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ABSTRACT

A simple analytical decay law for correlation functions of
periodic, area-preserving maps is obtained. This law is compared
with numerical experiments on the standard map. The agreement
between experiment and theory is good when islands are absent, but
poor when islands are present. When islands are present, the

correlations have a long, slowly decaying tail.
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I. Introduction

A primary goal of the theory of nonlinear dynamics is to
understand the long time behavior of chaotic (nonintegrable)
deterministic systems. As it is unlikely that one will be able to
obtain a wuseful analytical representation of the dindividual
trajectories of a nonintegrable system, and even numerical
integration fails due to the stochastic instability, one can at
best hope to provide a statistical description of families of
orbits. Thus, there is great interest 1in the calculation of
statistical quantities such as diffusion of orbits through phase

space and decay of correlations.

The present work is concerned with = the behavior of

correlation functioms and diffusion coefficients in two
dimensional, periodic, area—-preserving maps. Two-dimensional,
area—-preserving maps are obtained as approximate descriptions of
many physical systems (such as particle accelerators, particles in
magnetic mirrors and tokamaks) and quite generally as an exact
reduction by surface of section of any two degree of freedom
Hamiltonian. Furthermore, mappings are computationally the
simplest of dynamical systems, and provide a testing ground for

any theory.

In this paper we apply a formalism which was developed
following the work of Rechester, Rosenbluth and White6’7 to
describe the statistical properties of maps. A statistical
description is most readily accomplished in terms of probability
functions; we calculate kth joint probability Pk(yo,yl,...yk) for
a particle being at the points Y0os Y1see+e¥i at the discrete times
t = 0,1,...k. To eliminate single orbit information, the

probability is calculated as an average over initial conditions in

some region, R, of phase space. Ideally the stochastic portion of

phase space would be used as R; however, in practice this region

is difficult to delineate. Therefore we typically let R be the
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entire phase space, and so Pk includes information about both the

regular and irregular orbits.

Application of our formalism is limited to periodic mappings,
that is when the phase space is a torus. We consider maps of the

form

Pptl = Py * e£(xy)

Xpt+l = % T Pptl

where f(x+27)=f(x). An example is the standard maps, f(x)=sin x.
The primary quantity used is the Fourier transform of P, (in each
of the variables yj) which is éalled the characteristic function,
X (2 gs21see8y), in probability theory. Noting that the Fourier
variables are discrete we obtain a recursion relation for Xk Which

can be iterated yielding explicit formulae.2

Fourier space is useful for characterizing highly stochastic
maps, Since we expect the probability distribution to be nearly
uniform in phase space. In this paper we exploit this by
introducing an approximation for Xy similar to the cumulant
discard technique of turbulence theory. The recursion relation
for X shows that it 1is made up of products over lower order
characteristic functions. Retaining only the second order
characteristic functions yields a formula for Xk (Eq. 7) like
that for a high order moment when the cumulants have been
neglected (e.g. as though the probability is gaussian). We call
the terms retained principal terms, since they give the principal

contribution to correlations in the stochastic limit.
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Given the characteristic functions, or equivalently Py, one
can calculate any statistical quantity. As an example we

calculate the force correlation functions and the momentum

diffusion coefficient for the standard map.

To test our theory we have performed numerical experiments on
the connected ergodic region of the standard map. (By the
connected ergodic region we mean the ergodic region spanning
several periods of the momentum-like variable.) The agreement
between our simple analytical formulas and the numerical results
is very good except at values of the nonlinearity parameter for
which large islands are present or for which zero correlation time
is predicted. When islands are present, the predicted exponential
decay law fails at moderate time differences, and the correlation
function develops long, significant tails. This is true even
though the orbits never enter the island region. Enhancement of

the diffusion constant is simultaneously observed.

This work should perhaps be compared with that of Karney et
al.q, who studied the standard map in the presence of extrinsic
noise. They observed significant enhancement of the diffusion
constant when islands were present. They  attributed this
enhancement to the noise—-induced diffusion of orbits into islands.
Obviously, this explanation does not apply to the present case,

where KAM surfaces prevent orbits from entering islands.
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IT. Decay of Correlations: Principal Terms

The characteristic function formalisml’2 gives exact
expressions for correlation functions averaged over an invariant
region of phase space. For ergodic regions, these expressions are
equivalent to time-averaged correlations. Our formulas involve
multiple sums over products of many functions and this obscures
their behavior. In this section we present a heuristic technique

for reducing these formulas to simpler expressions.

1 2
Our derivation wuses the characteristic functions * defined

N ok
<ieXP[.i ) zk_ij(Xo,Po) ] ;>
j=0 R

by

i

xﬁ(lk,lk_l KX ,ﬂ,l,,@o)

where xi(XO’PO) is given as a function of the initial conditions
through the map, and the average is over initial conditions

(xo,po) in the region R of phase space.

Using the mapping to determine %) = 2xy.; -Xp.otef(x,_y) in

Xk yields a recursion relation for characteristic functions. This
relation can be iterated to obtain an explicit formula for Xk o
For the case of only two nonzero indicies this becomes [Eq. (14)
of Ref. 2]:

d k~2
X%}_(zk,oios'°°’0)£0) = E : ’ | g\)j(aﬂ,j)xlj_{(ﬂ,k-ﬂ,k_z,f,k_l), (1)

2’1,22,.0. j:
o

where 2_1 = 0,

V. = 4§ .

and gg is defined by
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explief(x)] = Z gl(e) exp(ifx).

g:—oo

3
We assume f(x) = —f(-x), which is valid for the standard map , so

that

g (=€) = gy (e) = gg(e). (3)

The expression (1) is wvalid for an arbitrary invariant
region, R, of phase space, but we specialize to the case R =
[-wyr] x [-m,r], which is the entire (reduced) phase space. In

this case
R =6 8 (4
x1(msn) =8, 9 8, o- )

Thus we are considering properties averaged over all orbits: only
if the map is ergodic would this be equivalent to a single orbit
time average. In principle one could let R be the connected
stochastic region of the map (for € large) and then only Eq. (4)
would need to be altered. Recalling that the measure of regular
motion for the standard map is estimated to be 0(1/62) , one notes
that Eq. (4) will need a correction of this ofder if the

irregular region is used.
We wish to obtain an approximate expression for Eq. (1) when

e>> 1. We note that gy(0) = 1, and that for smooth force functions

f, one generally has

g, (€2) << 1 (5)

when (v,2) # (0,0). An example is the standard map, where gy, () =

J,(e). One can show

g e
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Max [J,(x)] < ¢ v71/3
X

for v >> 1, on the basis of Ref. 5. [See Eq. (A6) of the

appendix.] Thus, of all the terms in Eq. (1), those with vy small

are the largest. To capitalize on this we approximate Eq.(l) by

keeping only terms with vj small. The most extreme truncation is

to set the vj's to zero; however, Eq. (2) restricts the number of

such terms. The principal terms are defined as those with the

maximum number of factors, g,(%€), equal to unity. This requires

Zj=vj=0 for each such factor. The index %y is fixed in Eq. (L),

so we start by setting £; = v; = 0. These conditions imply &, =

%9, thus fixing f%5. We next set 23 = v3 =0 and so on.
Proceeding in this fashion, we set vj = 2j = 0 for all odd j and
obtain (29, Vo) = (20,200, Ry, v4) = (g, =28g), (g, Vg) =
(-20, 220), etecs o+ This choice of the indices Zj is represented

pictorially in Fig. 1 as a trajectory in (j,%) space. These
trajectories should not be confused with the Fourier-space paths

of Refs.6 and 7.

The trajectory terminates at j = k-2 with Ap-2 = 2y»
according to Egs. (1) and (4). To obtain a nontrivial result; we
need £, # 0. Therefore, we find that k must be even, and % =
(—1)(k_2)/220. This principal term is actually a single term in
the multiple sums of (1) which has k/2 factors of g’s with nonzero

indices:

P k/Z
Xk (80505000580 = [8—220(205)] 520,(_1)(k—2)/22k- (6)

This result is exact for k=0 and 2.

A gsimilar analysis may be used to obtain X With k odd,

except that the (j,%) trajectory must contain a single "defect',

i.e. a single odd j for which either 2j or vj is mnot =zero.

" Figure 2 shows a trajectorvaith a defect at j = jp, where jp is

odd and 2. # 0. It is clear from Fig. 2 that % -1 =
Jp Jp
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(jD-l)/Z (k—Z—jD)/Zz

(-1) "% and ij = (-1)

defect relaxes the endpoint restriction |£k| = |20|.

k* The presence of the

Keeping all such single-defect terms for the odd-k

correlations of Eq. (1), we obtain

k."3 / m
Xi = [8_zgk(€2k)} 2

8.og (€2y)
et 28, 4k

kt+1
ggk_zzo(ezo)gzo_zzk(sﬂk) for —5— even

k+1
g’q'k_l-zg'o(—slo)g'q’O+2'Q’k_(—€2’k') for —2— odd °

Specializing to the case |f;] = |%3], which is all that is needed

for the force-correlation function , we obtain

k-3
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CRWNCIN ,(7b)

for (k+1)/2 even. The upper and lower expressions (valid for Ly =

*4 respectively) are interchanged when (k+1)/2 is odd.

We now specialize to the standard map, for which the force

correlation is given by (see Ref. 2)

Cp = <E(xp)E(xp)>g = <sin(xy)sin(xg)>p

CPRCIS A e

1
= 0 X (10,0,400,0,=1) =x3 (1,0,0,...,0,1)].
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Using the results (6) and (7), we obtain the principal term

contribution

( .% [—Jz(e)]k/2 for k even
Ce = <
? it

k-1 4 4 -
e - — - 2 f de 8
R [ Jz(e)] or k odd (8)

These expressions are exact for k< 4,

The odd-k correlations are normally much smaller than the

even-k correlations when € is large. From Eq. (8) we have

C 1/2
k+1 ’ 2
, | - l =,4,E 1J(e)1 £ 4,k(,—33, s
k € TE
while
I 1/2
k+2
—Z] = 13y(e) < () .
Ck e

for € large and k even.

An estimate for the error in x£ is obtained by considering
the defect correction for k even. Suppose the trajectory of Fig.
1 ’has a defect as some odd jD- (even jp defects give zero
contribution). Since the defect can occur at any odd jp the

correction is k-2/2 times the value at one, and furthermore the

index lj[)must now be summed over. This correction gives the

error estimate

O O
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AXk . k=2 [X4(1’0:0,0a—1) -1 ] 9)
Xk 2 x%(1,0,0,0,-1)

involving the exact value of the fourth characteristic function.

* Since defects occur at any position on the trajectory, the error

grows with k, and the principal term expression is valid only for
k <kp.v(€)e In Fig. 3 we plot computations of x4—x£ and k..
(given by setting Eq. (9) to one) as a function of €. The graph
of X, shows three broad peaks near € = 2rn which correspond to
regions .Where first order islands are present.3~In addition many
of the narrower peaks occur in conjunction with second order
islands.4 Thus we expect large error in xﬁ whenever islands exist.
The error is also large near xz =0, and this is reflected in kmax
> 2 at the zeros of Jy(e) in Fig. 3b. This graph predicts Kpax ™

7, with of course many oscillations, except near Jy = 0.

 The principle value for the diffusion constant is obtained by

using Eq. (8) in the representation of the diffusion constant as

a sum of force correlations [Ref.2, Eq. (16)]. The result is

2 2 2
2 1-237(e)=J5(e)+2J

DP _e? 1(€)=J5(e 2 5(e) . (10)
4 [1+75(e)]

While there are corrections to Eq. (10) containing products

of three Bessel functions, this result is an improvement over
k657

c-1/2

previous wor in that certain terms have been summed to all

orders in giving the denominator. Our argument to obtain
Eq. (10) is similar in spirit to a renormalization since we keep

one infinite set of terms, discarding the rest.
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Finally, we mnote that the principal-terms argument can be
used to obtain values for other correlations as well, As an

example, consider the sin(p) correlatioms,

Cs§n P=« sin(p;) sin(pi+j) >

1

= E [Xj+l("'l,l,0,0’.o.,0,1,-1) - Xj_l_l(-l,l,o,o,...’0’_1’1)]. (11)

Now the generalization of Eq. (1) to the case of two nonzero

ending indices must be used:

XR (R s=% 14150505 000 50,=8 1,2 0)=

k-2
R
z : H 8vj<€2j)X1<’Lk“’lk-2’2k-1“2k+1> (12)
21,22,...,2]&_1 j=0

The principal terms argument now gives

i=3

i

for j odd and greater than two. The even=-j correlations are much

smaller when € >> 1.
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ITI. Experiments

A, Measuring procedure

To compare with the theory, a series of measurements of the
diffusion constant and the correlation functions of the connected
ergodic region were performed. These numerical measurements were
performed on the Digital VAX11/780 computer with double precision
arithmetic and checked with calculations on the CDC 7600 computer

with single precision arithmetic.

Correlation functions were measured by averaging over a

single orbit of length N in the connected ergodic region.

sin x: sin X

i D1

i 143 (14)

(87
=]

The wuncertainty of the correlation function was taken to be the

standard deviation of the mean,

1/2

The correlation function is usually defined with the product of

the means subtracted out, i.e.

_(sin x4 sin x;.4 )2 - C?lNJ DT R ¢ &= N

however, the last term in this equation was found to be small for

all cases.
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“¥alie from each of the suborbits.,

~14=

The expression (15) for the error relies on the separate
terms in the sum of Eq. (l4) being independent measurements of
the correlation function. This assumption is actually false if
the correlation time is significant, since .- neighboring terms
in the sum are then not independent. For most of the following
measurements, the correlation time is short, so that Eq. (1l5) is
accurate. However, for the cases of long correlation times, Eq.

(15) should be regarded as a rough estimate.

The diffusion constant was measured for a single orbit of
length N in the connected ergodic region by breaking the orbit
into n suborbits of 1length T (N=nT). The initial and final
momenta of a suborbit provide a single measurement of the

diffusion constant according to
=L 2
D =5 (pyr = P(1-1)D)" -

0f course, the uncertainty of this single measurement is unknown.

To find the best value of the diffusion constant, we average the

(16)

[w}

in
=R
W e~ 3

[w]

The--uncertaintydin—thediffusion—constant—was—taken—to-be—given—by

e e e e -]
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the standard deviation of the mean,

5 4172

1

i

N n n
1 1

= U Sl W)

. i=1 i=

9p

In the case the error expression is accurate provided T is chosen
large enough to make the separate measurements of the diffusion

constant independent.

It might be argued that the use of these statistical formulas
is incorrect for a deterministic system. However, this point was
checked by comparing runs of various lengths with various initial
conditions. It was found that the formula (15) for the

uncertainty was consistent with the measurements.

Although the final measurement was made on a single, very
long orbit, various checks were performed to insure that this
orbit was mnot peculiar. Shorter runs with different orbit and
suborbit lengths and different initial conditions were made.

These were compared to make certain the measurements were

consistent. Furthermore, surface of section plots were made to

verify the ergodicity of the orbit.
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B. Results

Figures 4~6  compare the numerically obtained force
correlations with the principal-terms result (8) for the standard
map at  various values of €. All of these measurements were made
using orbits of length N = 3.5 x 107. The wuncertainty of the
numerical measurement as given by Eq. (15) is indicated by the

vertical bar. The uncertainty is found to scale with N-l/z.

Figure 4 shows the absolute value of the numerically obtained
force-correlation function for the standard map at € = 10.5. The
solid line in the graphs is the principle-terms value lCi[ = -%
I.I?_(e:)lk/2 which is walid for the even-k terms. At this value for
€, the force-correlation decays rapidly and is in good agreement

with the principle~terms result.

Figure 5 shows the numerically obtained force—correlation
function for the standard map at € = 11,5, Again  the
principal-terms value for the even correlations is drawn. At this
value of €, the force correlation dgcays rapidly, but it is not in

good agreement with the principle terms result. The reason for

this disagreement is that J, is near a zero at € = 1l.5. Hence,

the argument that terms with J,(¢) dominate is incorrect.

Figure 6 shows the numerically obtained force correlation
function for the standard map at € = 12.8, Now the correlation

function decays very slowly. It appears to have a long, low-level

tail. Obviously, the agreement with the principal-terms result is
poor. At this value of €, the standard map has accelerator modes,
islands in which the particles experience perpetual acceleration.3
Even though the measured orbit was never in the accelerator mode,

its correlation function was affected.
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This pattern was observed in many other measurements, The
principal terms give good values for the force correlations if €
is not at or mnear a value for which there are islands, or for
which Jy(e) is nearly zero. Furthermore, the force correlations
tend to decay quickly, even for modest values of €, wunless there

are islands present. This pattern was also observed for other

correlations such as the sin(p) correlations of Eq. (13).

To better understand these force correlations we also
measured the diffusion constant, which dis a sum of all of the
correlations [see Ref. 2, Eq. (16) ]. The numerical results for
the diffusion constant normalized to the quasilinear value, DQL =

1—82, are shown in Fig. 7. These measurements were made by

gveraging 3500 suborbits of>104 time steps, i.e. 0= 3500 and T =
104. The circled experimental points correspond to values of €
for which there exist first or second order islands (see Ref. 4,
Table I). The solid curve is the theoretical result, Eq. (10).

The dashed curve is the low order result D = 1-2J,(e).

It is clear from Fig. 7 that the agreement between theory

and numerical experiment is excellent as long as 1islands are

absent. Furthermore, the discrepancy due to islands or other
effects diminishes with €. Of course, the theory must break down
when islands are present, in which case the wrong region R (see
Ref. 1) has been used for the average. Moreover, the series must
diverge when accelerator regions are present, because the series
averages in the infinite diffusion of the accelerator regions.
Hence, the series for the diffusion constant should be viewed as
an asymptotic serieé, for which it is best to keep a limited

number of terms.

We mention in passing that the presence of islands appears to

cause quite a few anomalies in the numerical measurement of the

diffusion constant. As shown in Fig. 7, the diffusion constant
can be an order of magnitude larger than the quasilinear value

when dislands are present. Secondly, the error, as given by Eq.
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(17), is very large. Finally, suborbits of 104 time steps do not
appear to be long enough to determine D when islands are present.

This was inferred from the fact that the measurement of D depends

on T even for T = 104.
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IV. Conclusions

The characteristic function method can be used to obtain
approximate expressions for the moderate time correlations
provided the accelerator modes are absent or insignificant. When
accelerator modes are absent, the correlation functions decay
rapidly and the diffusion constant is given by Eq. (10). The
presence of accelerator modes coincides with 1long tails in the
correlation functions of the connected ergodic region and much

larger values of the diffusion constant.
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Appendix

A uniform asymptotic expansion of the Bessel function for

real positive z is5

1

J,(vz) ~ v'1/3(~fE_JZ-Ai[v2/3;)-+ @(v"5/3), (Al)
1=z

where C is the real root of

2/3
1/2 1/2
¢ = { 2 ia(ra1-25"?) < ana - a2V (a2)
for z < 1, and of
2/3
1/2
r = - L% [(22_1) / - arccos(z—l)]} (A3)

for.__z>l. This. . .result._.allows. .us.to.derive. a uniform-bound.for

J,(z) for large order.

We first consider the region z>n, where O<n<l. We find

1
Max |J,(vz)] < y1/3 Max («£54J4 Max Ai(v2/3c) +-6Kv'5/3).
zZon zon 1-,2"  2>0
Therefore,
ax|J, (v2)] < cyaw 3+ o(n/3), (a4)
z

where C; is independent of v.
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In the remaining region, z<n, we have

' 4
M2T>]<IJ\,(\)Z)I ¢ v-1/2 [4/(1-112)]1/ Izd%#[ (v2/3z;)1/4Ai(v2/3§)] +o5/3)y
Z

< \»‘1/2[4/(1—712)]1/4 Max /%1 (y) + (w33
y

Thus we deduce

Max 13,v2)1 < Cyn w2+ o33, (45)
z

where Cz(n) is independent of V.

In combination, Eqs. (A4) and (A5) imply

Mgx |3, (vz)| < C v 13 4 p(v=1/ 2, (46)
Z
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Figure Captions

Fig. 1
Fig. 2

Fig. 3

Fig, 4

Fig. 5

Fig. 6

Trajectory in (j,%) space for the principal term
Trajectory containing one defect, as needed for the
odd-k correlations.

a)Correction to fourth characteristic function
x4—x£ as a function of €. Valﬁes of

€ for which islands exist are shown by hatched
regions on the axis. b) Maximum k for validity of
even x£ from Eq. (9).

Absolute value of the force-correlation decay

for the connected ergodic region

of the standard map at € = 10.5. Even-k theory

is shown as a solid straight line. Numerical values
not shown were consistent with zero. _
Absolute wvalue of the force-correlation decay

for the connected ergodic region

of the standard map at € = 11.5. Even-k theory

is shown as a solid straight line. Numerical values
not shown were consistent with zero.

Absolute value of the force-correlation decay

for the connected ergodic region

Fig. 7

of the standard map at € = 12,8, Even—k theory

is shown as a solid straight line. Numerical values
not shown were consistent with zero.

Ratio of observed diffusion constant to quasilinear
value as a function of the nonlinearity parameter €.
Solid line is from Eq. (10) of the present work.
Dashed line is 1 = 2J,5(¢).
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