltonian
_[;[ - Qljl + Q3j3 + 05j5

+ adi/J, sin(26, — 65)
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+ ﬂ\/%sin(ég + b — 93)
+ s dussin(d, + 0 + 0s), (1.4)
where
B = wr — s,
Qg = Wg + W3 — Wy,
Q5 =Wy — Wy — Ws.

The transformation to resonance coordinates is now found from

F =1,(20, — 0y) — L,(8; + b6 — 63) + Is(6, + 4 + 05)

+ f4é4 + jsés + jeés, (7.5)
~ giving us
j]_:aié}%:2j1 &1_%:29"1_92
j2=530?12-:_3—j2—j1 1Z2=g?;=—é3+52+é6
) ) Ny R
J3=%= o 1p3=a—l-;=92+94+95 (76)
j4:%=f4+f3 1/34=§—£=94
js.=gj£=1=5+f3 ‘ 1/_)5=%}§=é5
jG:zBQ&E;:jS_I—2 ’J)gzg%:és.

The Hamiltonian then becomes

H=ff—(:)5f5




- 107

Ol + QL+ Wb +o2hVE -1, - I sin P

—ﬂ\/(js - jg — jl)jz(js — Tz) sin TZQ

+")’\/(.T3 - I_2 —jl)(j4+j3)(j5 +f3) Sil’l’l/-);;, (77)
where

Ql = 2(&)1 — Wy = 2Q1

A

Qg = —(LUQ — w3 — we) = Qg ’ (78)
Q3 = Wy — Wy — Wy :Q5

are the detunings. The quantities Iy, Is and g are constants of the motion.

Computations are done using the cartesian form of equation (7.4):

H:%l(P3+Q§)+%(P§+Q§)%—2—(P§+Q§)

+

Q2(QsQs + BsPs) + P (QsP5 — Pe@a)]

+
sk sl 8l

A A A A A

Q2(QuQs — PuBs) + Po(QuPs + P4Q5)] . (7.9)

-+

7.3 Two Degrees of Freedom

Before examining the behavior of the full three-degree-of-freedom,
five-wave system, we first consider two subsystems with two degrees of freedom.
As in Chapter 6, the two cases of interest are that of two positive energy

resonances, and that of one positive energy and one negative energy resonance.
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Nurherical results were obtained using the method of Lie transformations as

described in Chapter 6 and Appendix D.

7.3.1 Two Positive Energy Resonances

If only modes Jy,J,,J3 and Jg are present in the Hamiltonian 7.1
(or Ji,Ja, J3 and Js in Hamiltonian 7.4), then we have two positive energy
resonances which will interact to give strongly chaotic motion. The situation
is similar to that considered in Section 6.2.1, but now one resonance condition

can be exactly satisfied. The Hamiltonian is given by
H = 0y + 0 + adi/ Fosin(26; — 0y)
+ ,B\/ j2j3j6 Sin(ég + ée - 93) (710)

The transformation to resonance variables is now given by

jl = 2—71, ' 1/_)1 = 29A1 — 92,
Jy = L—-L-L, = ~‘93 + éz + 967 (7.11)
j3 = j?a 12)3 = 927
je’—‘je—f:z, 1/—)6=é6,
so that the Hamiltonian becomes
.E[ = Qlfl + szz + Oz?jl\/j;; - 1—2 - jl sin '(;1
— 8yl ~ L — L)L — L) sinep,. (7.12)

The quantities I3 and I are now both constants of the motion. In our numerical

work we set I3 = Ig = 0.01.
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Throughout this chapter we will always choose v to yield exact res-
onance between modes J;,J3 and Js (i.e., Q3 = 0) for the value of L under
consideration, since it is this exact resonance that distinguishes this system
from that considered in Chapter 6. We will consider L ranging from 2500 to
10000; in all of these cases the value of v that yields )y = 0 is in the neighbor-
hood v =~ 1.4796.

Figure 7.3 shows P, = 0 surface-of-section plots for L = 2500 and
L = 5000. For all of the orbits shown, the initial value Q1(0) = 10~® was used.
For L = 2500 most of the orbits exhibit regular motion, and the topology is
like that of the integrable case of Figure 4.10. For L = 5000 the inter;mction
between modes J; and J; is stronger, and is evidently enough to destroy most

of the invariant surfaces, as shown in Figure 7.3. Chaos here is much stronger

than in the analogous case of Section 6.2.1.

7.3.2 One Positive Energy and One Negative Ehergy Resonance

We now consider a system comprising the five modes Jy, J3, Jy, J5
and Js. If we consider equilibrium parameters along the upper curves of Figure
7.2.a, then mode J; is simultaneously involved in two near-resonances, one
involving decay instability and one involving explosive instability. The situation’
is analogous to that of Section 6.2.2, but now the positive energy resonaﬁcé may

be exact. The Hamiltonian for this set of waves is
H- = Q;;jg + (25}5 + ﬂ\/ jgjg,je Sil’l(ég + ée - é3)

+ TV j2j4j5 Sin(ég + é4 + és) . (7].3)
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Figure 7.3: P, = 0 surface-of-section plots for Hamiltonian (7.12) with Qy = 0. |
(a) L = 2500; (b) L = 5000.
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The transformation to resonance coordinates is now

j2=j3—j2, %Z2=—éa+éz+é6,

j3=-72, 1,53=9A2+9A4+95, .
Jo=1I+ I, = é47 (7.14)

js =Is+ 1, =05
Js =Is—1I,, s= b,

yielding -

B=0L+0E—8(5b— L — L)L — I)sind,

ll

+ 1/ (% — I = L) (I + I)(Is + Is) sin 4. (7.15)

The quantities Iy, Is and Is are constants of the motion; we consider I, = 1—5 =0
and Is = 0.01. Surface-of-section plots are shown in Figure 7.4 for three values
»of L. The surface considered is again P, = 0, ‘dnd the initial value of Q; is
again 107 for all orbits. As described in the last section, for each value of L
we choose v to yield exact resonance between modes J;, J3 and Js. As the
parameters are varied, we then move along the solid line of Figure 7.2.a, and
the detuning Q3 (measured by the distance to the nearby dashed line in the

diagram) varies, increasing with k;.

In all three cases the size of the stable region is decreased from what
it would be in the absence of the positive energy resonance, which is indicated
by the dashed separatrix. As L is increased and the detuning Q3 decreases, the
unperturbed islet decreases in size. For L = 5000 the decrease in the size of
the stable region from the unperturbed value appears more pronounced than

for L = 2500. For L = 9000 the system does not appear much more chaotic
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Figure 7.4: P; = 0 surface-of-section plots for Hamiltonian (7.15) with Q, = 0.
(a) L = 2500; (b) L = 5000; (c) L = 9000.
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than for L = 5000. We note that one of the initial conditions for the latter case
landed on an island chain within the chaotic layer around the islet. The island
chain is reminiscent of that observed in Figure 6.7.c. A notable difference from
the results of Figure 6.7, however, is that the stabilization observed there is

not evident here.

7.4 Three Degrees of Freedom |

We now consider the three-degree-of-freedom Hamiltonian (7.7):

H = Ql-[_l -+ QzI_Q + Q3j3 + a2.71\/ jg - jg - jl sin ?,[_)1

- ﬁ\/(jz - jz = Il)j2(j6 - fz) Sinl/—)z

+ /(I — L — L) (Ts + I)(Ts + Is) sin s,

Figures 7.5-7.14 show P, = 0 surface-of-section plots for L = 2500, L = 5000
and L = 9000. Again v was chosen to yield {; = OA for each L, with O
increa;sing as we move to the right along the solid curve of Figure 7.2.a. The
initial conditions for all cases included P;(0) =»132(0)_= 0, ©Q:1(0) = @2(0) =
107% and P5(0) = 0, with a range of positive initial values for Q5. The constants

of the motion were set to Ig=.01,I,=1I; =0.

Figures 7.5-7.8 show results for four values of Q3(0), chosen progres-

sively deeper within the unperturbed separatrix (which would be a stable region
in the absence of the two positive energy resonances) for L = 2500. As with
the five-wave system of the last chapter, explosive growth eventually occurs for
initial conditions chosen within this region, although for small enough p.ertur-

bations the motion was stable over the time interval considered (Figure-7.8).
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This projection of the phase space yielded a rather unusual figure for the P3— Qs
motion. Points were very sparse in the region Qs > 0, and where they were
plotted they mapped out an interesting structure, looking like the projection
of a curved tube. Similar results are shown for L = 5000 in Figures 7.9-7.11,

and for L = 9000 in Figures 7.12-7.14.

The results here are similar to those in Section 6.3. Initial condi-
tions within the unperturbed islet lead to chaotic motion followed by eventual
explosive growth. Again, orbits deep enough within the islet do not exhibit

detectable growth in amplitude.
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L = 2500 (,= 3.537E-07

A= 100 (L,= 7.143E-16
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Figure 7.5: Phase space diffusion with L = 2500 and Q3(0) = 0.32. Escape
occurs at £ = 68,439.
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L = 2500 ,= 3.537E-07
A= 100 0,= 7.143E-16
v = 1.4795663 (1= -8.809E-07
l4= 0.00 a = 1.065E-06
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Figure 7.6: Phase space diffusion with L = 2500 and @3(0) = 0.30. Escape
occurs at ¢ = 23, 221.
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Figure 7.7: Phase space diffusion with L = 2500 and Q3(0) = 0.28. Escape
occurs at t = 53, 699.
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L= 2500 0,= 3.537E-07
A= 100 (,= 7.143E-16
v = 1.47395663 (O;= -8.809E-07
l4= 0.00. a = 1.065E-06
ls= 0.00 B = 1.874E-06
lg= 0.01 vy = 1.876E-06
npoints = 1378
7, (0) = 0.0000000 a,(0) =, 0.c000010 tmin - 0
il posoor B guiibriosssis S
0.5 — 0.5
Qz O 'U Q3
~ 0<t< 50,000
-0.5 -0.5

-0.5 — +0.5 0.5

50,000 < t < 100,000

‘Figure 7.8: Phase space diffusion with L = 2500 and Q3(0) = 0.26. No overall

growth in 3 was visible at t = 100, 000.
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L = 5000 0,= 4.421E-08
A= 100 Q0,= 1.786E-16
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Figure 7.9: Phase space diffusion with L =-5000 and Q3(0) = 0.13. Escape
occurs at ¢ = 13,116.
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Figure 7.10: Phase space diffusion with L = 5000 and @3(0) = 0.12. Escape
occurs at t = 158, 316.
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Figure 7.11: Phase space diffusion with L = 5000 and @3(0) = 0.11. No overall
growth in I3 was visible at ¢ = 500, 000.




122

L = 9000 (0, = 7.580E-09
A= 100 Q,= -9.921E-17
v = 1,4796032 (1= ~1.,888E-08
l4= 0.00 a = 8.220E-08
Is= 0.00 B = 1.446E-07
l¢= 0.01 ¥ = 1.448E-07
apainte = 108
Pi(0) = 0.0000000  Q(0) = 0.0000010 tmin = 0
Pi(0) » 0.0000000  Q,(0) = 0.0000010 rax W 45238
O - 2 Py(0) = 0.0000000 Qs(0) = 0.0800000 dt = fzj'i — O . 2

- o
e .-_:,—-_".‘

0=sts< 43,235

-0.2
0.2

-0.2

-0.2 _ - 10.

‘Figure 7.12: Phase space diffusion with L = 9000 and @3(0) = 0.08. Escape
occurs at ¢t = 43, 235.
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Figure 7.13: Phase space diffusion with L = 9000 and @3(0) = 0.07. Escape
occurs at t = 561, 316.
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Figure 7.14: Phase space diffusion with L = 9000 and Q3(0) = 0.06. No overall
growth in I3 was visible at ¢ = 600, 000.




Chapter 8

Conclusions

We have considered the role of intrinsic chaotic motion on the sta-
bility of plasma equilibria with free energy. Free energy permits the existence
of negative energy waves. A system with negative energy waves, even if lin-
early stable, may become nonlinearly unstable due to the resonant interaction
of positive and negative energy modes. Previous work, which assumed inte-
grable behavior in order to describe the nonlinear explosive instability, was
complemented here by consideration of the chaotic motion that is ubiquitous

in nonlinear dynamical systems.

Describing a simple example via a Ha.miltdnian formulation allowed
us to exploit the wealth of techniques available for understanding the behavior
of such systems. Strict constraints on the phase space structure led to conclu-
sions on what to expect in the nonintegrable case. The same constraints also led
us to explore techniques for symplectic integration of the equations of motion.
" The application of Lie algebraic methods, including recently developed meth-
~ ods for obtaining explicit expressions, led to a fast explicit numerical algorithm
which was used to study a number of simple subsystems of interacting waves.
Regions of parameter space near explosive three-wave resonances were exam-
ined. Strong two-wave interactions that turned out to be very common in this
system led to highly chaotic motion. This was a destabilizing influence, causing

chaotic fluctuations in wave amplitudes and subsequent explosive growth for
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initial amplitudes below the critical value calculated for the integrable case of

an 1solated three-wave resonance.

This paper considered only a very small portion of the possible pa-
rameter space. Many other initial conditions could be considered, and might
lead to very different kinds of behavior. The srnall'glirnpses obtained here of
the phase space structure and diffusion invite further study, as has been done
for other many-dimensional Hamiltonian systems [56]. For further numerical
studies of diffusion, it would be desirable to obtain an actual surface-of-section
mapping, as has been done for other systems [14, 32]. Such a mapping would
greatly extend the range of parameters and initial conditions that could be

studied.

While the two- and three-degree-of-freedom systems considered here
represent an improvement over the integrable approximation for three-wave in-
teractions, they still include drastic simplifications. One major approximation
is the neglect of a lafge number of other >possible wave-wave interactions, partic-
ularly the two-wave interactions which lead to very chaotic motion even when
only three waves are involved. .At long wavelengths many such interactions
can occur simultaneously. The explosive resonances (a very few of which are
shown in Figure 4.1.b) are isolated in parameter space, but the highly chaotic
nature of the system broadens the region over which they are important. It
would be interesting to carry out further numerical modelling of this system,
considering more than three resonances, and perhaps to develop a reasonably
accurate treatment of a very large number. One would guess that a more re-
alistic number of near-resonant interactions would lead to stronger chaos and

" faster diffusion than was seen in this paper.
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‘Another effect that might lead to faster diffusion rates is scattering
in phase spéce due to collisions. While the fluid model developed in this paper
does not include collisions, their effect might be crudely incorporated by in-
cluding small random perturbations in the numerical algorithm. As mentioned
at the end of Chapter 6, this kind of extrinsic noise can sometimes enhance the

intrinsic diffusion rate.

One might also consider further whether some flattening of the dis-
tribution function can actually eliminate the Landau damping discussed in
Chapter 3. This damping is fatal to ion-acoustic waves, so that our waves
might well not survive long enough to diffuse anywhere. It is nevertheless of
interest to study one phenomenon, such as chaotic diffusion, in isolation, in

order to gain some basic understanding.

Other physical systems can also be studied using the methods and
concepts described here. The plasma equilibrium considered was.chosen partly
because it allowed analytical reduction to the simple action-angle form (3.44);
this is not possible for all systems. Nevertheless, the §2F arguments addressing
nonlinear stability are widely applicable, and the physical processes considered
are quite common, so it is hoped that the results obtained will spur further

investigations in these areas.




Appendix A

Transformation of the Bracket

The type of transformation described here was carried out by Gardner
[57] in describing the Hamiltonian structure for the Korteweg-de Vries Equa-

tion.

We begin with Eq. (3.9):
/L [6@ g 6F bF 0 59}
; dz .

606 0z 6nee  buq Oz b

{F,G} =07 3

a=%

In terms of the perturbed quantities én, and év,, this becomes

L §G 0 6F 6F 0 §6G
— A1 —_ _ -
7,6} =4 ;i/o dz [5(5%) 9z 5(na) _ 5(8v.) Bz 5(5na)J - (Ad)
Now if u = Y"°___ un,e* % is one of our variables én, or dv,, then
Of _ [FOF Ou _[ESF 4.

We then have for the Fourier e.xpansion of a functional derivative

6F 1 & O0F 4.

IR w3

Using this in expression (A.1), we have
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Appendix B

Diagonalization of §2F

We have seen that the quadratic part of the perturbed energy and
momentum may be written as

o

1 - -
§°F =5 3 (4Aq+ pBp) | ~ (B.1)
m=1
1 & . -
§°P =5 > (8Cq+pHCp) (B.2)
m=1
where
[ Lmbgy bmkgv 0 7 (kmkod & Epked 0 ]
m 1 m N 1
Asby | 2 Tk 0 0 1 ¢ 1 % g 00
] ﬁ'kémﬂ 0 ﬁf —v kmko'{) 0 k‘mk‘o’[) —D
A 1
0 0 —v —2k"}kov— |0 0 -0 ot
w0 01 (w0 0]
Bep | U R 0 | _p | 0 kmkod 0 Enkod
— vip 1 — vm 1 -
0 k(i 2kmkov k_v 0 Q Py —Av
L 0 1n_-+1-k02,f —v ﬁzg,,—:{- L 0 kmkob —b kmko'&_
01 0O
1 000
C = kn ‘0 0 01
0010
where we have defined
A k
km = = (B.3)
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(B.4)

(B.5)

(Note that ko and % both depend on the mode number m whereas kg and v do

not; since the former are occurring only inside matrices that depend upon a

single m, this will not lead to confusion.)

The equations of motion are then

dz =J.VH = Mz
dt
where
z = (q1,92, 93,94, P1, P2, P3, P1)
and
0B
M- [_ A 0] .
The eigenvalues of M are given by
/\2 — _wz
where
[ 1
2 — k2 2
S PRy Il Proeny =y
-
~o |1 1
— ]\’,‘2 el A2 - A0
m |5 +0° + 1 + 20 J

(B.10)

By taking appropriate linear combinations of the complex eigenvectors of M
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we obtain the following eight real eigenvectors:
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0 R /
0 i [~48 + b (1 - 382)] Vi koo
_(&1’5-}-84)/1% kmico'f) _i {_%_*_[;4,& <—1+%)]/ :mA"O?}

where
R =/~ + 202, - (B.11)
Gji Ew:;___/];‘m | (Bl2)

and the &; and b; are constants to be determined. These eigenvectors provide
provide the basis for a diagonalizing transformation for the z. We see that the

transformation decouples into separate transformations for the p and q, given

by
q=5Q (B.13)
p=TP - (B14)

- where S and T are the 4 x 4 matrices comprising the non-zero elements of the
eigenvectors. (Since the transformation is symplectic, we will have ST = I.)

We want to obtain for the perturbed energy and momentum

oo P2+Q2 P2+Q2 P2+Q2 P2+Q2
C82F = Z[ w_%—{-w,}_%—w_——‘{—a—“

and

] (B.15)

o P2 + Q? P2 + Q2 P2 + QZ P2 + Q2
2 2 2 3 3 4 4
§°P = § ko [ 5 - 5 + 5 .

m=1 = =

(B.16)




The resulting equations are then

W+ 0 0 0
~ ~ 0 —w_ 0 0
SAS =TBT = 0 0 w, 0
0 0 0 —w_
1 0 00
~ 1{0-1 00
SCT—TCT—E 0 0-10
0 0 01
Solving for the normalization coefficients we find
~bs —by —by —b, a1 —y —a3 "G4
_ ay dz az a4 _ ~bg by by —by
S = bl bz bg b4 T= ag —ay —ay Uy
az a4 a1 ag] ' bl —b2 —b3 b4
where
a; = &1 i(.‘m];‘o‘f),
b, = A,,/ l;,‘m;,‘o'ﬁ
and _
G o= Getd b o= [ @4=0)—g
V= ViR VTV Ry
by = =P b, = (@-—9)*-3
2= 4R’ 2= 8Rw-.
P 5. _ (04 +9)2-1
a3 = 4M+, 63 = - -*‘STGJ.F_Q_
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1= R 4= SR
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(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

Here the diagonalization transformation is expressed simply in terms of the a;

and b;; the utility of originally introducing the @; and b; in the eigenvectors was

that the latter variables are of order unity and depend relatively weakly on ko

and v.




Appendix C

Nonlinear Stability for Three-Wave Interactions

It is easy to determine a necessary and sufficient condition for nonlin-
ear stability of three-wave interactions. Consider a Hamiltonian given to lowest
order by |

H = gywiJ) + oqwyJy + 03w J3, (Cl)

where here the w; are signed frequencies and o; = sgn (a%) = =+1, so that the
energy signature of each wave is given by o;w;. The lowest-order momentum is
given by

P =01k Ji + o9k Jy + 03k3J3. (C.2)

(Here we will let the subscripts on the k., simply be labels, not meaning -’"L2—” as

elsewhere in this paper.) Now assume that nonlinear coupling leads to resonant
interaction between the waves. If the o;w; are not all of the same sign (i.e., a
mixture of positive and negative energy waves) then it would appear from (C.1)
that exchange of energy between the waves could result in unbounded growth in
the amplitudes J; (nonlinear instability) while the total énergy H is conserved.
Conversely, if all o;w; are of the same sign, then it is clear by the constancy of
H that only limited growth of any J; is possible. However, this argument must

hold in any reference frame, since wave energy is frame-dependent.

In a reference frame moving with speed u, the wave energy is given
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H =H - uP
= al(wl - klu)Jl + 0'2((4)2 - kzu).]g + 0'3((.03 — k‘gu)Jg.v (Cg)

(The frequency-matching condition is not affected by the frame shift.) There-
fore nonlinear stability requires that all of the o;(w; — k;u) be of the same sign
for any w. It turns out that this is true if and only if the wave with the largest
|w;| has energy signature o,w; opposite in sign to that of the other two waves

[11]. This may be simply proved as follows.

Consider a system of one negative energy wave and two positive en-

ergy waves, so that the linear part of the Hamiltonian has the form
H= —'(4)1.]1 + LUQJg + w3J3, ) (04)

where here-the frequencies are taken to be positive; i.e., w; = |w;|. Consider

first a resonance condition of the form
wy = Wi + ws, (C.5)
ky = k1 + ks, (C.6)

so that the largest frequency corresponds to one of the positive energy waves.

In the moving reference frame, the Hamiltonian becomes
I‘[I. = —(w1 - klu).]l + (w2 — ;CQ'LL)JQ + (w3 — k3U)J3. (C?)

The system will be nonlinearly stable if there is some u such that the mode Ji

Cisa positive energy mode (i.e., w; — kyu < 0) while the other two modes do not
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change energy signature (i.e., wy—kou > 0 and w3 —kzu > 0). The mode J; has
positive energy energy when u > wi/k;. At the cﬂtical speed u, = wy/k; when
its energy signature changes, the energy signatures of the other two waves are
given by the signs of

»

wg—kg’ltzwz—k‘g—-‘

kx
_ LUQk'] — W k‘g
= ———kl

(4)2(]\’32 - k3) - ((.L)g — W3)k‘2
ky

—wokz + wzks,

- (C:9)

Il

and

o
W3 — kgu = W3z — kg—

b

wak; — wy ks

ky

(4)3(]\3'2 - kg) - (U)z - L()3)k'3
ky

_ w3k2 — wgkg 1

= which are equal. Now if wy — kqu, = w3 — ksu, > 0, then all three modes
have positive energy for u 2 u, and the system is therefore nonlinearly stable.
If wy — kyue = w3 — kau, < 0, then all three modes have negative energy for

u S u,, and the system is again stable.
. Now suppose that instead of (C.6), the resonance conditions are of
the form

w| = wy + ws, (ClO)
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kl = k‘g + k3, (Cll)

so that the largest frequency corresponds to the negative energy mode, while
the two lower frequen’cies correspond to positive energy modes. (This case is of
general interest, but cannot actually occur for the plasma system of Chapter
3.) Then at the speed u, = w;/k; where mode J; becomes a positive energy

mode, the energy signatures of the other two waves are determined by

\wg—k2u=w2—k2 -
waky — wiks
k1

wz(ka 4 k3) — (w3 + w3)ks
ki

w2k3 — w3]€2
=—— 12
- (C.12)
and
w3z — kg’u, = w3 — /Cgﬂ

k1

wsky — wiks

= i

_ w3 (ka + k3) — (wg + ws)ks
ky

waky — woks 4
o o (cwy

which are opposite in sign. Thus there is no frame in which all three waves have

the same energy signature, and the system is therefore nonlinearly unstable.

For a Hamiltonian describing one positive energy wave and two neg-

ative energy waves,

H= w1J1 - LUQJg - U)3J3, (014)
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exactly the same type of argument may be uséd, and it is again found that
nonlinear instability occurs if and only if the mode with the highest frequency
has energy signature opposite in sign to that of the other two waves (i.e., it must
be the positive energy mode). For this Wave triplet in the counterstreaming
ion system of Chapter 3, the type of resonance that (;ccurs is one where the

positive energy wave has the highest frequency, so that this system is unstable.




Appendix D

Numerical Algorithm for the Five-Wave and Six-Wave
Hamiltonians

Here we reduce the five degree-of-freedom Hamiltonian 6.20 to a three
degree-of-freedom polynomial Hamiltonian, and then employ the Lie transfor-

mation methods of Section 5.3.2 to obtain a computational algorithm.

D.1 Transformation to Computational Variables

Recall the Hamiltonian:
H=wJ; + wydy + w3ds — wyJy — wsJs
+ adyy/ Ty sin(26; — 6,)
+ B2/ J3sin(26; — 05)

+’)’VJ2J4J5 sin(92 +(94+95) (Dl)

In Section 6.3 we employed a transformation to resonance coordinates to re-

express this as a three degree-of-freedom system:

H = Qljl + ngg + ngg + 021—1 \/ I_3 - 2j2 - j] singzl

— ,6(_?3 - 2j2 — jl)\/j—QSiIl’(ﬂz

+ ’)’\/(jg - 2j2 - jl)(il + j3)(I—5 4+ jg) sin @Zg. (DQ)
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The resonance coordinates (I;,3;) (or their cartesian counterparts (B;,Q;))
are convenient ones in which to view the phase space topology, but they
are not good for numerical computations, due to the difficulty of evaluating

\/Is — 21, — I; when the argument is near zero. We therefore define another

set of coordinates for computational work, derived from the generating function

' 1
F® = [0, + 10, + 1,05 + <I4 + I3+ 2L + 511) 04

1
+ (14 + I3+ 21, +§Il) Os. (D.3)
This yields
h=250 =1, 1= 8 = 01+ 3(64+ 6s),
J2=%%(2i):]3, . ¢2=%?:93+2(94+95),
JB = 8;7‘;32) = -[2, 7/)3 = Qg}(a_z) = 92 + 94 + 95, (D4)

Ji=282 = L+ L+2L+1h, ¢e=2E2 =,

Js = %g(:')' =L+ L+2L+1L, 5= 35}(:) = 0s.

From this we obtain for the new Hamiltonian
[—J = H + W4I4 + LL)5IS
= I+ oLy + Qals + alyy/Tysin (2 — bs)

+ BIs\/ Ty sin (25 — 1hy)

1 1 :
+ 7\/]3(.[4 + 13 + 2]2 + §Il> <_[5 + 13 + 2_[2 + "2_Il> SlIl’l,Z)3,(D.5)

\

1
O =w; — ~wy — —ws =
1S W1 5wy Sls

&

‘where

S (4 0),
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Qz = W3z — 2004 - 20)5 = 2(23’{'(22,
Q3 = wy —wy — ws = Os.

For the special case Iy = I5, this Hamiltonian may be written in cartesian
coordinates P; = v/21; cos; and Qi = /21;sin;:

.0

Jig 2(P2+Q) %(P§+Q§) gS(PZ—FQg)

+ [2Q1P1P3 - Qa(P Q )]

[\]

%(*% %l

= [202P5Ps — Qa( 25 - Q)

+

v
()

&

+T5Qs [Tns+ 7 (B2 +Q2) + (B3 4 Q3) + 2 (P24 02)]. 09)

S
&

This three-degree-of-freedom Hamiltonian is now in the form of a cubic poly-
nomial. We can now employ Lie transformations to obtain an algorithm' for

time-advancing the system.

D.2 Derivation of the Algorithm

We now apply the method of Lie transformations (see Section 5.3) to
derive a small-timestep integrator for the Hamiltonian (D.6), correct to third

order in At and in the dynamical variables 2; = (Q;, P).

Let us express our Hamiltonian as
H=H;+ Hs

= Hy + H® + HP + FO (D.7)
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where H; comprises the three terms of (D.6) quadratic in the f’i,Qi (linear in
the I;), and the H(®8") are the three cubic (nonlinear in the I;) terms. As

discussed in Section 5.3.2, the linear transformation is given by

cos(Q:At) éin(QiAt)} [Qz] ,

[g J N [— sin(RuA?) cos(uAL) | | P, (D.8)

(Also as discussed before, in practice we split the linear transformation into

two half-steps, making the algorithm accurate to third order in At.)

The polynomial f3 is given by

fo=— 0“ dt Hy(2) (D.9)
which may be written as
fo= £+ 0 + £
=/ M B2 - / dt HP (s / dt HY (D.10)
Carrying out the operations, we obtain
7 =~ {sin(@0) [Q5(Q5 - P1) + 20, A1)
+ 2sin® (QA1/2) [A(QF - P?) - 2015104}
10 _ \/_Qz {sin(Q24¢) [Q2(Q2 — P2) + 2Q: 5 B)]
+ 2sin” (Q2A¢/2) [Po(QF — P2) — 2QsP5Q0]}  (D.11)
0 = ——1— (Qssin(QsAt) + Py2sin? (Q41/2))




144

The operators els™””*) are now replaced with new operators el#s” 1,
where
6
gg"”ﬁ) = Zpga"@)(Qm cos ¢ + P, sin ¢§‘))2(Qn cos ¢ + P, sin 455)) (D.12)
i=1 ‘
and we have (m = 1,n = 3) for ¢(® and (m = 3,n = 2) for ¢g(®). The new

operators yield series expansions that terminate at second order.

The angles comprising the linearly independent pairs (¢, ¢,) are
again chosen to be evenly spaced in the interval (0,27), and the coefficients
pi are found by solving the systems of equations fs(a) = g§“) and féﬁ ) = géﬁ ),

each of which comprises six linear equations in the six unknowns p§“) or pgﬁ ),

The operator elis™ ] may be split into two factors

e[— \/2:",13 [8a sin(flgAt)+f33 cos(Q3 Af)][-}(ﬁf+(é?)+(}522+ég )], -] (D 13)
and
O BN ) ) 014

The first of these couples two degrees of freedom and is treated in the same
manner as es" ], The second operator (which drives the exp‘losive instabil-

ity) involves only one degree of freedom. It is replaced by the operator

Tt A7 G oo 0.15)

Again the pi(v) are found by equating the polynoniials of the old and nevs} oper-
ators, yielding in this case foﬁr equations in four unknowns. If we choose the
x to be evenly distributed around (0,27) then v;fe obtain a singular system
of equations for the plm ; therefore we instead choose them from the interval

(0, ).
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The angles ‘f’Ei),y) and x{) were chosen as follows:

( 3\

¢ =0 ¢ =n/3
$P =0 ¢ =2r/3
(3) = (3) —
¢ =x/3 4P =273
#0 =2r/3 4 =0
(¢ =2r/3 ¢& =1/3 |
{ N\
xM =0
(2) =
XH=m/4 (D.17)
x® 2 x/2
[ x® =3r/4

An exactly analogous algorithm was derived for the six degree-of-
freedom Hamiltonian (7.1). Unlike the case just treated, this Hamiltonian
includes one nonlinear term that couples three degrees of freedom. The kick-
factorization method was extended to this situation via a set of three-dimen-
siénal rotation angles QSEQ’%Z),WL' = 1,...,6, again evenly distributed around
(0,27). The other two nonlinear terms each couple two degrees of freedom and
are treated exaétly as described above. It will be recalled that a time-dependent
transformation was used to eliminate the large linear terms of Hamiltonian
(7.1), resulting in Hamiltonian (7.4). It turns out that this affects only the
linear part of our algorithm; the nonlinear operators els™*™: ] are the same in

either coordinate system.
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